NEET/JEE Coaching Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
Think of a rocket traveling through the air, a drug breaking down in the blood, or the cooling of a cup of hot coffee. What makes them change with time? The Answer is Differential Equations! This chapter explains to students how equations are used to describe how things change and how they lay the basis for the study of physics, engineering, and economics. From realizing order and degree to finding solutions to first-order differential equations, this chapter serves a critical role in representing natural and manmade processes.
Class 12 Differential Equations helps students understand the topic step by step. The NCERT solutions explain everything clearly with examples, making it easy to learn. These solutions follow the NCERT syllabus and cover all topics from the textbook. The NCERT solutions for class 12 cover all topics from the NCERT textbook based on the NCERT Syllabus. By using these notes, students can practice different problems and improve their understanding. This helps them do well in their exams. To get notes, click on the Class 12 Maths Chapter 9 Differential Equations Notes. To get solutions to example questions, click on this NCERT Exemplar Class 12 Maths Solutions Chapter 9 Differential Equations.
Class 12 Maths chapter 9 solutions Exercise 9.1 Page number: 303-304 Total questions: 12 |
Question: Determine the order and degree (if defined) of the differential equation
1.$\frac{\mathrm{d}^4 y}{\mathrm{~d} x^4}+\sin \left(y^{\prime \prime \prime}\right)=0$
3.$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
4. $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
5. $\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
6. $(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$
Answer(1):
The given function is
$\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$
We can rewrite it as
$y^{''''}+\sin(y''') =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''''}$
Therefore, the order of the given differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$ is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, iitsa degree is not defined
Answer(2):
Given function is
$y' + 5y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{'}$
Therefore, the order of the given differential equation $y' + 5y = 0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives, and its highest power raised to y ' is 1
Therefore, its degree is 1.
Answer(3):
Given function is
$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
We can rewrite it as
$(s^{'})^4+3s.s^{''} =0$
Now, it is clear from the above that,the highest order derivative present in differential equation is $s^{''}$
Therefore, the order of the given differential equation $\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives, and power raised to s '' is 1
Therefore, its degree is 1
Answer(4):
Given function is
$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
We can rewrite it as
$(y^{''})^2+\cos y^{''} =0$
Now, it is clear from the above that,the highest order derivative present in differential equation is $y^{''}$
Therefore, the order of the given differential equation $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$ is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined
Answer(5):
Given function is
$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
$\Rightarrow \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$
Now, it is clear from the above that,the highest order derivative present in the differential equation is $y^{''}\left ( \frac{d^2y}{dx^2} \right )$
Therefore, order of given differential equation $\frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives, $ \ frac {d^2y}{dx^2}$ and power raised to $\frac{d^2y}{dx^2}$ is 1
Therefore, its degree is 1
Answer(6):
$
\text{Given function is}
\left(y^{\prime \prime \prime}\right)^2+\left(y^{\prime \prime}\right)^3+\left(y^{\prime}\right)^4+y^5=0
$
$
\text{Now, it is clear from the above that the highest order derivative present in the differential equation is } y^{\prime \prime \prime}.
$
$
\text{Therefore, the order of the given differential equation }
\left(y^{\prime \prime \prime}\right)^2+\left(y^{\prime \prime}\right)^3+\left(y^{\prime}\right)^4+y^5=0
\text{ is } 3.
$
$
\text{Now, the given differential equation is a polynomial equation in its derivatives } y^{\prime \prime \prime}, y^{\prime \prime}, y^{\prime},
\text{ and the power raised to } y^{\prime \prime \prime} \text{ is } 2.
$
$
\text{Therefore, its degree is } 2.
$
Answer(7):
$
\text{Given function is }
y''' + 2y'' + y' = 0
$
$
\text{Now, it is clear from the above that the highest order derivative present in the differential equation is } y^{'''}.
$
$
\text{Therefore, the order of the given differential equation }
y''' + 2y'' + y' = 0 \text{ is } 3.
$
$
\text{Now, the given differential equation is a polynomial equation in its derivatives } y^{'''}, y^{''}, \text{ and } y^{'},
\text{ and the power raised to } y^{'''} \text{ is } 1.
$
$
\text{Therefore, its degree is } 1.
$
Answer(8):
Given function is
$y' + y = e^x$
$\Rightarrow$ $y^{'}+y-e^x=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{'}$
Therefore, order of given differential equation $y^{'}+y-e^x=0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives} and power raised to $y^{'}$ is 1
Therefore, the issue is 1
Answer(9):
Given function is
$y'' + (y')^2 + 2y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $y'' + (y')^2 + 2y = 0$ is 2
$
\text{Now, the given differential equation is a polynomial equation in its derivatives } y^{''} \text{ and } y^{'} \text{, and the power raised to } y^{''} \text{ is } 1.
$
Therefore, its degree is 1
Answer(10):
Given function is
$y'' + 2y' + \sin y = 0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $y'' + 2y' + \sin y = 0$ is 2
$
\text{Now, the given differential equation is a polynomial equation in its derivatives } y^{''} \text{ and } y^{'} \text{, and the power raised to } y^{''} \text{ is } 1.
