NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations

NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations

Komal MiglaniUpdated on 20 Aug 2025, 09:33 AM IST

Think of a rocket travelling through the air, a drug breaking down in the blood, or the cooling of a cup of hot coffee. What makes them change with time? The Answer is Differential Equations! This chapter explains to students how equations are used to describe how things change and how they lay the base for the study of physics, engineering, and economics. From realising the order and degree to finding solutions to first-order differential equations, this chapter serves a critical role in representing natural and manmade processes. In Chapter 9 of Class 12, we will study some basic concepts related to differential equations, general and particular solutions of a differential equation, formation of differential equations, and some applications of differential equations in different areas. The purpose of these NCERT Solutions for Class 12 Maths is to provide students with a study material that they can use after completing the exercise to compare their answers to and whenever they get stuck.

This Story also Contains

  1. NCERT Solution for Class 12 Maths Chapter 9 Solutions: Download PDF
  2. NCERT Solutions for Class 12 Maths Chapter 9: Exercise Questions
  3. Class 12 Maths NCERT Chapter 9: Extra Question
  4. Differential Equations Class 12 Chapter 9: Topics
  5. Differential Equations Class 12 Solutions: Important Formulae
  6. What Extra Should Students Study Beyond NCERT for JEE?
  7. NCERT Class 12 Solutions - Chapter Wise
NCERT Solutions for Class 12 Maths Chapter 9 - Differential Equations
NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations

Differential equations are the heartbeat of the physical world; they describe how everything changes. These NCERT solutions for class 12 provide step-by-step explanations of all the questions and every important concept with examples, making it easy to learn. Students prefer NCERT Solutions as they make revision easier and more effective. Careers360 teachers who have many years of experience in this field curated these solutions following the latest NCERT syllabus. Refer to the NCERT for the up-to-date NCERT syllabus, notes, and PDF resources.

NCERT Solution for Class 12 Maths Chapter 9 Solutions: Download PDF

Students who wish to access the NCERT class 12 Maths chapter 9 solutions can click on the given link below to download the complete solution in PDF.

Download PDF

NCERT Solutions for Class 12 Maths Chapter 9: Exercise Questions

Class 12 Maths chapter 9 solutions Exercise 9.1

Page number: 303-304

Total questions: 12

Question: Determine the order and degree (if defined) of the differential equation

1.$\frac{\mathrm{d}^4 y}{\mathrm{~d} x^4}+\sin \left(y^{\prime \prime \prime}\right)=0$

2. $y' + 5y = 0$

3.$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$

4. $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$

5. $\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$

6. $(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$

7. $y''' + 2y'' + y' =0$

8. $y' + y = e^x$

9. $y'' + (y')^2 + 2y = 0$

10. $y'' + 2y' + \sin y = 0$

Answer(1):

The given function is
$\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$
We can rewrite it as
$y^{''''}+\sin(y''') =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''''}$

Therefore, the order of the given differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$ is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined

Answer(2):

Given function is
$y' + 5y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{'}$
Therefore, the order of the given differential equation $y' + 5y = 0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives, and its highest power raised to y ' is 1
Therefore, its degree is 1.

Answer(3):

Given function is
$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
We can rewrite it as
$(s^{'})^4+3s.s^{''} =0$
Now, it is clear from the above that,the highest order derivative present in differential equation is $s^{''}$

Therefore, the order of the given differential equation $\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives, and power raised to s '' is 1
Therefore, its degree is 1

Answer(4):

Given function is
$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
We can rewrite it as
$(y^{''})^2+\cos y^{''} =0$
Now, it is clear from the above that,the highest order derivative present in differential equation is $y^{''}$

Therefore, the order of the given differential equation $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$ is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined

Answer(5):

Given function is
$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
$\Rightarrow \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{''}\left ( \frac{d^2y}{dx^2} \right )$

Therefore, order of given differential equation $\frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives,
$ \frac {d^2y}{dx^2}$ and power raised to $\frac{d^2y}{dx^2}$ is 1
Therefore, its degree is 1.

Answer(6):

$
\text{Given function is}
\left(y^{\prime \prime \prime}\right)^2+\left(y^{\prime \prime}\right)^3+\left(y^{\prime}\right)^4+y^5=0
$

Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{\prime \prime \prime}.$

Therefore, the order of the given differential equation
$\left(y^{\prime \prime \prime}\right)^2+\left(y^{\prime \prime}\right)^3+\left(y^{\prime}\right)^4+y^5=0
\text{ is } 3.
$

Now, the given differential equation is a polynomial equation in its derivatives
$y^{\prime \prime \prime}, y^{\prime \prime}, y^{\prime},
\text{ and the power raised to } y^{\prime \prime \prime} \text{ is } 2.
$

$
\text{Therefore, its degree is } 2.
$

Answer(7):

$
\text{Given function is }
y''' + 2y'' + y' = 0
$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{'''}.
$
Therefore, the order of the given differential equation
$y''' + 2y'' + y' = 0 \text{ is } 3.
$

Now, the given differential equation is a polynomial equation in its derivatives
$y^{'''}, y^{''}, \text{ and } y^{'},
\text{ and the power raised to } y^{'''} \text{ is } 1.
$

$
\text{Therefore, its degree is } 1.
$

Answer(8):

Given function is
$y' + y = e^x$
$\Rightarrow$ $y^{'}+y-e^x=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{'}$

Therefore, order of given differential equation $y^{'}+y-e^x=0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives} and power raised to $y^{'}$ is 1
Therefore, the issue is 1

Answer(9):

Given function is
$y'' + (y')^2 + 2y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation $y'' + (y')^2 + 2y = 0$ is 2
$
\text{Now, the given differential equation is a polynomial equation in its derivatives } y^{''} \text{ and } y^{'} \text{, and the power raised to } y^{''} \text{ is } 1.
$
Therefore, its degree is 1

Answer(10):

Given function is
$y'' + 2y' + \sin y = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y^{''}$

Therefore, order of given differential equation $y'' + 2y' + \sin y = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives
$y^{''} \text{ and } y^{'} \text{, and the power raised to } y^{''} \text{ is } 1.$
Therefore, its degree is 1.

Question 11: The degree of the differential equation $\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is

(A) 3

(B) 2

(C) 1

(D) not defined

Answer:

Given function is
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$
We can rewrite it as
$(y^{''})^3+(y^{'})^2+\sin y^{'}+1=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is 2.
Now, the given differential equation is not a polynomial derivatives
Therefore, its degree is not defined.

Therefore, the answer is (D)

Question 12: The order of the differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is

(A) 2

(B) 1

(C) 0

(D) Not Defined

Answer:

Given function is
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$
We can rewrite it as
$2x.y^{''}-3y^{'}+y=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is 2.

Therefore, the answer is (A)

Class 12 Maths chapter 9 solutions Exercise 9.2

Page number: 306

Total questions: 12

Question: Verify that the given functions (explicit or implicit) are a solution of the corresponding differential equation:

1. $y = e^x + 1 \qquad :\ y'' -y'=0$

2. $y = x^2 + 2x + C\qquad:\ y' -2x - 2 =0$

3. $y = \cos x + C\qquad :\ y' + \sin x = 0$

4. $y = \sqrt{1 + x^2}\qquad :\ y' = \frac{xy}{1 + x^2}$

5. $y = Ax\qquad :\ xy' = y\;(x\neq 0)$

6. $y = x\sin x\qquad :\ xy' = y + x\sqrt{x^2 - y^2}\ (x\neq 0\ \textup{and} \ x > y\ or \ x < -y)$

7. $xy = \log y + C\qquad :\ y' = \frac{y^2}{1 - xy}\ (xy\neq 1)$

8. $y - cos y = x \qquad :(\ y\sin y + \cos y + x) y' = y$

9. $x + y = \tan^{-1}y\qquad :\ y^2y' + y^2 + 1 = 0$

10. $y = \sqrt{a^2 - x^2}\ x\in (-a,a)\qquad : \ x + y \frac{dy}{dx} = 0\ (y\neq 0)$

Answer(1):

Given,

$y = e^x + 1$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d}e^x }{\mathrm{d} x} = e^x$

Again, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y' }{\mathrm{d} x} = \frac{\mathrm{d}e^x }{\mathrm{d} x} = e^x$

$\implies y'' = e^x$

Substituting the values of y’ and y'' in the given differential equations,

$y'' - y' = e^x - e^x = 0 =$ RHS.

Therefore, the given function is the solution of the corresponding differential equation.

Answer(2):

Given,

$y = x^2 + 2x + C$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(x^2 + 2x + C) = 2x + 2$

Substituting the values of y’ in the given differential equations,

$y' -2x - 2 =2x + 2 - 2x - 2 = 0= RHS$ .

Therefore, the given function is the solution of the corresponding differential equation.

Answer(3):

Given,

$y = \cos x + C$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(cost + C) = -sinx$

Substituting the values of y’ in the given differential equations,

$y' - \sin x = -sinx -sinx = -2sinx \neq RHS$ .

Therefore, the given function is not the solution of the corresponding differential equation.

Answer(4):

Given,

$y = \sqrt{1 + x^2}$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(\sqrt{1 + x^2}) = \frac{2x}{2\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}$

Substituting the values of y in the RHS.

$\frac{x\sqrt{1+x^2}}{1 + x^2} = \frac{x}{\sqrt{1+x^2}} = LHS$ .

Therefore, the given function is a solution of the corresponding differential equation.

Answer(5):

Given,

$y = Ax$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(Ax) = A$

Substituting the values of y' in LHS,

$xy' = x(A) = Ax = y = RHS$ .

Therefore, the given function is a solution of the corresponding differential equation.

Answer(6):

Given,

$y = x\sin x$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(xix) = six + xcosx$

Substituting the values of y' in LHS,

$xy' = x(ssix+ xcosx)$

Substituting the values of y in RHS.

$\\xsinx + x\sqrt{x^2 - x^2sin^2x} = xix + x^2\sqrt{1-sinx^2} = x(sinx+xcosx) = LHS$

Therefore, the given function is a solution of the corresponding differential equation.

Answer(7):

Given,

$xy = \log y + C$

Now, differentiating both sides w.r.t. x,

$\\ y + x\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(logy) = \frac{1}{y}\frac{\mathrm{d}y }{\mathrm{d} x}$
$ \\ \implies y^2 + xyy' = y' $
$\\ \implies y^2 = y'(1-xy) $
$ \\ \implies y' = \frac{y^2}{1-xy}$

Substituting the values of y' in LHS,

$y' = \frac{y^2}{1-xy} = RHS$

Therefore, the given function is a solution of the corresponding differential equation.

Answer(8):

Given,

$y - cos y = x$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d}y }{\mathrm{d} x} +siny\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(x) = 1$

$\implies$ y' + siny.y' = 1

$\implies$ y'(1 + siny) = 1

$\implies y' = \frac{1}{1+siny}$

Substituting the values of y and y' in LHS,

$(\ (x+cosy)\sin y + \cos y + x) (\frac{1}{1+siny})$

$= [x(1+siny) + cosy(1+siny)]\frac{1}{1+siny}$

= (x + cosy) = y = RHS

Therefore, the given function is a solution of the corresponding differential equation.

Answer(9):

Given,

$x + y = \tan^{-1}y$

Now, differentiating both sides w.r.t. x,

$\\ 1 + \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{1 + y^2}\frac{\mathrm{d} y}{\mathrm{d} x}\\ $
$\\ \implies1+y^2 = y'(1-(1+y^2)) = -y^2y'$
$ \\ \implies y' = -\frac{1+y^2}{y^2}$

Substituting the values of y' in LHS,

$y^2(-\frac{1+y^2}{y^2}) + y^2 + 1 = -1- y^2+ y^2 +1 = 0 = RHS$

Therefore, the given function is a solution of the corresponding differential equation.

Answer(10):

Given,

$y = \sqrt{a^2 - x^2}$

Now, differentiating both sides w.r.t. x,

$\frac{\mathrm{d} y}{\mathrm{d} x} =\frac{\mathrm{d}}{\mathrm{d} x}(\sqrt{a^2 - x^2}) = \frac{-2x}{2\sqrt{a^2 - x^2}} = \frac{-x}{\sqrt{a^2 - x^2}}$

Substituting the values of y and y' in LHS,

$x + y \frac{dy}{dx} = x + (\sqrt{a^2 - x^2})(\frac{-x}{\sqrt{a^2 - x^2}}) = 0 = RHS$

Therefore, the given function is a solution of the corresponding differential equation.