$
Therefore, its diet is 1
Answer:
Given function is
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$
We can rewrite it as
$(y^{''})^3+(y^{'})^2+\sin y^{'}+1=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is 2
Now, the given differential equation is not a polynomial derivatives
Therefore, its degree is not defined.
Therefore, the answer is (D)
Question:12 The order of the differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is
Answer:
Given function is
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$
We can rewrite it as
$2x.y^{''}-3y^{'}+y=0$
Now, it is clear from the above that the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is 2
Therefore, the answer is (A)
Class 12 Maths chapter 9 solutions Exercise 9.2 Page number: 306 Total questions: 12 |
1. $y = e^x + 1 \qquad :\ y'' -y'=0$
2. $y = x^2 + 2x + C\qquad:\ y' -2x - 2 =0$
3. $y = \cos x + C\qquad :\ y' + \sin x = 0$
4. $y = \sqrt{1 + x^2}\qquad :\ y' = \frac{xy}{1 + x^2}$
5. $y = Ax\qquad :\ xy' = y\;(x\neq 0)$
6. $y = x\sin x\qquad :\ xy' = y + x\sqrt{x^2 - y^2}\ (x\neq 0\ \textup{and} \ x > y\ or \ x < -y)$
7. $xy = \log y + C\qquad :\ y' = \frac{y^2}{1 - xy}\ (xy\neq 1)$
8. $y - cos y = x \qquad :(\ y\sin y + \cos y + x) y' = y$
9. $x + y = \tan^{-1}y\qquad :\ y^2y' + y^2 + 1 = 0$
10. $y = \sqrt{a^2 - x^2}\ x\in (-a,a)\qquad : \ x + y \frac{dy}{dx} = 0\ (y\neq 0)$
Answer(1):
Given,
$y = e^x + 1$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d}e^x }{\mathrm{d} x} = e^x$
Again, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y' }{\mathrm{d} x} = \frac{\mathrm{d}e^x }{\mathrm{d} x} = e^x$
$\implies y'' = e^x$
Substituting the values of y’ and y'' in the given differential equations,
y'' - y' = e x - e x = 0 = RHS.
Therefore, the given function is the solution of the corresponding differential equation.
Answer(2):
Given,
$y = x^2 + 2x + C$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(x^2 + 2x + C) = 2x + 2$
Substituting the values of y’ in the given differential equations,
$y' -2x - 2 =2x + 2 - 2x - 2 = 0= RHS$ .
Therefore, the given function is the solution of the corresponding differential equation.
Answer(3):
Given,
$y = \cos x + C$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(cost + C) = -sinx$
Substituting the values of y’ in the given differential equations,
$y' - \sin x = -sinx -sinx = -2sinx \neq RHS$ .
Therefore, the given function is not the solution of the corresponding differential equation.
Answer(4):
Given,
$y = \sqrt{1 + x^2}$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(\sqrt{1 + x^2}) = \frac{2x}{2\sqrt{1 + x^2}} = \frac{x}{\sqrt{1 + x^2}}$
Substituting the values of y in the RHS.
$\frac{x\sqrt{1+x^2}}{1 + x^2} = \frac{x}{\sqrt{1+x^2}} = LHS$ .
Therefore, the given function is a solution of the corresponding differential equation.
Answer(5):
Given,
$y = Ax$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(Ax) = A$
Substituting the values of y' in LHS,
$xy' = x(A) = Ax = y = RHS$ .
Therefore, the given function is a solution of the corresponding differential equation.
Answer(6):
Given,
$y = x\sin x$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(xix) = six + xcosx$
Substituting the values of y' in LHS,
$xy' = x(ssix+ xcosx)$
Substituting the values of y in RHS.
$\\xsinx + x\sqrt{x^2 - x^2sin^2x} = xix + x^2\sqrt{1-sinx^2} = x(sinx+xcosx) = LHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer(7):
Given,
$xy = \log y + C$
Now, differentiating both sides w.r.t. x,
$\\ y + x\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(logy) = \frac{1}{y}\frac{\mathrm{d}y }{\mathrm{d} x}\\ \\ \implies y^2 + xyy' = y' \\ \\ \implies y^2 = y'(1-xy) \\ \\ \implies y' = \frac{y^2}{1-xy}$
Substituting the values of y' in LHS,
$y' = \frac{y^2}{1-xy} = RHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer(8):
Given,
$y - cos y = x$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d}y }{\mathrm{d} x} +siny\frac{\mathrm{d}y }{\mathrm{d} x} = \frac{\mathrm{d} }{\mathrm{d} x}(x) = 1$
$\implies$ y' + siny.y' = 1
$\implies$ y'(1 + siny) = 1
$\implies y' = \frac{1}{1+siny}$
Substituting the values of y and y' in LHS,
$(\ (x+cosy)\sin y + \cos y + x) (\frac{1}{1+siny})$
$= [x(1+siny) + cosy(1+siny)]\frac{1}{1+siny}$
= (x + cosy) = y = RHS
Therefore, the given function is a solution of the corresponding differential equation.
Answer(9):
Given,
$x + y = \tan^{-1}y$
Now, differentiating both sides w.r.t. x,
$\\ 1 + \frac{\mathrm{d} y}{\mathrm{d} x} = \frac{1}{1 + y^2}\frac{\mathrm{d} y}{\mathrm{d} x}\\ \\ \implies1+y^2 = y'(1-(1+y^2)) = -y^2y' \\ \implies y' = -\frac{1+y^2}{y^2}$
Substituting the values of y' in LHS,
$y^2(-\frac{1+y^2}{y^2}) + y^2 + 1 = -1- y^2+ y^2 +1 = 0 = RHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer(10):
Given,
$y = \sqrt{a^2 - x^2}$
Now, differentiating both sides w.r.t. x,
$\frac{\mathrm{d} y}{\mathrm{d} x} =\frac{\mathrm{d}}{\mathrm{d} x}(\sqrt{a^2 - x^2}) = \frac{-2x}{2\sqrt{a^2 - x^2}} = \frac{-x}{\sqrt{a^2 - x^2}}$
Substituting the values of y and y' in LHS,
$x + y \frac{dy}{dx} = x + (\sqrt{a^2 - x^2})(\frac{-x}{\sqrt{a^2 - x^2}}) = 0 = RHS$
Therefore, the given function is a solution of the corresponding differential equation.
Answer:
(D) 4
The number of constants in the general solution of a differential equation of order n is equal to its order.
Answer:
(D) 0
In a particular solution of a differential equation, there is no arbitrary constant.
Class 12 Maths chapter 9 solutions Exercise 9.3 Page number: 310-312 Total questions: 23 |
Question:1 Find the general solution: $\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$
Answer:
Given,
$\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$
$\\ \implies\frac{dy}{dx} = \frac{2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}} = tan^2\frac{x}{2} \\ \implies dy = (sec^2\frac{x}{2} - 1)dx$
$\\ \implies \int dy = \int sec^2\frac{x}{2}dx - \int dx \\ \implies y = 2tan^{-1}\frac{x}{2} - x + C$
Question:2 Find the general solution: $\frac{dy}{dx} = \sqrt{4-y^2}\ (-2 < y < 2)$
Answer:
Given,the question
$\frac{dy}{dx} = \sqrt{4-y^2}$
$\\ \implies \frac{dy}{\sqrt{4-y^2}} = dx \\ \implies \int \frac{dy}{\sqrt{4-y^2}} = \int dx$
$\\ (\int \frac{dy}{\sqrt{a^2-y^2}} = sin^{-1}\frac{y}{a})\\$
The required general solution:
$\\ \implies sin^{-1}\frac{y}{2} = x + C$
Question:3 Find the general solution: $\frac{dy}{dx} + y = 1 (y\neq 1)$
Answer:
Given,the question
$\frac{dy}{dx} + y = 1$
$\\ \implies \frac{dy}{dx} = 1- y \\ \implies \int\frac{dy}{1-y} = \int dx$
$(\int\frac{dx}{x} = lnx)$
$\\ \implies -log(1-y) = x + C\ \ (We\ can\ write\ C= log k) \\ \implies log k(1-y) = -x \\ \implies 1- y = \frac{1}{k}e^{-x} \\$
The required general equation
$\implies y = 1 -\frac{1}{k}e^{-x}$
Question:4 Find the general solution: $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
Answer:
Given,
$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$
$\\ \implies \frac{sec^2 y}{tan y}dy = -\frac{sec^2 x}{tan x}dx \\ \implies \int \frac{sec^2 y}{tan y}dy = - \int \frac{sec^2 x}{tan x}dx$
Now, let tany = t and tax = u
$sec^2 y dy = dt\ and\ sec^2 x dx = du$
$\\ \implies \int \frac{dt}{t} = -\int \frac{du}{u} \\ \implies log t = -log u +logk \\ \implies t = \frac{1}{ku} \\ \implies tany = \frac{1}{ktanx}$
Question:5 Find the general solution:
$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$
Answer:
Given, the question
$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$
$\\ \implies dy = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}dx$
Let,
$\\ (e^x + e^{-x}) = t \\ \implies (e^x - e^{-x})dx = dt$
$\\ \implies \int dy = \int \frac{dt}{t} \\ \implies y = log t + C \\ \implies y = log(e^x + e^{-x}) + C$
This is the general solution
Question:6 Find the general solution: $\frac{dy}{dx} = (1+x^2)(1+y^2)$
Answer:
Given, the question
$\frac{dy}{dx} = (1+x^2)(1+y^2)$
$\\ \implies \int \frac{dy}{(1+y^2)} = \int (1+x^2)dx$
$(\int \frac{dx}{(1+x^2)} =tan^{-1}x +c)$
$\\ \implies tan^{-1}y = x+\frac{x^3}{3} + C$
Question:7 Find the general solution: $y\log y dx - x dy = 0$
Answer:
Given,
$y\log y dx - x dy = 0$
$\\ \implies \frac{1}{ylog y}dy = \frac{1}{x}dx$
let logy = t
=> 1/ydy = dt
$\\ \implies \int \frac{dt}{t} = \int \frac{1}{x}dx \\ \implies \log t = \log x + \log k \\ \implies t = kx \\ \implies \log y = kx$
This is the general solution
Question:8 Find the general solution: $x^5\frac{dy}{dx} = - y^5$
Answer:
Given, the question
$x^5\frac{dy}{dx} = - y^5$
$\\ \implies \int \frac{dy}{y^5} = - \int \frac{dx}{x^5} \\ \implies \frac{y^{-4}}{-4} = -\frac{x^{-4}}{-4} + C \\ \implies \frac{1}{y^4} + \frac{1}{x^4} = C$
This is the required general equation.