Question 11: he number of arbitrary constants in the general solution of a differential equation of fourth order are:
(A) 0
(B) 2
(C) 3
(D) 4

Answer:

(D) 4

The number of constants in the general solution of a differential equation of order n is equal to its order.

Question 12: The number of arbitrary constants in the particular solution of a differential equation of third order are:
(A) 3
(B) 2
(C) 1
(D) 0

Answer:

(D) 0

In a particular solution of a differential equation, there is no arbitrary constant

Class 12 Maths chapter 9 solutions Exercise 9.3

Page number: 310-312

Total questions: 23

Question 1: Find the general solution: $\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$

Answer:

Given,

$\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$

$\\ \implies\frac{dy}{dx} = \frac{2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}} = tan^2\frac{x}{2}$
$ \implies dy = (sec^2\frac{x}{2} - 1)dx$

$\\ \implies \int dy = \int sec^2\frac{x}{2}dx - \int dx $
$ \implies y = 2tan^{-1}\frac{x}{2} - x + C$

Question 2: Find the general solution: $\frac{dy}{dx} = \sqrt{4-y^2}\ (-2 < y < 2)$

Answer:

Given,the question

$\frac{dy}{dx} = \sqrt{4-y^2}$

$\\ \implies \frac{dy}{\sqrt{4-y^2}} = dx $
$ \implies \int \frac{dy}{\sqrt{4-y^2}} = \int dx$

$\\ (\int \frac{dy}{\sqrt{a^2-y^2}} = sin^{-1}\frac{y}{a})\\$

The required general solution:

$\\ \implies sin^{-1}\frac{y}{2} = x + C$

Question 3: Find the general solution: $\frac{dy}{dx} + y = 1 (y\neq 1)$

Answer:

Given, the question

$\frac{dy}{dx} + y = 1$

$\\ \implies \frac{dy}{dx} = 1- y $
$ \implies \int\frac{dy}{1-y} = \int dx$

$(\int\frac{dx}{x} = lnx)$

$\\ \implies -log(1-y) = x + C\ \ (We\ can\ write\ C= log k) \\ \implies log k(1-y) = -x $
$ \implies 1- y = \frac{1}{k}e^{-x} \\$

The required general equation

$\implies y = 1 -\frac{1}{k}e^{-x}$

Question:4 Find the general solution: $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$

Answer:

Given,

$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$

$\\ \implies \frac{sec^2 y}{tan y}dy = -\frac{sec^2 x}{tan x}dx $
$ \implies \int \frac{sec^2 y}{tan y}dy = - \int \frac{sec^2 x}{tan x}dx$

Now, let tany = t and tax = u

$sec^2 y dy = dt\ and\ sec^2 x dx = du$

$\\ \implies \int \frac{dt}{t} = -\int \frac{du}{u} $
$ \implies log t = -log u +logk $
$ \implies t = \frac{1}{ku} $
$ \implies tany = \frac{1}{ktanx}$

Question:5 Find the general solution:

$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$

Answer:

Given, the question

$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$

$\\ \implies dy = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}dx$

Let,

$\\ (e^x + e^{-x}) = t \\ \implies (e^x - e^{-x})dx = dt$

$\\ \implies \int dy = \int \frac{dt}{t} $
$\implies y = log t + C $
$ \implies y = log(e^x + e^{-x}) + C$

This is the general solution

Question 6: Find the general solution: $\frac{dy}{dx} = (1+x^2)(1+y^2)$

Answer:

Given, the question

$\frac{dy}{dx} = (1+x^2)(1+y^2)$

$\\ \implies \int \frac{dy}{(1+y^2)} = \int (1+x^2)dx$

$(\int \frac{dx}{(1+x^2)} =tan^{-1}x +c)$

$\\ \implies tan^{-1}y = x+\frac{x^3}{3} + C$

Question:7 Find the general solution: $y\log y dx - x dy = 0$

Answer:

Given,

$y\log y dx - x dy = 0$

$\\ \implies \frac{1}{ylog y}dy = \frac{1}{x}dx$

let logy = t

=> 1/ydy = dt

$\\ \implies \int \frac{dt}{t} = \int \frac{1}{x}dx $
$ \implies \log t = \log x + \log k $
$\implies t = kx \\ \implies \log y = kx$

This is the general solution

Question 8: Find the general solution: $x^5\frac{dy}{dx} = - y^5$

Answer:

Given, the question

$x^5\frac{dy}{dx} = - y^5$

$\\ \implies \int \frac{dy}{y^5} = - \int \frac{dx}{x^5} $
$ \implies \frac{y^{-4}}{-4} = -\frac{x^{-4}}{-4} + C $
$ \implies \frac{1}{y^4} + \frac{1}{x^4} = C$

This is the required general equation.

Question 9: Find the general solution: $\frac{dy}{dx} = \sin^{-1}x$

Answer:

Given, the question

$\frac{dy}{dx} = \sin^{-1}x$

$\implies \int dy = \int \sin^{-1}xdx$

Now,

$\int (u.v)dx = u\int vdx - \int(\frac{du}{dx}.\int vdx)dx$

Here, u = $\sin^{-1}x$ and v = 1

$\implies y = \sin^{-1}x .x - \int(\frac{1}{\sqrt{1-x^2}}.x)dx$

$\\ Let\ 1- x^2 = t $
$ \implies -2xdx = dt $
$\implies xdx = -dt/2$

$\\ \implies y = x\sin^{-1}x+ \int(\frac{dt}{2\sqrt{t}}) $
$ \implies y = x\sin^{-1}x + \frac{1}{2}.2\sqrt{t} + C $
$\implies y = x\sin^{-1}x + \sqrt{1-x^2} + C$

Question 10: Find the general solution $e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$

Answer:

Given,

$e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$

$\\ \implies e^x\tan y dx = - (1-e^x)\sec^2 y dy $
$ \implies \int \frac{\sec^2 y }{\tan y}dy = -\int \frac{e^x }{(1-e^x)}dx$

$\\ let\ tany = t \ and \ 1-e^x = u $
$\implies \sec^2 ydy = dt\ and \ -e^xdx = du$

$\\ \therefore \int \frac{dt }{t} = \int \frac{du }{u} $
$ \implies \log t = \log u + \log k $
$ \implies t = ku$
$\implies \tan y= k (1-e^x)$

Question 11: Find a particular solution satisfying the given condition:

$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x; \ y = 1\ \textup{when}\ x = 0$

Answer:

Given, the question

$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$

$\\ \implies \int dy = \int\frac{2x^2 + x}{(x^3 + x^2 + x + 1)}dx$

$(x^3 + x^2 + x + 1) = (x +1)(x^2+1)$

Now,

$\begin{aligned} & \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^2+1} \\ & \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A x^2+A(B x+C)(x+1)}{(x+1)\left(x^2+1\right)} \\ & \Rightarrow 2 x^2+x=A x^2+A+B x+C x+C \\ & \Rightarrow 2 x^2+x=(A+B) x^2+(B+C) x+A+C\end{aligned}$

Now, comparing the coefficients.

A + B = 2; B + C = 1; A + C = 0

Solving these:

$\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{3}{2}, \mathrm{C}=-\frac{1}{2}$

Putting the values of A, B, and C:

$\Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{1}{2} \frac{1}{(x+1)}+\frac{1}{2} \frac{3 x-1}{x^2+1}$

Therefore,

$\begin{aligned} & \Rightarrow \int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^2+1} d x \\ & \Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{2} \int \frac{\mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{dx}}{\mathrm{x}^2+1} \\ & \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \tan ^{-1} \mathrm{x} \\ & \text { let } \mathrm{x}^2+1=\mathrm{t}\end{aligned}$

$\begin{aligned} & \therefore \frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}=\frac{3}{4} \int \frac{\mathrm{dt}}{\mathrm{t}} \\ & \text { so, } \mathrm{I}=\frac{3}{4} \log \mathrm{t} \\ & \mathrm{I}=\frac{3}{4} \log \left(\mathrm{x}^2+1\right) \\ & \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \log \left(\mathrm{x}^2+1\right)-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}\end{aligned}$

$\begin{aligned} & \Rightarrow \mathrm{y}=\frac{1}{4}\left[2 \log (\mathrm{x}+1)+3 \log \left(\mathrm{x}^2+1\right)\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c} \\ & \Rightarrow \mathrm{y}=\frac{1}{4}\left[\log (\mathrm{x}+1)^2+\log \left(\mathrm{x}^2+1\right)^3\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}\end{aligned}$

Now, y= 1 when x = 0

$1=\frac{1}{4} \times 0-\frac{1}{2} \times 0+c$

c = 1

Putting the value of c, we get:

$y=\frac{1}{4}\left[\log \left\{(x+1)^2\left(x^2+1\right)\right\}\right]-\frac{1}{2} \tan ^{-1} x+1$

Question 12: Find a particular solution satisfying the given condition:

$x(x^2 -1)\frac{dy}{dx} =1;\ y = 0\ \textup{when} \ x = 2$

Answer:

Given, the question

$x(x^2 -1)\frac{dy}{dx} =1$

$\\ \implies \int dy=\int \frac{dx}{x(x^2 -1)} \\ \implies \int dy=\int \frac{dx}{x(x -1)(x+1)}$

Let,

$\begin{aligned} & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{c}{x-1} \\ & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A(x-1)(x+1)+B(x)(x-1)+C(x)(x+1)}{x(x+1)(x-1)} \\ & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{(A+B+C) x^2+(B-C) x-A}{x(x+1)(x-1)}\end{aligned}$

Now, comparing the values of A, B, C

A + B + C = 0; B-C = 0; A = -1

Solving these:

$B=\frac{1}{2}$ and $C=\frac{1}{2}$

Now, putting the values of A, B, C

$\begin{aligned} & \Rightarrow \frac{1}{x(x+1)(x-1)}=-\frac{1}{x}+\frac{1}{2}\left(\frac{1}{x+1}\right)+\frac{1}{2}\left(\frac{1}{x-1}\right) \\ & \Rightarrow \int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int\left(\frac{1}{x+1}\right) d x+\frac{1}{2} \int\left(\frac{1}{x-1}\right) d x \\ & \Rightarrow y=-\log x+\frac{1}{2} \log (x+1)+\frac{1}{2} \log (x-1)+\log c \\ & \left.\Rightarrow y=\frac{1}{2} \log \left[\frac{c^2(x-1)(x+1)}{x^2}\right\}-\text { iii }\right)\end{aligned}$

Given, y =0 when x =2

$\begin{aligned} & 0=\frac{1}{2} \log \left[\frac{c^2(2-1)(2+1)}{4}\right\} \\ & \Rightarrow \log \frac{3 c^2}{4}=0 \\ & \Rightarrow 3 c^2=4\end{aligned}$

Therefore,

$\\ \implies y = \frac{1}{2}\log[\frac{4(x-1)(x+1)}{3x^2}]$

$\\ \implies y = \frac{1}{2}\log[\frac{4(x^2-1)}{3x^2}]$

Question 13: Find a particular solution satisfying the given condition:

$\cos\left(\frac{dy}{dx} \right ) = a\ (a\in R);\ y = 1\ \textup{when}\ x = 0$

Answer:

Given,

$\cos\left(\frac{dy}{dx} \right ) = a$

$\\ \implies \frac{dy}{dx} = \cos^{-1}a $
$ \implies \int dy = \int\cos^{-1}a\ dx $
$ \implies y = x\cos^{-1}a + c$

Now, y =1 when x =0

1 = 0 + c

Therefore, c = 1

Putting the value of c:

$\implies y = x\cos^{-1}a + 1$

Question 14: Find a particular solution satisfying the given condition:

$\frac{dy}{dx} = y\tan x; \ y =1\ \textup{when}\ x = 0$

Answer:

Given,

$\frac{dy}{dx} = y\tan x$

$\\ \implies \int \frac{dy}{y} = \int \tan x\ dx $
$ \implies \log y = \log \sec x + \log k $
$ \implies y = k\sec x$

Now, y=1 when x =0

1 = ksec0

$\implies$ k = 1

Putting the value of k:

y = sec x

Question 15: Find the equation of a curve passing through the point (0, 0) and whose differential equation is $y' = e^x \sin x $.