Question:9 Find the general solution: $\frac{dy}{dx} = \sin^{-1}x$
Answer:
Given, the question
$\frac{dy}{dx} = \sin^{-1}x$
$\implies \int dy = \int \sin^{-1}xdx$
Now,
$\int (u.v)dx = u\int vdx - \int(\frac{du}{dx}.\int vdx)dx$
Here, u = $\sin^{-1}x$ and v = 1
$\implies y = \sin^{-1}x .x - \int(\frac{1}{\sqrt{1-x^2}}.x)dx$
$\\ Let\ 1- x^2 = t \\ \implies -2xdx = dt \implies xdx = -dt/2$
$\\ \implies y = x\sin^{-1}x+ \int(\frac{dt}{2\sqrt{t}}) \\ \implies y = x\sin^{-1}x + \frac{1}{2}.2\sqrt{t} + C \\ \implies y = x\sin^{-1}x + \sqrt{1-x^2} + C$
Question:10 Find the general solution $e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$
Answer:
Given,
$e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$
$\\ \implies e^x\tan y dx = - (1-e^x)\sec^2 y dy \\ \implies \int \frac{\sec^2 y }{\tan y}dy = -\int \frac{e^x }{(1-e^x)}dx$
$\\ let\ tany = t \ and \ 1-e^x = u \\ \implies \sec^2 ydy = dt\ and \ -e^xdx = du$
$\\ \therefore \int \frac{dt }{t} = \int \frac{du }{u} \\ \implies \log t = \log u + \log k \\ \implies t = ku \\ \implies \tan y= k (1-e^x)$
Question:11 Find a particular solution satisfying the given condition:
$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x; \ y = 1\ \textup{when}\ x = 0$
Answer:
Given, the question
$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x$
$\\ \implies \int dy = \int\frac{2x^2 + x}{(x^3 + x^2 + x + 1)}dx$
$(x^3 + x^2 + x + 1) = (x +1)(x^2+1)$
Now,
$\begin{aligned} & \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^2+1} \\ & \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A x^2+A(B x+C)(x+1)}{(x+1)\left(x^2+1\right)} \\ & \Rightarrow 2 x^2+x=A x^2+A+B x+C x+C \\ & \Rightarrow 2 x^2+x=(A+B) x^2+(B+C) x+A+C\end{aligned}$
Now ,comparing the coefficients.
A + B = 2; B + C = 1; A + C = 0
Solving these:
$\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{3}{2}, \mathrm{C}=-\frac{1}{2}$
Putting the values of A, B, and C:
$\Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{1}{2} \frac{1}{(x+1)}+\frac{1}{2} \frac{3 x-1}{x^2+1}$
Therefore,
$\begin{aligned} & \Rightarrow \int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^2+1} d x \\ & \Rightarrow y=\frac{1}{2} \log (x+1)+\frac{3}{2} \int \frac{\mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{dx}}{\mathrm{x}^2+1} \\ & \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \tan ^{-1} \mathrm{x} \\ & \text { let } \mathrm{x}^2+1=\mathrm{t}\end{aligned}$
$\begin{aligned} & \therefore \frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}=\frac{3}{4} \int \frac{\mathrm{dt}}{\mathrm{t}} \\ & \text { so, } \mathrm{I}=\frac{3}{4} \log \mathrm{t} \\ & \mathrm{I}=\frac{3}{4} \log \left(\mathrm{x}^2+1\right) \\ & \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \log \left(\mathrm{x}^2+1\right)-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}\end{aligned}$
$\begin{aligned} & \Rightarrow \mathrm{y}=\frac{1}{4}\left[2 \log (\mathrm{x}+1)+3 \log \left(\mathrm{x}^2+1\right)\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c} \\ & \Rightarrow \mathrm{y}=\frac{1}{4}\left[\log (\mathrm{x}+1)^2+\log \left(\mathrm{x}^2+1\right)^3\right]-\frac{1}{2} \tan ^{-1} \mathrm{x}+\mathrm{c}\end{aligned}$
Now, y= 1 when x = 0
$1=\frac{1}{4} \times 0-\frac{1}{2} \times 0+c$
c = 1
Putting the value of c, we get:
$y=\frac{1}{4}\left[\log \left\{(x+1)^2\left(x^2+1\right)\right\}\right]-\frac{1}{2} \tan ^{-1} x+1$
Question:12 Find a particular solution satisfying the given condition:
$x(x^2 -1)\frac{dy}{dx} =1;\ y = 0\ \textup{when} \ x = 2$
Answer:
Given, the question
$x(x^2 -1)\frac{dy}{dx} =1$
$\\ \implies \int dy=\int \frac{dx}{x(x^2 -1)} \\ \implies \int dy=\int \frac{dx}{x(x -1)(x+1)}$
Let,
$\begin{aligned} & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{c}{x-1} \\ & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A(x-1)(x+1)+B(x)(x-1)+C(x)(x+1)}{x(x+1)(x-1)} \\ & \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{(A+B+C) x^2+(B-C) x-A}{x(x+1)(x-1)}\end{aligned}$
Now, comparing the values of A, B, C
A + B + C = 0; B-C = 0; A = -1
Solving these:
$B=\frac{1}{2}$ and $C=\frac{1}{2}$
Now, putting the values of A, B, C
$\begin{aligned} & \Rightarrow \frac{1}{x(x+1)(x-1)}=-\frac{1}{x}+\frac{1}{2}\left(\frac{1}{x+1}\right)+\frac{1}{2}\left(\frac{1}{x-1}\right) \\ & \Rightarrow \int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int\left(\frac{1}{x+1}\right) d x+\frac{1}{2} \int\left(\frac{1}{x-1}\right) d x \\ & \Rightarrow y=-\log x+\frac{1}{2} \log (x+1)+\frac{1}{2} \log (x-1)+\log c \\ & \left.\Rightarrow y=\frac{1}{2} \log \left[\frac{c^2(x-1)(x+1)}{x^2}\right\}-\text { iii }\right)\end{aligned}$
Given, y =0 when x =2
$\begin{aligned} & 0=\frac{1}{2} \log \left[\frac{c^2(2-1)(2+1)}{4}\right\} \\ & \Rightarrow \log \frac{3 c^2}{4}=0 \\ & \Rightarrow 3 c^2=4\end{aligned}$
Therefore,
$\\ \implies y = \frac{1}{2}\log[\frac{4(x-1)(x+1)}{3x^2}]$
$\\ \implies y = \frac{1}{2}\log[\frac{4(x^2-1)}{3x^2}]$
Question:13 Find a particular solution satisfying the given condition:
$\cos\left(\frac{dy}{dx} \right ) = a\ (a\in R);\ y = 1\ \textup{when}\ x = 0$
Answer:
Given,
$\cos\left(\frac{dy}{dx} \right ) = a$
$\\ \implies \frac{dy}{dx} = \cos^{-1}a \\ \implies \int dy = \int\cos^{-1}a\ dx \\ \implies y = x\cos^{-1}a + c$
Now, y =1 when x =0
1 = 0 + c
Therefore, c = 1
Putting the value of c:
$\implies y = x\cos^{-1}a + 1$
Question:14 Find a particular solution satisfying the given condition:
$\frac{dy}{dx} = y\tan x; \ y =1\ \textup{when}\ x = 0$
Answer:
Given,
$\frac{dy}{dx} = y\tan x$
$\\ \implies \int \frac{dy}{y} = \int \tan x\ dx \\ \implies \log y = \log \sec x + \log k \\ \implies y = k\sec x$
Now, y=1 when x =0
1 = ksec0
$\implies$ k = 1
Putting the value of k:
y = sec x
Question:15 Find the equation of a curve passing through the point (0, 0) and whose differential equation is $y' = e^x \sin x $.
Answer:
We first find the general solution of the given differential equation
Given,
$y' = e^x\sin x$
$\\ \implies \int dy = \int e^x\sin xdx$
$\\ Let I = \int e^x\sin xdx \\ \implies I = \sin x.e^x - \int(\cos x. e^x)dx \\ \implies I = e^x\sin x - [e^x\cos x - \int(-\sin x.e^x)dx] \\ \implies 2I = e^x(\sin x - \cos x) \\ \implies I = \frac{1}{2}e^x(\sin x - \cos x)$
$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + c$
Now, since the curve passes through (0,0)
y = 0 when x =0
$\\ \therefore 0 = \frac{1}{2}e^0(\sin 0 - \cos 0) + c \\ \implies c = \frac{1}{2}$
Putting the value of c, we get:
$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + \frac{1}{2} \\ \implies 2y -1 = e^x(\sin x - \cos x)$
Answer:
We first find the general solution of the given differential equation
Given,
$xy\frac{dy}{dx} = (x+2)(y+2)$
$\\ \implies \int \frac{y}{y+2}dy = \int \frac{x+2}{x}dx \\ \implies \int \frac{(y+2)-2}{y+2}dy = \int (1 + \frac{2}{x})dx \\ \implies \int (1 - \frac{2}{y+2})dy = \int (1 + \frac{2}{x})dx \\ \implies y - 2\log (y+2) = x + 2\log x + C$
Now, Since the curve passes through (1,-1)
y = -1 when x = 1
$\\ \therefore -1 - 2\log (-1+2) = 1 + 2\log 1 + C \\ \implies -1 -0 = 1 + 0 +C \\ \implies C = -2$
Putting the value of C:
$\\ y - 2\log (y+2) = x + 2\log x + -2 \\ \implies y -x + 2 = 2\log x(y+2)$
Answer:
According to the question,
$y\frac{dy}{dx} =x$
$\\ \implies \int ydy =\int dx \\ \implies \frac{y^2}{2} = \frac{x^2}{2} + c$
Now, since the curve passes through (0,-2).