Answer:

We first find the general solution of the given differential equation

Given,

$y' = e^x\sin x$

$\\ \implies \int dy = \int e^x\sin xdx$

$\\ Let I = \int e^x\sin xdx $
$ \implies I = \sin x.e^x - \int(\cos x. e^x)dx $
$\implies I = e^x\sin x - [e^x\cos x - \int(-\sin x.e^x)dx] $
$ \implies 2I = e^x(\sin x - \cos x) $
$ \implies I = \frac{1}{2}e^x(\sin x - \cos x)$

$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + c$

Now, since the curve passes through (0,0)

y = 0 when x =0

$\\ \therefore 0 = \frac{1}{2}e^0(\sin 0 - \cos 0) + c \\ \implies c = \frac{1}{2}$

Putting the value of c, we get:

$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + \frac{1}{2} $
$ \implies 2y -1 = e^x(\sin x - \cos x)$

Question 16: For the differential equation $xy\frac{dy}{dx} = (x+2)(y+2)$, find the solution curve passing through the point (1, –1).

Answer:

We first find the general solution of the given differential equation

Given,

$xy\frac{dy}{dx} = (x+2)(y+2)$

$\\ \implies \int \frac{y}{y+2}dy = \int \frac{x+2}{x}dx $
$ \implies \int \frac{(y+2)-2}{y+2}dy = \int (1 + \frac{2}{x})dx $
$ \implies \int (1 - \frac{2}{y+2})dy = \int (1 + \frac{2}{x})dx $
$ \implies y - 2\log (y+2) = x + 2\log x + C$

Now, since the curve passes through (1,-1)

y = -1 when x = 1

$\\ \therefore -1 - 2\log (-1+2) = 1 + 2\log 1 + C $
$ \implies -1 -0 = 1 + 0 +C \\ \implies C = -2$

Putting the value of C:

$\\ y - 2\log (y+2) = x + 2\log x + -2 $
$ \implies y -x + 2 = 2\log x(y+2)$

Question 17: Find the equation of a curve passing through the point $( 0,-2)$ given that at any point $(x,y)$ on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.

Answer:

According to the question,

$y\frac{dy}{dx} =x$

$\\ \implies \int ydy =\int dx $
$ \implies \frac{y^2}{2} = \frac{x^2}{2} + c$

Now, since the curve passes through (0,-2).

x =0 and y = -2

$\\ \implies \frac{(-2)^2}{2} = \frac{0^2}{2} + c \\ \implies c = 2$

Putting the value of c, we get

$\\ \frac{y^2}{2} = \frac{x^2}{2} + 2 \\ \implies y^2 = x^2 + 4$

Question 18: At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, –3). Find the equation of the curve given that it passes through (–2, 1).

Answer:

Slope m of line joining (x,y) and (-4,-3) is $\frac{y+3}{x+4}$

According to the question,

$\\ \frac{dy}{dx} = 2(\frac{y+3}{x+4}) $
$\implies \int \frac{dy}{y+3} = 2\int \frac{dx}{x+4} $
$ \implies \log (y+3) = 2\log (x+4) + \log k $
$ \implies (y+3) = k(x+4)^2$

Now, since the curve passes through (-2,1)

x = -2 , y =1

$\\ \implies (1+3) = k(-2+4)^2 \\ \implies k =1$

Putting the value of k, we get

$\\ \implies y+3 = (x+4)^2$

Question 19: The volume of a spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of the balloon after t seconds.

Answer:

Volume of a sphere, $V = \frac{4}{3}\pi r ^3$

Given that the rate of change is constant.

$\\ \therefore \frac{dV}{dt} = c $
$ \implies \frac{d}{dt} (\frac{4}{3}\pi r ^3) = c $
$ \implies \int d(\frac{4}{3}\pi r ^3) = c\int dt $
$\implies \frac{4}{3}\pi r ^3 = ct + k$

Now, at t=0, r=3 and at t=3 , r =6

Putting these values:

$\frac{4}{3}\pi (3) ^3 = c(0) + k $
$\implies k = 36\pi$

Also,

$\frac{4}{3}\pi (6) ^3 = c(3) + 36\pi $
$ \implies 3c = 252\pi $
$ \implies c = 84\pi$

Putting the value of c and k:

$\\ \frac{4}{3}\pi r ^3 = 84\pi t + 36\pi $
$ \implies r ^3 = (21 t + 9)(3) = 62t + 27 $
$ \implies r = \sqrt[3]{62t + 27}$

Question 20: In a bank, the principal increases continuously at the rate of r % per year. Find the value of r if Rs 100 doubles itself in 10 years (log e 2 = 0.6931).

Answer:

Let p be the principal amount and t be the time.

According to the question,

$\frac{dp}{dt} = (\frac{r}{100})p$

$\\ \implies \int\frac{dp}{p} = \int (\frac{r}{100})dt $
$ \implies \log p = \frac{r}{100}t + C$

$\\ \implies p = e^{\frac{rt}{100} + C}$

Now, at t =0 , p = 100

and at t =10, p = 200

Putting these values,

$\\ \implies 100 = e^{\frac{r(0)}{100} + C} = e^C$

Also,

$\\ \implies 200 = e^{\frac{r(10)}{100} + C} = e^{\frac{r}{10}}.e^C = e^{\frac{r}{10}}.100 \\ \implies e^{\frac{r}{10}} = 2$
$ \implies \frac{r}{10} = \ln 2 = 0.6931 $
$ \implies r = 6.93$

So value of r = 6.93%

Question 21: In a bank, the principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it be worth after 10 years (e 0.5 = 1.648)?

Answer:

Let p be the principal amount and t be the time.

According to the question,

$\frac{dp}{dt} = (\frac{5}{100})p$

$\\ \implies \int\frac{dp}{p} = \int (\frac{1}{20})dt$
$ \implies \log p = \frac{1}{20}t + C$

$\\ \implies p = e^{\frac{t}{20} + C}$

Now, at t =0 , p = 1000

Putting these values,

$\\ \implies 1000 = e^{\frac{(0)}{20} + C} = e^C$

Also, at t=10

$\\ \implies p = e^{\frac{(10)}{20} + C} = e^{\frac{1}{2}}.e^C = e^{\frac{1}{2}}.1000 $
$ \implies p =(1.648)(1000) = 1648$

After 10 years, the total amount would be Rs. 1648.

Question 22: In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Answer:

Let n be the number of bacteria at any time t.

According to the question,

$\frac{dn}{dt} = kn\ \ (k\ is\ a\ constant)$

$\\ \implies \int \frac{dn}{n} = \int kdt $
$ \implies \log n = kt + C$

Now, at t=0, n = 100000

$\\ \implies \log (100000) = k(0) + C \\ \implies C = 5$

Again, at t=2, n= 110000

$\\ \implies \log (110000) = k(2) + 5 $
$ \implies \log 11 + 4 = 2k + 5 $
$ \implies 2k = \log 11 -1 =\log \frac{11}{10} $
$ \implies k = \frac{1}{2}\log \frac{11}{10}$

Using these values, for n= 200000

$\\ \implies \log (200000) = kt + C $
$ \implies \log 2 +5 = kt + 5 $
$ \implies (\frac{1}{2}\log \frac{11}{10})t = \log 2 $
$ \implies t = \frac{2\log 2}{ \log \frac{11}{10}}$

Question 23: The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is

(A) $e^x + e^{-y} = C$

(B) $e^{x }+ e^{y} = C$

(C) $e^{-x }+ e^{y} = C$

(D) $e^{-x }+ e^{-y} = C$

Answer:

Given,

$\frac{dy}{dx} = e^{x+y}$

$\\ \implies\frac{dy}{dx} = e^x.e^y $
$ \implies\int \frac{dy}{e^y} = \int e^x.dx $
$\implies -e^{-y} = e^x + C $
$\implies e^x + e^{-y} = K$ (Option A)

Class 12 Maths chapter 9 solutions Exercise 9.4

Page number: 321-322

Total questions: 17

Question 1: Show that the given differential equation is homogeneous and solves each of them. $(x^2 + xy)dy = (x^2 + y^2)dx$

Answer:

The given differential equation can be written as
$\frac{dy}{dx}=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Let $F(x,y)=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Now, $F(\lambda x,\lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}$
$=\frac{x^{2}+y^{2}}{x^{2}+xy} = \lambda ^{0}F(x,y)$ Hence, it is a homogeneous equation.

To solve it, put y = vx
differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v +x\frac{dv}{dx} = \frac{x^{2}+(vx)^{2}}{x^{2}+x(vx)}\\ v +x\frac{dv}{dx} = \frac{1+v^{2}}{1+v}$

$x\frac{dv}{dx} = \frac{(1+v^{2})-v(1+v)}{1+v} = \frac{1-v}{1+v}$

$( \frac{1+v}{1-v})dv = \frac{dx}{x}$

$( \frac{2}{1-v}-1)dv = \frac{dx}{x}$
Integrating on both sides, we get;
$\\-2\log(1-v)-v=\log x -\log k$
$ v= -2\log (1-v)-\log x+\log k$
$ v= \log\frac{k}{x(1-v)^{2}}\\$
Again substitute the value $y = \frac{v}{x}$ ,we get;

$\\\frac{y}{x}= \log\frac{kx}{(x-y)^{2}}\\ \frac{kx}{(x-y)^{2}}=e^{y/x}\\ (x-y)^{2}=kxe^{-y/x}$
This is the required solution for the given diff. equation

Question 2: Show that the given differential equation is homogeneous and solves each of them. $y' = \frac{x+y}{x}$

Answer:

The above differential equation can be written as,

$\frac{dy}{dx} = F(x,y)=\frac{x+y}{x}$ ............................(i)

Now, $F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x} = \lambda ^{0}F(x,y)$
Thus the given differential equation is a homogeneous equaion
Now, to solve, substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx}= \frac{x+vx}{x} = 1+v$
$\\x\frac{dv}{dx}= 1\\ dv = \frac{dx}{x}$
Integrating on both sides, we get; (and substitute the value of $v =\frac{y}{x}$ )

$\\v =\log x+C\\ \frac{y}{x}=\log x+C\\ y = x\log x +Cx$
This is the required solution

Question 3: Show that the given differential equation is homogeneous and solves each of them.

$(x-y)dy - (x+y)dx = 0$

Answer:

The given differential eq can be written as;

$\frac{dy}{dx}=\frac{x+y}{x-y} = F(x,y)(let\ say)$ ....................................(i)

$F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}= \lambda ^{0}F(x,y)$
Hence, it is a homogeneous equation.

Now, to solve e substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v+x\frac{dv}{dx}= \frac{1+v}{1-v}$
$ x\frac{dv}{dx} = \frac{1+v}{1-v}-v =\frac{1+v^{2}}{1-v}$

$\frac{1-v}{1+v^{2}}dv = (\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}})dv=\frac{dx}{x}$
Integrating on both sides, we get;

$\tan^{-1}v-1/2 \log(1+v^{2})=\log x+C$
again substitute the value of $v=y/x$
$\\\tan^{-1}(y/x)-1/2 \log(1+(y/x)^{2})=\log x+C$
$ \tan^{-1}(y/x)-1/2 [\log(x^{2}+y^{2})-\log x^{2}]=\log x+C$
$ tan^{-1}(y/x) = 1/2[\log (x^{2}+y^{2})]+C$ This is the required solution.

Question 4: Show that the given differential equation is homogeneous and solve each of them.

$(x^2 - y^2)dx + 2xydy = 0$

Answer:

we can write it as;

$\frac{dy}{dx}= -\frac{(x^{2}-y^{2})}{2xy} = F(x,y)\ (let\ say)$ ...................................(i)

$F(\lambda x,\lambda y) = \frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)} = \lambda ^{0}.F(x,y)$
Hence it is a homogeneous equation

Now, to solve the substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx} = \frac{ x^{2}-(vx)^{2}}{2x(vx)} =\frac{v^{2}-1}{2v}$
$\\x\frac{dv}{dx} =\frac{v^{2}+1}{2v}\\ \frac{2v}{1+v^{2}}dv=\frac{dx}{x}$
integrating on both sides, we get

$\log (1+v^{2})= -\log x +\log C = \log C/x$
$\\= 1+v^{2} = C/x\\ = x^2+y^{2}=Cx$ .............[ $v =y/x$ ]
This is the required solution.

Question:5 Show that the given differential equation is homogeneous and solve it.