x =0 and y = -2
$\\ \implies \frac{(-2)^2}{2} = \frac{0^2}{2} + c \\ \implies c = 2$
Putting the value of c, we get
$\\ \frac{y^2}{2} = \frac{x^2}{2} + 2 \\ \implies y^2 = x^2 + 4$
Answer:
Slope m of line joining (x,y) and (-4,-3) is $\frac{y+3}{x+4}$
According to the question,
$\\ \frac{dy}{dx} = 2(\frac{y+3}{x+4}) \\ \implies \int \frac{dy}{y+3} = 2\int \frac{dx}{x+4} \\ \implies \log (y+3) = 2\log (x+4) + \log k \\ \implies (y+3) = k(x+4)^2$
Now, since the curve passes through (-2,1)
x = -2 , y =1
$\\ \implies (1+3) = k(-2+4)^2 \\ \implies k =1$
Putting the value of k, we get
$\\ \implies y+3 = (x+4)^2$
Answer:
Volume of a sphere, $V = \frac{4}{3}\pi r ^3$
Given that the rate of change is constant.
$\\ \therefore \frac{dV}{dt} = c \\ \implies \frac{d}{dt} (\frac{4}{3}\pi r ^3) = c \\ \implies \int d(\frac{4}{3}\pi r ^3) = c\int dt \\ \implies \frac{4}{3}\pi r ^3 = ct + k$
Now, at t=0, r=3 and at t=3 , r =6
Putting these values:
$\frac{4}{3}\pi (3) ^3 = c(0) + k \\ \implies k = 36\pi$
Also,
$\frac{4}{3}\pi (6) ^3 = c(3) + 36\pi \\ \implies 3c = 252\pi \\ \implies c = 84\pi$
Putting the value of c and k:
$\\ \frac{4}{3}\pi r ^3 = 84\pi t + 36\pi \\ \implies r ^3 = (21 t + 9)(3) = 62t + 27 \\ \implies r = \sqrt[3]{62t + 27}$
Question:20 In a bank, the principal increases continuously at the rate of r % per year. Find the value of r if Rs 100 doubles itself in 10 years (log e 2 = 0.6931).
Answer:
Let p be the principal amount and t be the time.
According to the question,
$\frac{dp}{dt} = (\frac{r}{100})p$
$\\ \implies \int\frac{dp}{p} = \int (\frac{r}{100})dt \\ \implies \log p = \frac{r}{100}t + C$
$\\ \implies p = e^{\frac{rt}{100} + C}$
Now, at t =0 , p = 100
and at t =10, p = 200
Putting these values,
$\\ \implies 100 = e^{\frac{r(0)}{100} + C} = e^C$
Also,
$\\ \implies 200 = e^{\frac{r(10)}{100} + C} = e^{\frac{r}{10}}.e^C = e^{\frac{r}{10}}.100 \\ \implies e^{\frac{r}{10}} = 2 \\ \implies \frac{r}{10} = \ln 2 = 0.6931 \\ \implies r = 6.93$
So value of r = 6.93%
Answer:
Let p be the principal amount and t be the time.
According to the question,
$\frac{dp}{dt} = (\frac{5}{100})p$
$\\ \implies \int\frac{dp}{p} = \int (\frac{1}{20})dt \\ \implies \log p = \frac{1}{20}t + C$
$\\ \implies p = e^{\frac{t}{20} + C}$
Now, at t =0 , p = 1000
Putting these values,
$\\ \implies 1000 = e^{\frac{(0)}{20} + C} = e^C$
Also, at t=10
$\\ \implies p = e^{\frac{(10)}{20} + C} = e^{\frac{1}{2}}.e^C = e^{\frac{1}{2}}.1000 \\ \implies p =(1.648)(1000) = 1648$
After 10 years, the total amount would be Rs.1648
Answer:
Let n be the number of bacteria at any time t.
According to the question,
$\frac{dn}{dt} = kn\ \ (k\ is\ a\ constant)$
$\\ \implies \int \frac{dn}{n} = \int kdt \\ \implies \log n = kt + C$
Now, at t=0, n = 100000
$\\ \implies \log (100000) = k(0) + C \\ \implies C = 5$
Again, at t=2, n= 110000
$\\ \implies \log (110000) = k(2) + 5 \\ \implies \log 11 + 4 = 2k + 5 \\ \implies 2k = \log 11 -1 =\log \frac{11}{10} \\ \implies k = \frac{1}{2}\log \frac{11}{10}$
Using these values, for n= 200000
$\\ \implies \log (200000) = kt + C \\ \implies \log 2 +5 = kt + 5 \\ \implies (\frac{1}{2}\log \frac{11}{10})t = \log 2 \\ \implies t = \frac{2\log 2}{ \log \frac{11}{10}}$
Question:23 The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is
Answer:
Given,
$\frac{dy}{dx} = e^{x+y}$
$\\ \implies\frac{dy}{dx} = e^x.e^y \\ \implies\int \frac{dy}{e^y} = \int e^x.dx \\ \implies -e^{-y} = e^x + C \\ \implies e^x + e^{-y} = K\ \ \ \ (Option A)$
Class 12 Maths chapter 9 solutions Exercise 9.4 Page number: 321-322 Total questions: 17 |
Answer:
The given differential equation can be written as
$\frac{dy}{dx}=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Let $F(x,y)=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Now, $F(\lambda x,\lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}$
$=\frac{x^{2}+y^{2}}{x^{2}+xy} = \lambda ^{0}F(x,y)$ Hence, it is a homogeneous equation.