$x^2\frac{dy}{dx} = x^2 - 2y^2 +xy$

Answer:

$\frac{dy}{dx}= \frac{x^{2}-2y^{2}+xy}{x^{2}} = F(x,y)\ (let\ say)$

$F(\lambda x,\lambda y)= \frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda .\lambda )xy}{(\lambda x)^{2}} = \lambda ^{0}.F(x,y)$ ............(i)
Hence, it is a homogeneous equation

Now, to solve the substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\v+x\frac{dv}{dx}= 1-2v^{2}+v$
$ x\frac{dv}{dx} = 1-2v^{2}$
$\frac{dv}{1-2v^{2}}=\frac{dx}{x}$

$1/2[\frac{dv}{(1/\sqrt{2})^{2}-v^{2}}] = \frac{dx}{x}$

On integrating both sides, we get;

$\frac{1}{2\sqrt{2}}\log (\frac{1/\sqrt{2}+v}{1/\sqrt{2}-v}) = \log x +C$
after substituting the value of $v= y/x$

$\frac{1}{2\sqrt{2}}\log (\frac{x+\sqrt{2}y}{x-\sqrt{2}y}) = \log \left | x \right | +C$

This is the required solution

Question 6: Show that the given differential equation is homogeneous and solve it.

$xdy - yd= \sqrt{x^2 + y^2}dx$

Answer:

$\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x} = F(x,y)$ .................................(i)

$F(\mu x,\mu y)=\frac{\mu y+\sqrt{(\mu x)^{2}+(\mu y)^{2}}}{\mu x} =\mu^{0}.F(x,y)$
Hence is a homogeneous equation

Now, to solve use substitution y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)

$v+x\frac{dv}{dx}= v+\sqrt{1+v^{2}}=\sqrt{1+v^{2}}$

$=\frac{dv}{\sqrt{1+v^{2}}} =\frac{dx}{x}$

On integrating both sides,

$\Rightarrow \log \left | v+\sqrt{1+v^{2}} \right | = \log \left | x \right |+\log C$
Substitute the value of v=y/x, we get

$\\\Rightarrow \log \left | \frac{y+\sqrt{x^{2}+y^{2}}}{x} \right | = \log \left | Cx \right |\\ y+\sqrt{x^{2}+y^{2}} = Cx^{2}$

Required solution

Question 7: Solve.

$\left\{x\cos\left(\frac{y}{x} \right ) + y\sin\left(\frac{y}{x} \right ) \right \}ydx = \left\{y\sin\left(\frac{y}{x} \right ) - x\cos\left(\frac{y}{x} \right ) \right \}xdy$

Answer:

$\frac{dy}{dx} =\frac{x \cos(y/x)+y\sin(y/x)}{y\sin(y/x)-x\cos(y/x)}.\frac{y}{x} = F(x,y)$ ......................(i)
By looking at the equation we can directly say that it is a homogeneous equation.

Now, to solve use substitution y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx} =\frac{v \cos v+v^{2}\sin v}{v\sin v-\cos v}$
$ =x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v-\cos v}$
$ =(\tan v-1/v)dv = \frac{2dx}{x}$

integrating on both sides, we get

$\\=\log(\frac{\sec v}{v})= \log (Cx^{2})$
$=\sec v/v =Cx^{2}$
substitute the value of v= y/x , we get

$\\\sec(y/x) =Cxy \\ xy \cos (y/x) = k$

Required solution

Question 8: Solve.

$x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right ) = 0$

Answer:

$\frac{dy}{dx}=\frac{y-x \sin(y/x)}{x} = F(x,y)$ ...............................(i)

$F(\mu x, \mu y)=\frac{\mu y-\mu x \sin(\mu y/\mu x)}{\mu x} = \mu^{0}.F(x,y)$
it is a homogeneous equation

Now, to solve use substitution y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$v+x\frac{dv}{dx}= v- \sin v = -\sin v$
$\Rightarrow -\frac{dv}{\sin v} = -(cosec\ v)dv=\frac{dx}{x}$

On integrating both sides we get;

$\\\Rightarrow \log \left | cosec\ v-\cot v \right |=-\log x+ \log C$
$ \Rightarrow cosec (y/x) - \cot (y/x) = C/x$

$= x[1-\cos (y/x)] = C \sin (y/x)$ Required solution

Question 9: Solve.

$ydx + x\log\left(\frac{y}{x} \right ) -2xdy = 0$

Answer:

$\frac{dy}{dx}= \frac{y}{2x-x \log(y/x)} = F(x,y)$ ..................(i)

$\frac{\mu y}{2\mu x-\mu x \log(\mu y/\mu x)} = F(\mu x,\mu y) = \mu^{0}.F(x,y)$

Hence, it is a homogeneous equation

Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx}= \frac{v}{2-\log v}$
$=x\frac{dv}{dx} = \frac{v\log v-v}{2-\log v}$
$ =[\frac{1}{v(\log v-1)}-\frac{1}{v}]dv=\frac{dx}{x}$
integrating on both sides, we get: ( substituting v =y/x)

$\\\Rightarrow \log[\log(y/x)-1]-\log(y/x)=\log(Cx)$
$\Rightarrow \frac{x}{y}[\log(y/x)-1]=Cx\\$
$ \Rightarrow \log (y/x)-1=Cy$

This is the required solution of the given differential equation

Question 10: Solve.

$\left(1 + e^{\frac{x}{y}} \right )dx + e^\frac{x}{y}\left(1-\frac{x}{y}\right )dy = 0$

Answer:

$\frac{dx}{dy}=\frac{-e^{x/y}(1-x/y)}{1+e^{x/y}} = F(x,y)$ .......................................(i)

$= F(\mu x,\mu y)=\frac{-e^{\mu x/\mu y}(1-\mu x/\mu y)}{1+e^{\mu x/\mu y}} =\mu^{0}.F(x,y)$
Hence, it is a homogeneous equation.

Now, to solve use substitution x = yv

Differentiating on both sides wrt $x$
$\frac{dx}{dy}= v +y\frac{dv}{dy}$

Substitute this value in equation (i)

$\\=v+y\frac{dv}{dy} = \frac{-e^{v}(1-v)}{1+e^{v}} $
$ =y\frac{dv}{dy} = -\frac{v+e^{v}}{1+e^{v}}$
$ =\frac{1+e^{v}}{v+e^{v}}dv=-\frac{dy}{y}$

Integrating on both sides, we get;

${100} \log(v+e^{v})=-\log y+ \log c =\log (c/y)\\ =[\frac{x}{y}+e^{x/y}]= \frac{c}{y}$
$\Rightarrow x+ye^{x/y}=c$
This is the required solution of the diff equation.

Question 11: Solve for a particular solution.

$(x + y)dy + (x -y)dx = 0;\ y =1\ when \ x =1$

Answer:

$\frac{dy}{dx}=\frac{-(x-y)}{x+y} =F(x,y)$ ..........................(i)

We can clearly say that it is a homogeneous equation.

Now, to solve use substitution y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)

$\\v+x\frac{dv}{dx}=\frac{v-1}{v+1}$
$\Rightarrow x\frac{dv}{dx} = -\frac{(1+v^{2})}{1+v}$

$\frac{1+v}{1+v^{2}}dv = [\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}]dv=-\frac{dx}{x}$

On integrating both sides

$⇒\frac{1}{2}[\log (1+v^{2})]+\tan^{-1}v = -\log x +k$
$ ⇒\log(1+v^{2})+2\tan^{-1}v=-2\log x +2k$
$⇒\log[(1+(y/x)^{2}).x^{2}]+2\tan^{-1}(y/x)=2k$
$ ⇒\log(x^{2}+y^{2})+2\tan^{-1}(y/x) = 2k$ ......................(ii)

Now, y=1 and x= 1
$\\=\log 2 +2\tan^{-1}1=2k\\ =\pi/2+\log 2 = 2k\\$

After substituting the value of 2k in the equation. (ii)

$\log(x^{2}+y^2)+2\tan^{-1}(y/x)=\pi/2+\log 2$
This is the required solution.

Question 12 Solve for a particular solution.

$x^2dy + (xy + y^2)dx = 0; y =1\ \textup{when}\ x = 1$

Answer:

$\frac{dy}{dx}= \frac{-(xy+y^{2})}{x^{2}} = F(x,y)$ ...............................(i)

$F(\mu x, \mu y)=\frac{-\mu^{2}(xy+(\mu y)^{2})}{(\mu x)^{2}} =\mu ^{0}. F(x,y)$
Hence, it is a homogeneous equation

Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i), we get

$⇒v+\frac{xdv}{dx}= -v- v^{2}$
$⇒\frac{xdv}{dx}=-v(v+2)$
$ ⇒\frac{dv}{v+2}=-\frac{dx}{x}$
$ ⇒\frac12[\frac{1}{v}-\frac{1}{v+2}]dv=-\frac{dx}{x}$

Integrating on both sides, we get;

$\\=\frac{1}{2}[\log v -\log(v+2)]= -\log x+\log C\\ =\frac{v}{v+2}=(C/x)^{2}$

replace the value of v=y/x

$\frac{x^{2}y}{y+2x}=C^{2}$ .............................(ii)

Now y =1 and x = 1

$C = 1/\sqrt{3}$
therefore,

$\frac{x^{2}y}{y+2x}=1/3$

Required solution

Question:13 Solve for a particular solution.

$\left [x\sin^2\left(\frac{y}{x} \right ) - y \right ]dx + xdy = 0;\ y =\frac{\pi}{4}\ when \ x = 1$

Answer:

$\frac{dy}{dx}=\frac{-[x\sin^{2}(y/x)-y]}{x} = F(x,y)$ ..................(i)

$F(\mu x,\mu y)=\frac{-[\mu x\sin^{2}(\mu y/\mu x)-\mu y]}{\mu x}=\mu ^{0}.F(x,y)$

Hence, it is a homogeneous equation

Now, to solve use substitution y = vx

Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

On integrating both sides, we get;

$\\-\cot v =\log\left | x \right | -C\\ =\cot v = \log\left | x \right |+\log C$

On substituting v =y/x

$=\cot (y/x) = \log\left | Cx \right |$ ............................(ii)

Now, $y = \pi/4\ @ x=1$

$\\\cot (\pi/4) = \log C \\ =C=e^{1}$

Put this value of C in Eq. (ii)

$\cot (y/x)=\log\left | ex \right |$

Required solution.

Question 14: Solve for a particular solution.

$\frac{dy}{dx} - \frac{y}{x} + \textup{cosec}\left (\frac{y}{x} \right ) = 0;\ y = 0 \ \textup{when}\ x = 1$

Answer:

$\frac{dy}{dx} = \frac{y}{x} -cosec(y/x) =F(x,y)$ ....................................(i)

The above equation is homogeneous. So,
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx}=v- cosec\ v\\ =x\frac{dv}{dx} = -cosec\ v\\ =-\frac{dv}{cosec\ v}= \frac{dx}{x}\\ =-\sin v dv = \frac{dx}{x}$

On integrating both sides, we get;

$\\=cos\ v = \log x +\log C =\log Cx\\ =\cos(y/x)= \log Cx$ .................................(ii)

now y = 0 and x =1 , we get

$C =e^{1}$

Put the value of C in Eq. 2

$\cos(y/x)=\log \left | ex \right |$

Question:15 Solve for a particular solution.

$2xy + y^2 - 2x^2\frac{dy}{dx} = 0 ;\ y = 2\ \textup{when}\ x = 1$

Answer:

The above equation can be written as:

$\frac{dy}{dx}=\frac{2xy+y^{2}}{2x^{2}} = F(x,y)$
By looking, we can say that it is a homogeneous equation.

Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$

Substitute this value in equation (i)

$\\=v+x\frac{dv}{dx}= \frac{2v+v^{2}}{2}\\ =x\frac{dv}{dx} = v^{2}/2\\ = \frac{2dv}{v^{2}}=\frac{dx}{x}$

integrating on both sides, we get;

$\\=-2/v=\log \left | x \right |+C\\ =-\frac{2x}{y}=\log \left | x \right |+C$ .............................(ii)

Now, y = 2 and x =1, we get

C =-1
Put this value in equation(ii)

$\\=-\frac{2x}{y}=\log \left | x \right |-1\\ \Rightarrow y = \frac{2x}{1- \log x}$

Question:16 A homogeneous differential equation of the from $\frac{dx}{dy}= h\left(\frac{x}{y} \right )$ can be solved by making the substitution.

(A) $y = vx$

(B) $v = yx$

(C) $x = vy$

(D) $x =v$

Answer:

$\frac{dx}{dy}= h\left(\frac{x}{y} \right )$
To solve this type of equation, put x/y = v
x = vy

option C is correct

Question 17 Which of the following is a homogeneous differential equation?

(A) $(4x + 6x +5)dy - (3y + 2x +4)dx = 0$

(B) $(xy)dx - (x^3 + y^3)dy = 0$

(C) $(x^3 +2y^2)dx + 2xydy =0$

(D) $y^2dx + (x^2 -xy -y^2)dy = 0$

Answer:

Option D is the right answer.

$y^2dx + (x^2 -xy -y^2)dy = 0$
$\frac{dy}{dx}=\frac{y^{2}}{x^{2}-xy-y^{2}} = F(x,y)$
We can take out lambda as a common factor, and it can be cancelled out

Class 12 Maths chapter 9 solutions Exercise 9.5

Page number: 328-329

Total questions: 19

Question:1 Find the general solution:

$\frac{dy}{dx} + 2y = \sin x$

Answer:

The given equation is
$\frac{dy}{dx} + 2y = \sin x$
This is $\frac{dy}{dx} + py = Q$ type where p = 2 and Q = sin x
Now,
$I.F. = e^{\int pdx}= e^{\int 2dx}= e^{2x}$
Now, the solution of a given differential equation is given by the relation
$Y(I.F.) =\int (Q\times I.F.)dx +C$
$Y(e^{\int 2x }) =\int (\sin x\times e^{\int 2x })dx +C$
Let $I =\int (\sin x\times e^{\int 2x })$
$I = \sin x \int e^{2x}dx- \int \left ( \frac{d(\sin x)}{dx}.\int e^{2x}dx \right )dx$
$ I = \sin x.\frac{e^{2x}}{2}- \int \left ( \cos x.\frac{e^{2x}}{2} \right )$
$ I = \sin x. \frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x\int e^{2x}dx- \left ( \frac{d(\cos x)}{dx}.\int e^{2x}dx \right ) \right )dx$
$ I = \sin x\frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x.\frac{e^{2x}}{2}+ \int \left ( \sin x.\frac{e^{2x}}{2} \right ) \right )$
$ I = \sin x\frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x.\frac{e^{2x}}{2}+\frac{I}{2} \right ) $
$ (\because I = \int \sin xe^{2x})$
$\frac{5I}{4}= \frac{e^{2x}}{4}\left ( 2\sin x-\cos x \right )$
$ I = \frac{e^{2x}}{5}\left ( 2\sin x-\cos x \right )$
Put the value of I in our equation
Now, our equation becomes
$Y.e^{x^2 }= \frac{e^{2x}}{5}\left (2 \sin x-\cos x \right )+C$
$Y= \frac{1}{5}\left (2 \sin x-\cos x \right )+C.e^{-2x}$
Therefore, the general solution is $Y= \frac{1}{5}\left (2 \sin x-\cos x \right )+C.e^{-2x}$

Question:2 Solve for general solution:

$\frac{dy}{dx} + 3y = e^{-2x}$

Answer:

The given equation is
$\frac{dy}{dx} + 3y = e^{-2x}$
This is $\frac{dy}{dx} + py = Q$ type where p = 3 and $Q = e^{-2x}$
Now,
$I.F. = e^{\int pdx}= e^{\int 3dx}= e^{3x}$
Now, the solution of the given differential equation is given by the relation
$Y(I.F.) =\int (Q\times I.F.)dx +C$
$Y(e^{ 3x }) =\int (e^{-2x}\times e^{ 3x })dx +C$
$Y(e^{ 3x }) =\int (e^{x})dx +C\\ Y(e^{3x})= e^x+C\\ Y = e^{-2x}+Ce^{-3x}$
Therefore, the general solution is $Y = e^{-2x}+Ce^{-3x}$

Question:3 Find the general solution

$\frac{dy}{dx} + \frac{y}{x} = x^2$

Answer:

The given equation is
$\frac{dy}{dx} + \frac{y}{x} = x^2$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{1}{x}$ and $Q = x^2$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{1}{x}dx}= e^{\log x}= x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x) =\int (x^2\times x)dx +C$
$y(x) =\int (x^3)dx +C\\ y.x= \frac{x^4}{4}+C\\$
Therefore, the general solution is $yx =\frac{x^4}{4}+C$

Question 4: Solve for General Solution.

$\frac{dy}{dx} + (\sec x)y = \tan x \ \left(0\leq x < \frac{\pi}{2} \right )$

Answer:

The given equation is
$\frac{dy}{dx} + (\sec x)y = \tan x \ \left(0\leq x < \frac{\pi}{2} \right )$
This is $\frac{dy}{dx} + py = Q$ type where $p = \sec x$ and $Q = \tan x$
Now,
$I.F. = e^{\int pdx}= e^{\int \sec xdx}= e^{\log |\sec x+ \tan x|}= \sec x+\tan x$
$(\because 0\leq x\leq \frac{\pi}{2} \sec x > 0,\tan x > 0)$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sec x+\tan x) =\int ((\sec x+\tan x)\times \tan x)dx +C$
$y(\sec x+ \tan x) =\int (\sec x\tan x+\tan^2 x)dx +C$
$y(\sec x+ \tan x) =\sec x+\int (\sec^2x-1)dx +C$
$ y(\sec x+ \tan x) = \sec x +\tan x - x+C$
Therefore, the general solution is $y(\sec x+ \tan x) = \sec x +\tan x - x+C$

Question:5 Find the general solution.

$\cos^2 x\frac{dy}{dx} + y = \tan x\left(0\leq x < \frac{\pi}{2} \right )$

Answer:

The given equation is
$\cos^2 x\frac{dy}{dx} + y = \tan x\left(0\leq x < \frac{\pi}{2} \right )$
We can rewrite it as
$\frac{dy}{dx}+\sec^2x y= \sec^2x\tan x$
This is $\frac{dy}{dx} + py = Q$ where $p = \sec ^2x$ and $Q =\sec^2x \tan x$
Now,
$I.F. = e^{\int pdx}= e^{\int \sec^2 xdx}= e^{\tan x}$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(e^{\tan x}) =\int ((\sec^2 x\tan x)\times e^{\tan x})dx +C$
$ye^{\tan x} =\int \sec^2 x\tan xe^{\tan x}dx+C\\$
take
$e^{\tan x } = t\\ \Rightarrow \sec^2x.e^{\tan x}dx = dt$
$\int t.\log t dt = \log t.\int tdt-\int \left ( \frac{d(\log t)}{dt}.\int tdt \right )dt $
$ \int t.\log t dt = \log t . \frac{t^2}{2}- \int (\frac{1}{t}.\frac{t^2}{2})dt$
$ \int t.\log t dt = \log t.\frac{t^2}{2}- \int \frac{t}{2}dt$
$ \int t.\log t dt = \log t.\frac{t^2}{2}- \frac{t^2}{4}$
$ \int t.\log t dt = \frac{t^2}{4}(2\log t -1)$
Now put again $t = e^{\tan x}$
$\int \sec^2x\tan xe^{\tan x}dx = \frac{e^{2\tan x}}{4}(2\tan x-1)$
Put this value in our equation

$ye^{\tan x} =\frac{e^{2\tan x}}{4}(2\tan x-1)+C$
Therefore, the general solution is $y =\frac{e^{\tan x}}{4}(2\tan x-1)+Ce^{-\tan x }\\$

Question:6 Solve for General Solution.

$x\frac{dy}{dx} + 2y = x^2\log x$

Answer:

The given equation is
$x\frac{dy}{dx} + 2y = x^2\log x$
We can rewrite it as
$\frac{dy}{dx} +2.\frac{y}{x}= x\log x$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{2}{x}$ and $Q = x\log x$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2}{x}dx}= e^{2\log x}=e^{\log x^2} = x^2$
$(\because 0\leq x\leq \frac{\pi}{2} \sec x > 0,\tan x > 0)$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x^2) =\int (x\log x\times x^2)dx +C$
$x^2y = \int x^3\log x+ C$
Let
$I = \int x^3\log x$
$ I = \log x\int x^3dx-\int \left ( \frac{d(\log x)}{dx}.\int x^3dx \right )dx$
$ I = \log x.\frac{x^4}{4}- \int \left ( \frac{1}{x}.\frac{x^4}{4} \right )dx$
$I = \log x.\frac{x^4}{4}- \int \left ( \frac{x^3}{4} \right )dx$
$I = \log x.\frac{x^4}{4}-\frac{x^4}{16}$
Put this value in our equation
$x^2y =\log x.\frac{x^4}{4}-\frac{x^4}{16}+ C$
$y = \frac{x^2}{16}(4\log x-1)+C.x^{-2}$
Therefore, the general solution is $y = \frac{x^2}{16}(4\log x-1)+C.x^{-2}$

Question Solve for general solutions.

$x\log x\frac{dy}{dx} + y = \frac{2}{x}\log x$

Answer:

The given equation is
$x\log x\frac{dy}{dx} + y = \frac{2}{x}\log x$
We can rewrite it as
$\frac{dy}{dx}+\frac{y}{x\log x}= \frac{2}{x^2}$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{1}{x\log x}$ and $Q =\frac{2}{x^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{1}{x\log x} dx}= e^{\log(\log x)} = \log x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\log x) =\int ((\frac{2}{x^2})\times \log x)dx +C$

take
$I=\int ((\frac{2}{x^2})\times \log x)dx$
$I = \log x.\int \frac{2}{x^2}dx-\int \left ( \frac{d(\log x)}{dt}.\int \frac{x^2}{2}dx \right )dx $
$ I= -\log x . \frac{2}{x}+ \int (\frac{1}{x}.\frac{2}{x})dx$
$ I = -\log x.\frac{2}{x}+ \int \frac{2}{x^2}dx$
$I = -\log x.\frac{2}{x}- \frac{2}{x}\\ \\$
Put this value in our equation

$y\log x =-\frac{2}{x}(\log x+1)+C\\ \\$
Therefore, the general solution is $y\log x =-\frac{2}{x}(\log x+1)+C\\ \\$

Question:8 Find the general solution.

$(1 + x^2)dy + 2xydx = \cot x dx\ (x\neq 0)$

Answer:

The given equation is
$(1 + x^2)dy + 2xydx = \cot x dx\ (x\neq 0)$
We can rewrite it as
$\frac{dy}{dx}+\frac{2xy}{(1+x^2)}= \frac{\cot x}{1+x^2}$
This is $\frac{dy}{dx} + py = Q$ type
where $p = \frac{2x}{1+ x^2}$ and $Q =\frac{\cot x}{1+x^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2x}{1+ x^2} dx}= e^{\log(1+ x^2)} = 1+x^2$
Now, the solution of the given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(1+x^2) =\int ((\frac{\cot x}{1+x^2})\times (1+ x^2))dx +C$
$y(1+x^2) =\int \cot x dx+C$
$ y(1+x^2)= \log |\sin x|+ C$
$ y = (1+x^2)^{-1}\log |\sin x|+C(1+x^2)^{-1}$
Therefore, the general solution is $y = (1+x^2)^{-1}\log |\sin x|+C(1+x^2)^{-1}$

Question 9: Solve for a general solution.

$x\frac{dy}{dx} + y -x +xy \cot x = 0\ (x \neq 0)$

Answer:

The given equation is
$x\frac{dy}{dx} + y -x +xy \cot x = 0\ (x \neq 0)$
We can rewrite it as
$\frac{dy}{dx}+y.\left ( \frac{1}{x}+\cot x \right )= 1$
This is $\frac{dy}{dx} + py = Q$ type
where $p =\left ( \frac{1}{x}+\cot x \right )$ and $Q =1$
Now,
$I.F. = e^{\int pdx}= e^{\int \left ( \frac{1}{x}+\cot x \right ) dx}= e^{\log x +\log |\sin x|} = x.\sin x$
Now, the solution of the given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x.\sin x) =\int 1\times x\sin xdx +C$
$y(x.\sin x) =\int x\sin xdx +C$
Let's take
$I=\int x\sin xdx$
$ I = x .\int \sin xdx-\int \left ( \frac{d(x)}{dx}.\int \sin xdx \right )dx$
$ I =- x.\cos x+ \int (\cos x)dx$
$I = -x\cos x+\sin x$
Put this value in our equation
$y(x.\sin x)= -x\cos x+\sin x + C\\ y = -\cot x+\frac{1}{x}+\frac{C}{x\sin x}$
Therefore, the general solution is $y = -\cot x+\frac{1}{x}+\frac{C}{x\sin x}$

Question 10: Find the general solution.