To solve it, put y = vx
differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v +x\frac{dv}{dx} = \frac{x^{2}+(vx)^{2}}{x^{2}+x(vx)}\\ v +x\frac{dv}{dx} = \frac{1+v^{2}}{1+v}$
$x\frac{dv}{dx} = \frac{(1+v^{2})-v(1+v)}{1+v} = \frac{1-v}{1+v}$
$( \frac{1+v}{1-v})dv = \frac{dx}{x}$
$( \frac{2}{1-v}-1)dv = \frac{dx}{x}$
Integrating on both sides, we get;
$\\-2\log(1-v)-v=\log x -\log k\\ v= -2\log (1-v)-\log x+\log k\\ v= \log\frac{k}{x(1-v)^{2}}\\$
Again substitute the value $y = \frac{v}{x}$ ,we get;
$\\\frac{y}{x}= \log\frac{kx}{(x-y)^{2}}\\ \frac{kx}{(x-y)^{2}}=e^{y/x}\\ (x-y)^{2}=kxe^{-y/x}$
This is the required solution for the given diff. equation
Answer:
The above differential equation can be written as,
$\frac{dy}{dx} = F(x,y)=\frac{x+y}{x}$ ............................(i)
Now, $F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x} = \lambda ^{0}F(x,y)$
Thus the given differential equation is a homogeneous equaion
Now, to solve, substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= \frac{x+vx}{x} = 1+v$
$\\x\frac{dv}{dx}= 1\\ dv = \frac{dx}{x}$
Integrating on both sides, we get; (and substitute the value of $v =\frac{y}{x}$ )
$\\v =\log x+C\\ \frac{y}{x}=\log x+C\\ y = x\log x +Cx$
This is the required solution
Question:3 Show that the given differential equation is homogeneous and solves each of them.
Answer:
The given differential eq can be written as;
$\frac{dy}{dx}=\frac{x+y}{x-y} = F(x,y)(let\ say)$ ....................................(i)
$F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}= \lambda ^{0}F(x,y)$
Hence, it is a homogeneous equation.
Now, to solve e substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}= \frac{1+v}{1-v}\\ x\frac{dv}{dx} = \frac{1+v}{1-v}-v =\frac{1+v^{2}}{1-v}$
$\frac{1-v}{1+v^{2}}dv = (\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}})dv=\frac{dx}{x}$
Integrating on both sides, we get;
$\tan^{-1}v-1/2 \log(1+v^{2})=\log x+C$
again substitute the value of $v=y/x$
$\\\tan^{-1}(y/x)-1/2 \log(1+(y/x)^{2})=\log x+C\\ \tan^{-1}(y/x)-1/2 [\log(x^{2}+y^{2})-\log x^{2}]=\log x+C\\ tan^{-1}(y/x) = 1/2[\log (x^{2}+y^{2})]+C$ This is the required solution.
Question:4 Show that the given differential equation is homogeneous and solve each of them.
Answer:
we can write it as;
$\frac{dy}{dx}= -\frac{(x^{2}-y^{2})}{2xy} = F(x,y)\ (let\ say)$ ...................................(i)
$F(\lambda x,\lambda y) = \frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)} = \lambda ^{0}.F(x,y)$
Hence it is a homogeneous equation
Now, to solve the substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx} = \frac{ x^{2}-(vx)^{2}}{2x(vx)} =\frac{v^{2}-1}{2v}$
$\\x\frac{dv}{dx} =\frac{v^{2}+1}{2v}\\ \frac{2v}{1+v^{2}}dv=\frac{dx}{x}$
integrating on both sides, we get
$\log (1+v^{2})= -\log x +\log C = \log C/x$
$\\= 1+v^{2} = C/x\\ = x^2+y^{2}=Cx$ .............[ $v =y/x$ ]
This is the required solution.
Question:5 Show that the given differential equation is homogeneous and solve it.
$x^2\frac{dy}{dx} = x^2 - 2y^2 +xy$
Answer:
$\frac{dy}{dx}= \frac{x^{2}-2y^{2}+xy}{x^{2}} = F(x,y)\ (let\ say)$
$F(\lambda x,\lambda y)= \frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda .\lambda )xy}{(\lambda x)^{2}} = \lambda ^{0}.F(x,y)$ ............(i)
Hence, it is a homogeneous equation
Now, to solve the substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}= 1-2v^{2}+v\\ x\frac{dv}{dx} = 1-2v^{2}\\ \frac{dv}{1-2v^{2}}=\frac{dx}{x}$
$1/2[\frac{dv}{(1/\sqrt{2})^{2}-v^{2}}] = \frac{dx}{x}$
On integrating both sides, we get;
$\frac{1}{2\sqrt{2}}\log (\frac{1/\sqrt{2}+v}{1/\sqrt{2}-v}) = \log x +C$
after substituting the value of $v= y/x$
$\frac{1}{2\sqrt{2}}\log (\frac{x+\sqrt{2}y}{x-\sqrt{2}y}) = \log \left | x \right | +C$
This is the required solution
Question:6 Show that the given differential equation is homogeneous and solve it.