$(x+y)\frac{dy}{dx} = 1$

Answer:

The given equation is
$(x+y)\frac{dy}{dx} = 1$
We can rewrite it as
$\frac{dy}{dx} = \frac{1}{x+y}$
$x+ y =\frac{dx}{dy}$
$ \frac{dx}{dy}-x=y$
This is $\frac{dx}{dy} + px = Q$ type
where $p =-1$ and $Q =y$
Now,
$I.F. = e^{\int pdy}= e^{\int -1 dy}= e^{-y}$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(e^{-y}) =\int y\times e^{-y}dy +C$
$xe^{-y}= \int y.e^{-y}dy + C$
Let's take
$I=\int ye^{-y}dy $
$ I = y .\int e^{-y}dy-\int \left ( \frac{d(y)}{dy}.\int e^{-y}dy \right )dy$
$I =- y.e^{-y}+ \int e^{-y}dy$
$ I = - ye^{-y}-e^{-y}$
Put this value in our equation
$x.e^{-y} = -e^{-y}(y+1)+C$
$ x = -(y+1)+Ce^{y}\\ x+y+1=Ce^y$
Therefore, the general solution is $x+y+1=Ce^y$

Question 11: Solve for a general solution.

$y dx + (x - y^2)dy = 0$

Answer:

The given equation is
$y dx + (x - y^2)dy = 0$
We can rewrite it as
$\frac{dx}{dy}+\frac{x}{y}=y$
This is $\frac{dx}{dy} + px = Q$ type where $p =\frac{1}{y}$ and $Q =y$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{1}{y} dy}= e^{\log y } = y$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(y) =\int y\times ydy +C$
$xy= \int y^2dy + C$
$xy = \frac{y^3}{3}+C$
$x = \frac{y^2}{3}+\frac{C}{y}$
Therefore, the general solution is $x = \frac{y^2}{3}+\frac{C}{y}$

Question 12: Find the general solution.

$(x+3y^2)\frac{dy}{dx} = y\ (y > 0)$

Answer:

The given equation is
$(x+3y^2)\frac{dy}{dx} = y\ (y > 0)$
We can rewrite it as
$\frac{dx}{dy}-\frac{x}{y}= 3y$
This is $\frac{dx}{dy} + px = Q$ type where $p =\frac{-1}{y}$ and $Q =3y$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{-1}{y} dy}= e^{-\log y } =y^{-1}= \frac{1}{y}$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(\frac{1}{y}) =\int 3y\times \frac{1}{y}dy +C$
$\frac{x}{y}= \int 3dy + C$
$\frac{x}{y}= 3y+ C$
$x = 3y^2+Cy$
Therefore, the general solution is $x = 3y^2 + Cy$

Question 13: Solve for a particular solution.

$\frac{dy}{dx} + 2y \tan x = \sin x; \ y = 0 \ when \ x =\frac{\pi}{3}$

Answer:

The given equation is
$\frac{dy}{dx} + 2y \tan x = \sin x; \ y = 0 \ when \ x =\frac{\pi}{3}$
This is $\frac{dy}{dx} + py = Q$ type
where $p = 2\tan x$ and $Q = \sin x$
Now,
$I.F. = e^{\int pdx}= e^{\int 2\tan xdx}= e^{2\log |\sec x|}= \sec^2 x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sec^2 x) =\int ((\sin x)\times \sec^2 x)dx +C$
$y(\sec^2 x) =\int (\sin \times \frac{1}{\cos x}\times \sec x)dx +C$
$y(\sec^2 x) = \int \tan x\sec xdx+ C$
$ y.\sec^2 x= \sec x+C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{3}$
at $x= \frac{\pi}{3}$
$0.\sec \frac{\pi}{3} = \sec \frac{\pi}{3}+C$
$ C = - 2$
Now,

$y.\sec^2 x= \sec x - 2\\ \frac{y}{\cos ^2x}= \frac{1}{\cos x}- 2\\ y = \cos x- 2\cos ^2 x$
Therefore, the particular solution is $y = \cos x- 2\cos ^2 x$

Question 14: Solve for a particular solution.

$(1 + x^2)\frac{dy}{dx} + 2xy =\frac{1}{1 + x^2}; \ y = 0 \ when \ x = 1$

Answer:

The given equation is
$(1 + x^2)\frac{dy}{dx} + 2xy =\frac{1}{1 + x^2}; \ y = 0 \ when \ x = 1$
We can rewrite it as
$\frac{dy}{dx}+\frac{2xy}{1+x^2}=\frac{1}{(1+x^2)^2}$
This is $\frac{dy}{dx} + py = Q$ type
where $p =\frac{2x}{1+x^2}$
and $Q = \frac{1}{(1+x^2)^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2x}{1+x^2}dx}= e^{\log |1+x^2|}= 1+x^2$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(1+ x^2) =\int (\frac{1}{(1+x^2)^2}\times (1+x^2))dx +C$
$y(1+x^2) =\int \frac{1}{(1+x^2)}dx +C$
$ \\ y(1+x^2) = \tan^{-1}x+ C\\ \\$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when x = 1
at x = 1
$0.(1+1^2) = \tan^{-1}1+ C$
$C =- \frac{\pi}{4}$
Now,
$y(1+x^2)= \tan^{-1}x- \frac{\pi}{4}$
Therefore, the particular solution is $y(1+x^2)= \tan^{-1}x- \frac{\pi}{4}$

Question 15: Find the particular solution.

$\frac{dy}{dx} - 3y \cot x = \sin 2x;\ y = 2\ when \ x = \frac{\pi}{2}$

Answer:

The given equation is
$\frac{dy}{dx} - 3y \cot x = \sin 2x;\ y = 2\ when \ x = \frac{\pi}{2}$
This is $\frac{dy}{dx} + py = Q$ type
where $p =-3\cot x$ and $Q =\sin 2x$
Now,
$I.F. = e^{\int pdx}= e^{-3\cot xdx}= e^{-3\log|\sin x|}= \sin ^{-3}x= \frac{1}{\sin^3x}$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\frac{1}{\sin^3 x}) =\int (\sin 2x\times\frac{1}{\sin^3 x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\sin x\cos x\times\frac{1}{\sin^3 x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\times \frac{\cos x}{\sin x}\times\frac{1}{\sin x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\times\cot x\times cosec x)dx +C$
$\frac{y}{\sin^3 x} =-2cosec x +C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 2 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$\frac{2}{\sin^3\frac{\pi}{2}} = -2cosec \frac{\pi}{2}+C$
$ 2 = -2 +C\\ C = 4$
Now,
$y= 4\sin^3 x-2\sin^2x\\$
Therefore, the particular solution is $ y=4\sin^3 x-2\sin^2x$

Question 16: Find the equation of a curve passing through the origin given that the slope of the tangent to the curve at any point (x, y) is equal to the sum of the coordinates of the point.

Answer:

Let f(x, y) be the curve passing through the origin
Then, the slope of the tangent to the curve at the point (x, y) is given by $\frac{dy}{dx}$
Now, it is given that
$\frac{dy}{dx} = y + x$
$ \\ \frac{dy}{dx}-y=x$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = -1 \ and \ Q = x$
Now,
$I.F. = e^{\int pdx}= e^{\int -1dx }= e^{-x}$
Now,
$y(I.F.)= \int (Q \times I.F. )dx+ C$
$y(e^{-x})= \int (x \times e^{-x} )dx+ C$
Now, Let
$I= \int (x \times e^{-x} )dx $
$ \\ I = x.\int e^{-x}dx-\int \left ( \frac{d(x)}{dx}.\int e^{-x}dx \right )dx$
$ \\ I = -xe^{-x}+\int e^{-x}dx\\ $
$\\ I = -xe^{-x}-e^{-x}$
$ \\ I = -e^{-x}(x+1)$
Put this value in our equation
$ye^{-x}= -e^{-x}(x+1)+C$
Now, by using boundary conditions, we will find the value of C
It is given that curve passing through origin i.e. (x , y) = (0 , 0)
$0.e^{-0}= -e^{-0}(0+1)+C$
$ C = 1$
Our final equation becomes
$ye^{-x}= -e^{-x}(x+1)+1$
$ y+x+1=e^x$
Therefore, the required equation of the curve is $y+x+1=e^x$

Question 17: Find the equation of a curve passing through the point (0, 2) given that the sum of the coordinates of any point on the curve exceeds the magnitude of the slope of the tangent to the curve at that point by 5.

Answer:

Let f(x, y) be the curve passing through the point (0, 2)
Then, the slope of the tangent to the curve at the point (x, y) is given by $\frac{dy}{dx}$
Now, it is given that
$\frac{dy}{dx} +5= y + x$
$ \\ \frac{dy}{dx}-y=x-5$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = -1 \ and \ Q = x- 5$
Now,
$I.F. = e^{\int pdx}= e^{\int -1dx }= e^{-x}$
Now,
$y(I.F.)= \int (Q \times I.F. )dx+ C$
$y(e^{-x})= \int ((x-5) \times e^{-x} )dx+ C$
Now, Let
$I= \int ((x-5) \times e^{-x} )dx$
$ I = (x-5).\int e^{-x}dx-\int \left ( \frac{d(x-5)}{dx}.\int e^{-x}dx \right )dx$
$ I = -(x-5)e^{-x}+\int e^{-x}dx$
$ I = -xe^{-x}-e^{-x}+5e^{-x}$
$ I = -e^{-x}(x-4)$
Put this value in our equation
$ye^{-x}= -e^{-x}(x-4)+C$
Now, by using boundary conditions, we will find the value of C
It is given that the curve passing through point (0, 2)
$2.e^{-0}= -e^{-0}(0-4)+C$
$C = -2$
Our final equation becomes
$ye^{-x}= -e^{-x}(x-4)-2$
$ y=4-x-2e^x$
Therefore, the required equation of the curve is $y=4-x-2e^x$

Question 18: The Integrating Factor of the differential equation $x\frac{dy}{dx} - y = 2x^2$ is

(A) $e^{-x}$

(B) $e^{-y}$

(C) $\frac{1}{x}$

(D) $x$

Answer:

The given equation is
$x\frac{dy}{dx} - y = 2x^2$
We can rewrite it as
$\frac{dy}{dx}-\frac{y}{x}= 2x$
Now,
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = \frac{-1}{x} \ and \ Q = 2x$
Now,
$I.F. = e^{\int pdx} = e^{\int \frac{-1}{x}dx}= e^{\int -\log x }= x^{-1}= \frac{1}{x}$
Therefore, the correct answer is (C)

Question 19: The Integrating Factor of the differential equation $(1 - y^2)\frac{dx}{dy} + yx = ay \ \ (-1<y<1)$ is

(A) $\frac{1}{{y^2 -1}}$

(B) $\frac{1}{\sqrt{y^2 -1}}$

(C) $\frac{1}{{1 - y^2 }}$

(D) $\frac{1}{\sqrt{1 - y^2 }}$

Answer:

The given equation is
$(1 - y^2)\frac{dx}{dy} + yx = ay \ \ (-1<y<1)$
We can rewrite it as
$\frac{dx}{dy}+\frac{yx}{1-y^2}= \frac{ay}{1-y^2}$
It is $\frac{dx}{dy}+px= Q$ type of equation where $p = \frac{y}{1-y^2}\ and \ Q = \frac{ay}{1-y^2}$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{y}{1-y^2}dy}= e^{\frac{\log |1 - y^2|}{-2}}= (1-y^2)^{\frac{-1}{2}}= \frac{1}{\sqrt{1-y^2}}$
Therefore, the correct answer is (D).

Class 12 Maths chapter 9 solutions - Miscellaneous Exercise

Page number: 333-335

Total questions: 15

Question 1: Indicate Order and Degree.

(i) $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$

Answer:

The given function is
$\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
We can rewrite it as
$y''+5x(y')^2-6y = \log x$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y''$

Therefore, the order of the given differential equation $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$ is 2
Now, the given differential equation is a polynomial equation in its derivative y '' and y 'and the power raised to y '' is 1
Therefore, its degree is 1

Question 1: Indicate Order and Degree.

(ii) $\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$

Answer:

The given function is
$\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
We can rewrite it as
$(y')^3-4(y')^2+7y=\sin x$
Now, it is clear from the above that the highest order derivative present in the differential equation is y'.
Therefore, the order of the given differential equation is 1
Now, the given differential equation is a polynomial equation in its derivatives, and the power raised to y ' is 3
Therefore, its degree is 3

Question 1: Indicate Order and Degree.

(iii) $\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$

Answer:

The given function is
$\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
We can rewrite it as
$y''''-\sin y''' = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is y''''

Therefore, the order of the given differential equation is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined

Question 2: Verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.

(i) $xy = ae^x + be^{-x} + x^2\qquad :\ x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy +x^2 -2 =0$

Answer:

Given,

$xy = ae^x + be^{-x} + x^2$

Now, differentiating both sides w.r.t. x,

$x\frac{dy}{dx} + y = ae^x - be^{-x} + 2x$

Again, differentiating both sides w.r.t. x,

$\\ (x\frac{d^2y}{dx^2} + \frac{dy}{dx}) + \frac{dy}{dx} = ae^x + be^{-x} + 2 $
$\\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = ae^x + be^{-x} + 2 $
$\\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = xy -x^2 + 2$
$ \\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy + x^2 + 2$

Therefore, the given function is the solution of the corresponding differential equation.

Question 2: Verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.

(ii) $y = e^x(a\cos x + b \sin x )\qquad : \ \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

Answer:

Given,

$y = e^x(a\cos x + b \sin x )$

Now, differentiating both sides w.r.t. x,

$\frac{dy}{dx} = e^x(-a\sin x + b \cos x ) + e^x(a\cos x + b \sin x ) =e^x(-a\sin x + b \cos x ) +y$

Again, differentiating both sides w.r.t. x,

$\\ \frac{d^2y}{dx^2} = e^x(-a\cos x - b \sin x ) + e^x(-a\sin x + b \cos x ) + \frac{dy}{dx} = -y + (\frac{dy}{dx} -y) + \frac{dy}{dx} $
$ \implies \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$

Therefore, the given function is the solution of the corresponding differential equation.

Question 2: Verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.

(iii) $y= x\sin 3x \qquad : \ \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$

Answer:

Given,

$y= x\sin 3x$

Now, differentiating both sides w.r.t. x,

$y= x\sin 3x \frac{dy}{dx} = x(3\cos 3x) + \sin 3x$

Again, differentiating both sides w.r.t. x,

$\\ \frac{d^2y}{dx^2} = 3x(-3\sin 3x) + 3\cos 3x + 3\cos 3x \\ = -9y + 6\cos 3x $
$ \implies \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$

Therefore, the given function is the solution of the corresponding differential equation.

Question 2: Verify that the given function (implicit or explicit) is a solution of the corresponding differential equation.

(iv) $x^2 = 2y^2\log y\qquad : \ (x^2 + y^2)\frac{dy}{dx} - xy = 0$

Answer:

Given,

$x^2 = 2y^2\log y$

Now, differentiating both sides w.r.t. x,

$\\ 2x = (2y^2.\frac{1}{y} + 2(2y)\log y)\frac{dy}{dx} = 2(y + 2y\log y)\frac{dy}{dx} $
$ \implies \frac{dy}{dx} = \frac{x}{y(1+ 2\log y)}$

Putting $\frac{dy}{dx}\ and \ x^2$ values in LHS

$\\ (2y^2\log y + y^2)\frac{dy}{dx} - xy = y^2(2\log y + 1)\frac{x}{y(1+ 2\log y)} -xy \\ = xy - xy = 0 = RHS$

Therefore, the given function is the solution of the corresponding differential equation.

Question 3: Prove that $x^2 - y^2 = c (x^2 + y^2 )^2$ is the general solution of differential equation $(x^3 - 3x y^2 ) dx = (y^3 - 3x^2 y) dy$ , where c is a parameter.

Answer:

Given,

$
\begin{aligned}
& \left(x^3-3 x y^2\right) d x=\left(y^3-3 x^2 y\right) d y \\
& \Longrightarrow \frac{d y}{d x}=\frac{\left(x^3-3 x y^2\right)}{\left(y^3-3 x^2 y\right)}
\end{aligned}
$
Now, let $\mathbf{y}=\mathrm{vx}$

$
\Longrightarrow \frac{d y}{d x}=\frac{d(v x)}{d x}=v+x \frac{d v}{d x}
$
Substituting the values of $y$ and $y^{\prime}$ in the equation,

$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{\left(x^3-3 x(v x)^2\right)}{\left((v x)^3-3 x^2(v x)\right)} \\
& \Longrightarrow v+x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v} \\
& \Longrightarrow x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v}-v=\frac{1-v^4}{v^3-3 v} \\
& \Longrightarrow\left(\frac{v^3-3 v}{1-v^4}\right) d v=\frac{d x}{x}
\end{aligned}
$
Integrating both sides, we get,

$
\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\log x+\log C^{\prime}
$
Now, $\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\int \frac{v^3}{1-v^4} d v-3 \int \frac{v d v}{1-v^4}$

$
\Rightarrow \int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=I_1-3 I_2 \text {, where } I_1=\int \frac{v^3}{1-v^4} d v \text { and } I_2=\int \frac{v d v}{1-v^4}
$


Let $1-v^4=\mathrm{t}$

$
\begin{aligned}
& \frac{d}{d v}\left(1-v^4\right)=\frac{d t}{d v} \\
& \Longrightarrow-4 v^3=\frac{d t}{d v} \\
& \Longrightarrow v^3 d v=-\frac{d t}{4}
\end{aligned}
$
Now,

$
\mathrm{I}_1=\int-\frac{\mathrm{dt}}{4}=-\frac{1}{4} \log \mathrm{t}=-\frac{1}{4} \log \left(1-\mathrm{v}^4\right)
$

and

$
I_2=\int \frac{v d v}{1-v^4}=\int \frac{v d v}{1-\left(v^2\right)^2}
$
Let $v^2=p$

$
\begin{aligned}
& \Rightarrow \frac{d}{d v}\left(v^2\right)=\frac{d p}{d v} \\
& \Rightarrow 2 v=\frac{d p}{d v}
\end{aligned}
$

Question 4: Find the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$

Answer:

The given equation is
$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$
We can rewrite it as
$\frac{dy}{dx } =- \sqrt{\frac{1-y^2}{1-x^2}}$
$ \frac{dy}{\sqrt{1-y^2}}= \frac{-dx}{\sqrt{1-x^2}}$
Now, integrate on both sides
$\sin^{-1}y + C =- \sin ^{-1}x + C'$
$ \sin^{-1}y+\sin^{-1}x= C$
Therefore, the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$ is $\sin^{-1}y+\sin^{-1}x= C$

Question 5: Show that the general solution of the differential equation $\frac{dy}{dx} + \frac{y^2 + y + 1}{x^2 + x + 1} = 0$ is given by $(x + y + 1) = A (1 - x - y - 2xy)$ , where A is parameter.

Given,

$
\begin{aligned}
& \frac{d y}{d x}+\frac{y^2+y+1}{x^2+x+1}=0 \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{y}^2+\mathrm{y}+1}{\mathrm{x}^2+\mathrm{x}+1}\right) \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}=\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}+\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1}=0
\end{aligned}
$
Integrating both sides,

$
\begin{aligned}
& \int \frac{d y}{y^2+y+1}+\int \frac{d x}{x^2+x+1}=C \\
& \Rightarrow \int \frac{d y}{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\int \frac{d y}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}=C \\
& \Rightarrow \frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{\mathrm{y}+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]+\frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]=C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 y+1}{\sqrt{3}}\right]+\tan ^{-1}\left[\frac{2 x+1}{\sqrt{3}}\right]=\mathrm{C} \Rightarrow \tan ^{-1}\left[\frac{\frac{2 y+1}{\sqrt{3}}+\frac{2 x+1}{\sqrt{3}}}{1-\frac{2 y+1}{\sqrt{3}} \cdot \frac{2 x+1}{\sqrt{3}}}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{\frac{2 x+2 y+2}{\sqrt{3}}}{1-\left(\frac{4 x y+2 x+2 y+1}{3}\right)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{3-4 x y-2 x-2 y-1}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{2(1-x-y-2 x y)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \frac{\sqrt{3}(x+y+1)}{(1-x-y-2 x y)}=\tan \left(\frac{\sqrt{3}}{2} c\right)
\end{aligned}
$
Let $\tan \left(\frac{\sqrt{3}}{2} c\right)=B$

$
x+y+1=\frac{2 B}{\sqrt{3}}(1-x-y-2 x y)
$


Let $A=\frac{2 B}{\sqrt{3}}$,

$
x+y+1=A(1-x-y-2 x y)
$

Hence proved.

Question 6: Find the equation of the curve passing through the point $\left(0,\frac{\pi}{4} \right )$ whose differential equation is $\sin x \cos y dx + \cos x \sin y dy = 0.$

Answer:

The given equation is
$\sin x \cos y dx + \cos x \sin y dy = 0.$
We can rewrite it as
$\frac{dy}{dx}= -\tan x\cot y$
$ \frac{dy}{\cot y}= -\tan xdx$
$ \tan y dy =- \tan x dx$
Integrate both tides
$\log |\sec y|+C' = -\log|sec x|- C''$
$ \log|\sec y | +\log|\sec x| = C$
$ \sec y .\sec x = e^{C}$
Now, by using boundary conditions, we will find the value of C
It is given that the curve passing through the point $\left(0,\frac{\pi}{4} \right )$
So,
$\sec \frac{\pi}{4} .\sec 0 = e^{C}$
$ \sqrt2.1= e^C$
$ C = \log \sqrt2$
Now,
$\sec y.\sec x= e^{\log \sqrt 2}$
$ \frac{\sec x}{\cos y} = \sqrt 2$
$ \cos y = \frac{\sec x}{\sqrt 2}$
Therefore, the equation of the curve passing through the point $\left(0,\frac{\pi}{4} \right )$ whose differential equation is $\sin x \cos y dx + \cos x \sin y dy = 0.$ is $\cos y = \frac{\sec x}{\sqrt 2}$

Question 7: Find the particular solution of the differential equation $(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$ , given that $y = 1$ when $x = 0$ .

Answer:

The given equation is
$(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$
We can rewrite it as
$\frac{dy}{dx}= -\frac{(1+y^2)e^x}{(1+e^{2x})}$
$ \frac{dy}{1+y^2}= \frac{-e^xdx}{1+e^{2x}}$
Now, integrate both sides
$\tan^{-1}y + C' =\int \frac{-e^{x}dx}{1+e^{2x}}$
$\int \frac{-e^{x}dx}{1+e^{2x}}\\$
Put
$e^x = t \\ e^xdx = dt$
$\int \frac{dt}{1+t^2}= \tan^{-1}t + C''$
Put $t = e^x$ again
$\int \frac{-e^{x}dx}{1+e^{2x}} = -\tan ^{-1}e^x+C''$
Put this in our equation
$\tan^{-1}y = -\tan ^{-1}e^x+C\\ \tan^{-1}y +\tan ^{-1}e^x=C$
Now, by using boundary conditions, we will find the value of C
It is given that
y = 1 when x = 0
$\\ \tan^{-1}1 +\tan ^{-1}e^0=C$
$ \frac{\pi}{4}+\frac{\pi}{4}= C\\ C = \frac{\pi}{2}$
Now, put the value of C

$\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Therefore, the particular solution of the differential equation $(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$ is $\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$

Question 8: Solve the differential equation $ye^\frac{x}{y}dx = \left(xe^\frac{x}{y} + y^2 \right )dy\ (y \neq 0)$

Answer:

Given,

$ye^\frac{x}{y}dx = (xe^\frac{x}{y} + y^2)dy$

$\\ ye^\frac{x}{y}\frac{dx}{dy} = xe^\frac{x}{y} + y^2 \\ \implies e^\frac{x}{y}[y\frac{dx}{dy} -x] = y^2 \\ \implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} = 1$

Let $\large e^\frac{x}{y} = t$

Differentiating it w.r.t. y, we get,

$\\ \frac{d}{dy}e^\frac{x}{y} = \frac{dt}{dy} \\ \implies e^\frac{x}{y}.\frac{d}{dy}(\frac{x}{y}) = \frac{dt}{dy} \\ \implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} =\frac{dt}{dy}$

Thus, from these two equations, we get,

$\\ \frac{dt}{dy} = 1 \\ \implies \int dt = \int dy \\ \implies t = y + C$

$\Rightarrow e^{\frac{x}{y}}=y+C$

Question 9: Find a particular solution of the differential equation $(x - y) (dx + dy) = dx - dy,$ , given that $y = -1$ , when $x = 0$ . (Hint: put $x - y = t$ )

Answer:

The given equation is
$(x - y) (dx + dy) = dx - dy,$
Now, integrate both sides
Put
$(x-y ) = t\\ dx - dy = dt$
Now, the given equation becomes
$dx+dy= \frac{dt}{t}$
Now, integrate both sides
$x+ y + C '= \log t + C''$
Put $t = x- y$ again
$x+y = \log (x-y)+ C$
Now, by using boundary conditions, we will find the value of C
It is given that
y = -1 when x = 0
$0+(-1) = \log (0-(-1))+ C\\ C = -1$
Now, put the value of C

$x+y = \log |x-y|-1\\ \log|x-y|= x+y+1$
Therefore, the particular solution of the differential equation $(x - y) (dx + dy) = dx - dy,$ is $\log|x-y|= x+y+1$

Question 10: Solve the differential equation $\left[\frac{e^{-2\sqrt x}}{\sqrt x} - \frac{y}{\sqrt x} \right ]\frac{dx}{dy} = 1\; \ (x\neq 0)$ .

Answer:

Given,

$\left[\frac{e^{-2\sqrt x}}{\sqrt x} - \frac{y}{\sqrt x} \right ]\frac{dx}{dy} = 1$

$\begin{aligned} & \Rightarrow \frac{d y}{d x}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}} \\ & \Rightarrow \frac{d y}{d x}+\frac{y}{\sqrt{x}}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}\end{aligned}$

This equation is in the form of $\frac{d y}{d x}+p y=Q$

$
\begin{aligned}
& p=\frac{1}{\sqrt{x}} \text { and } Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \\
& \text { Now, I.F. }=e^{\int p d x}=e^{\int \frac{1}{\sqrt{x}} d x}=e^{2 \sqrt{x}}
\end{aligned}
$

We know that the solution of the given differential equation is:

$\begin{aligned} & y(I . F .)=\int(Q \cdot F .) d x+C \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int\left(\frac{\mathrm{e}^{-2 \sqrt{\mathrm{x}}}}{\sqrt{\mathrm{x}}} \times \mathrm{e}^{2 \sqrt{\mathrm{x}}}\right) \mathrm{dx}+C \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int \frac{1}{\sqrt{\mathrm{x}}} \mathrm{dx}+\mathrm{C} \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=2 \sqrt{\mathrm{x}}+C\end{aligned}$

Question 11: Find a particular solution of the differential equation $\frac{dy}{dx} + y \cot x = 4x \textup{cosec} x\ (x\neq 0)$ , given that $y = 0 \ \textup{when}\ x = \frac{\pi}{2}$ .

Answer:

The given equation is
$\frac{dy}{dx} + y \cot x = 4x \textup{cosec} x\ (x\neq 0)$
This is $\frac{dy}{dx} + py = Q$ type where $p =\cot x$ and $Q = 4xcosec x$ $Q = 4x \ cosec x$
Now,
$I.F. = e^{\int pdx}= e^{\int \cot xdx}= e^{\log |\sin x|}= \sin x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sin x ) =\int (\sin x\times 4x \ cosec x)dx +C$
$y(\sin x) =\int(\sin x\times \frac{4x}{\sin x}) +C$
$ y(\sin x) = \int 4x + C\\ y\sin x= 2x^2+C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$0.\sin \frac{\pi}{2 } = 2.\left ( \frac{\pi}{2} \right )^2+C$
$ C = - \frac{\pi^2}{2}$
Now, put the value of C
$y\sin x= 2x^2-\frac{\pi^2}{2}$
Therefore, the particular solution is $y\sin x= 2x^2-\frac{\pi^2}{2}, (sinx\neq0)$

Question 12: Find a particular solution of the differential equation $(x+1)\frac{dy}{dx} = 2e^{-y} -1$ , given that $y = 0$ when $x = 0$

Answer:

The given equation is
$(x+1)\frac{dy}{dx} = 2e^{-y} -1$
We can rewrite it as
$\frac{e^ydy}{2-e^y}= \frac{dx}{x+1}\\$
Integrate both sides
$\int \frac{e^ydy}{2-e^y}= \log |x+1|\\$
$\int \frac{e^ydy}{2-e^y}$
Put
$2-e^y = t\\ -e^y dy = dt$
$\int \frac{-dt}{t}=- \log |t|$
put $t = 2- e^y$ again
$\int \frac{e^ydy}{2-e^y} =- \log |2-e^y|$
Put this in our equation
$\log |2-e^y| + C'= \log|1+x| + C''\\ \log (2-e^y)^{-1}= \log (1+x)+\log C\\ \frac{1}{2-e^y}= C(1+x)$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when x = 0
at x = 0
$\frac{1}{2-e^0}= C(1+0)\\ C = \frac{1}{2}$
Now, put the value of C
$\frac{1}{2-e^y} = \frac{1}{2}(1+x)$
$ \frac{2}{1+x}= 2-e^y\\ \frac{2}{1+x}-2= -e^y\\ -\frac{2x-1}{1+x} = -e^y\\ y = \log \frac{2x-1}{1+x}$
Therefore, the particular solution is $y = \log \frac{2x-1}{1+x}, x\neq-1$

Question 13: The general solution of the differential equation $\frac{ydx - xdy}{y} = 0$ is

(A) $xy = C$

(B) $x = Cy^2$

(C) $y = Cx$

(D) $y = Cx^2$

Answer:

The given equation is
$\frac{ydx - xdy}{y} = 0$
We can rewrite it as
$dx = \frac{x}{y}dy\\ \frac{dy}{y}=\frac{dx}{x}$
Integrate both sides
We will get
$\log |y| = \log |x| + C\\ \log \frac{y}{x} = C \\ \frac{y}{x} = e^C\\ \frac{y}{x} = C\\ y = Cx$
Therefore, the answer is (C)

Question 14: The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is

(A) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$

(B) $ye^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$

(C) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$

(D) $xe^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$

Answer:

The given equation is
$\frac{dx}{dy} + P_1 x = Q_1$
And we know that the general equation of such type of differential equation is

$xe^{\int p_1dy} = \int (Q_1e^{\int p_1dy})dy+ C$
Therefore, the correct answer is (C)

Question 15: The general solution of the differential equation $e^x dy + (y e^x + 2x) dx = 0$ is

(A) $xe^y + x^2 = C$

(B) $xe^y + y^2 = C$

(C) $ye^x + x^2 = C$

(D) $ye^y + x^2 = C$

Answer:

The given equation is
$e^x dy + (y e^x + 2x) dx = 0$
We can rewrite it as
$\frac{dy}{dx}+y=-2xe^{-x}$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = 1 \ and \ Q = -2xe^{-x}$
Now,
$I.F. = e^{\int p dx }= e^{\int 1dx}= e^x$
Now, the general solution is
$y(I.F.) = \int (Q\times I.F.)dx+C$
$y(e^x) = \int (-2xe^{-x}\times e^x)dx+C\\ ye^x= \int -2xdx + C\\ ye^x=- x^2 + C\\ ye^x+x^2 = C$
Therefore, (C) is the correct answer.

Also, read,

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

Class 12 Maths NCERT Chapter 9: Extra Question

Question:
Let $y=y(x)$ be the solution of the differential equation $\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x$, $y(0)=\frac{1}{3}+e^3$. Then $y\left(\frac{\pi}{4}\right)$ is equal to:

Solution:
We have the differential equation,

$\begin{array}{l}\frac{d y}{d x}+3\left(\tan ^2 x\right) y+3 y=\sec ^2 x \\ \Rightarrow \frac{d y}{d x}+3 \sec ^2 x y=\sec ^2 x\end{array} $

Compare it with the linear differential equation,

$\frac{dy}{dx}+Py=Q$

We get, $Q=\sec^2 x$

Use this in the formula,

$I.F =e^{\int Pd x}$

$I.F =e^{\int 3 \sec ^2 x d x}=e^{3 \tan x}$

The solution to the differential equation is given by:

$y \cdot e^{3\tan x}=\int e^{3 \tan x} \cdot \sec ^2 x d x+c$

$y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+c$
$\begin{aligned} & \text { Also } f(0)=\frac{1}{3}+e^3 \\ & \Rightarrow\left(\frac{1}{3}+e^3\right)=\frac{1}{3}+c \\ & \Rightarrow c=e^3 \\ & \therefore y \cdot e^{3 \tan x}=\frac{e^{3 \tan x}}{3}+e^3 \\ & \text { Put } x=\frac{\pi}{4} \\ & y e^3=\frac{e^3}{3}+e^3 \Rightarrow y=\frac{4}{3}\end{aligned}$

Hence, the correct answer is $\frac{4}{3}$.

Differential Equations Class 12 Chapter 9: Topics

The topics discussed in the NCERT Solutions for class 12, chapter 9, Differential Equations are:

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Differential Equations Class 12 Solutions: Important Formulae

  • A separable differential equation is one where the variables can be separated, i.e., it can be written in the form:
    $
    \frac{d y}{d x}=g(x) \cdot h(y)
    $
    To solve it, separate the variables and integrate:
    $
    \frac{1}{h(y)} d y=g(x) d x
    $
  • A linear first-order differential equation has the form:
    $
    \frac{d y}{d x}+P(x) \cdot y=Q(x)
    $
    To solve this, use the integrating factor, which is:
    $
    \mu(x)=e^{\int P(x) d x}
    $
    Multiply the entire equation by the integrating factor and then integrate.
  • An exact differential equation is one that satisfies:
    $
    M(x, y) d x+N(x, y) d y=0
    $
    where $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$.
    To solve, find a potential function $\phi(x, y)$ such that:
    $
    \frac{\partial \phi}{\partial x}=M(x, y) \quad \text { and } \quad \frac{\partial \phi}{\partial y}=N(x, y)
    $
  • For an equation of the form:
    $
    \frac{d y}{d x}+P(x) y=Q(x)
    $
    The integrating factor is given by:
    $
    \mu(x)=e^{\int P(x) d x}$

NCERT Class 12 Solutions - Chapter Wise

Students can access all the Maths solutions from the NCERT book from the links below.

Also, read,

NCERT Exemplar Class 12 Solutions - Subject Wise

Given below are the subject-wise exemplar solutions of class 12 NCERT:

NCERT solutions for class 12 Subject-Wise

Here are the subject-wise links for the NCERT solutions of class 12:

NCERT Solutions Class-Wise

Given below are the class-wise solutions of the NCERT :

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and the NCERT syllabus for class 12:

Frequently Asked Questions (FAQs)

Q: How to solve linear differential equations in Class 12 Maths?
A:

$ \frac{d y}{d x}+P(x) y=Q(x)$

To solve it:

1. Find the integrating factor (IF):

$ I F=e^{\int P(x) d x} $

2. Multiply the equation by IF.

3. Integrate both sides to get the general solution.

Q: How to find the general and particular solutions of a differential equation?
A:

General Solution: Solve the equation without specific conditions, including a constant C .

Particular Solution: Find C using given initial/boundary conditions.

Q: What are the initial conditions in a differential equation?
A:

Initial conditions are given values of the function and its derivatives at a specific point, used to find the particular solution.

Q: What are the real-life applications of differential equations in Class 12 syllabus?
A:

Differential equations are used in various real-world scenarios, including:

- Physics - Motion of objects, electric circuits.

- Biology - Population growth, spread of diseases.

- Engineering - Heat transfer, fluid mechanics.

- Economics - Predicting market trends, interest rates.

Q: Which are the most important differential equation questions for CBSE Board Exams?
A:

Solving linear differential equations using the integrating factor.

Finding general and particular solutions.

Forming differential equations from given conditions.

Applications-based problems like population growth and cooling laws.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
UP Board 12th Others

7 Sep'25 - 11 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello Aspirant,

SASTRA University commonly provides concessions and scholarships based on merit in class 12 board exams and JEE Main purposes with regard to board merit you need above 95% in PCM (or on aggregate) to get bigger concessions, usually if you scored 90% and above you may get partial concessions. I suppose the exact cut offs may change yearly on application rates too.

Hello,

After 12th, if you are interested in computer science, the best courses are:

  • B.Tech in Computer Science Engineering (CSE) – most popular choice.

  • BCA (Bachelor of Computer Applications) – good for software and IT jobs.

  • B.Sc. Computer Science / IT – good for higher studies and research.

  • B.Tech in Information Technology (IT) – focuses on IT and networking.

All these courses have good career scope. Choose based on your interest in coding, software, hardware, or IT field.

Hope it helps !

Hello Vanshika,

CBSE generally forwards the marksheet for the supplementary exam to the correspondence address as identified in the supplementary exam application form. It is not sent to the address indicated in the main exam form. Addresses that differ will use the supplementary exam address.

Hii ansh!

Yes, the Gujarat board does allow students to register as private candidates for class 12th examinations that means that even if you are not enrolled in any school you can sit for the examination. For this you will have to fill out a special private candidate application form and submit it along with relevant documents like marksheet, ID card, photos, etc to the Gujarat state education board office. You can submit it either offline or online.

However, the 2026 application windows has not opened yet and when it will typically schools will handle the registration through their board login so as of now you will have to reach out any GSEB affiliated school or board office itself in order to seek guidance on how to apply as a private candidate for 2026.

Hope it helps !

Hello

Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.