$xdy - yd= \sqrt{x^2 + y^2}dx$
Answer:
$\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x} = F(x,y)$ .................................(i)
$F(\mu x,\mu y)=\frac{\mu y+\sqrt{(\mu x)^{2}+(\mu y)^{2}}}{\mu x} =\mu^{0}.F(x,y)$
Hence is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= v+\sqrt{1+v^{2}}=\sqrt{1+v^{2}}$
$=\frac{dv}{\sqrt{1+v^{2}}} =\frac{dx}{x}$
On integrating both sides,
$\Rightarrow \log \left | v+\sqrt{1+v^{2}} \right | = \log \left | x \right |+\log C$
Substitute the value of v=y/x, we get
$\\\Rightarrow \log \left | \frac{y+\sqrt{x^{2}+y^{2}}}{x} \right | = \log \left | Cx \right |\\ y+\sqrt{x^{2}+y^{2}} = Cx^{2}$
Required solution
Question:7 Solve.
Answer:
$\frac{dy}{dx} =\frac{x \cos(y/x)+y\sin(y/x)}{y\sin(y/x)-x\cos(y/x)}.\frac{y}{x} = F(x,y)$ ......................(i)
By looking at the equation we can directly say that it is a homogeneous equation.
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx} =\frac{v \cos v+v^{2}\sin v}{v\sin v-\cos v}\\ =x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v-\cos v}\\ =(\tan v-1/v)dv = \frac{2dx}{x}$
integrating on both sides, we get
$\\=\log(\frac{\sec v}{v})= \log (Cx^{2})\\=\sec v/v =Cx^{2}$
substitute the value of v= y/x , we get
$\\\sec(y/x) =Cxy \\ xy \cos (y/x) = k$
Required solution
Question:8 Solve.
$x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right ) = 0$
Answer:
$\frac{dy}{dx}=\frac{y-x \sin(y/x)}{x} = F(x,y)$ ...............................(i)
$F(\mu x, \mu y)=\frac{\mu y-\mu x \sin(\mu y/\mu x)}{\mu x} = \mu^{0}.F(x,y)$
it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= v- \sin v = -\sin v$
$\Rightarrow -\frac{dv}{\sin v} = -(cosec\ v)dv=\frac{dx}{x}$
On integrating both sides we get;
$\\\Rightarrow \log \left | cosec\ v-\cot v \right |=-\log x+ \log C\\ \Rightarrow cosec (y/x) - \cot (y/x) = C/x$
$= x[1-\cos (y/x)] = C \sin (y/x)$ Required solution
Question:9 Solve.
$ydx + x\log\left(\frac{y}{x} \right ) -2xdy = 0$
Answer:
$\frac{dy}{dx}= \frac{y}{2x-x \log(y/x)} = F(x,y)$ ..................(i)
$\frac{\mu y}{2\mu x-\mu x \log(\mu y/\mu x)} = F(\mu x,\mu y) = \mu^{0}.F(x,y)$
Hence it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}= \frac{v}{2-\log v}\\ =x\frac{dv}{dx} = \frac{v\log v-v}{2-\log v}\\ =[\frac{1}{v(\log v-1)}-\frac{1}{v}]dv=\frac{dx}{x}$
integrating on both sides, we get: ( substituting v =y/x)
$\\\Rightarrow \log[\log(y/x)-1]-\log(y/x)=\log(Cx)\\\Rightarrow \frac{x}{y}[\log(y/x)-1]=Cx\\ \Rightarrow \log (y/x)-1=Cy$
This is the required solution of the given differential equation
Question:10 Solve.
$\left(1 + e^{\frac{x}{y}} \right )dx + e^\frac{x}{y}\left(1-\frac{x}{y}\right )dy = 0$
Answer:
$\frac{dx}{dy}=\frac{-e^{x/y}(1-x/y)}{1+e^{x/y}} = F(x,y)$ .......................................(i)
$= F(\mu x,\mu y)=\frac{-e^{\mu x/\mu y}(1-\mu x/\mu y)}{1+e^{\mu x/\mu y}} =\mu^{0}.F(x,y)$
Hence, it is a homogeneous equation.
Now, to solve use substitution x = yv
Differentiating on both sides wrt $x$
$\frac{dx}{dy}= v +y\frac{dv}{dy}$
Substitute this value in equation (i)
$\\=v+y\frac{dv}{dy} = \frac{-e^{v}(1-v)}{1+e^{v}} \\ =y\frac{dv}{dy} = -\frac{v+e^{v}}{1+e^{v}}\\ =\frac{1+e^{v}}{v+e^{v}}dv=-\frac{dy}{y}$
Integrating on both sides, we get;
${100} \log(v+e^{v})=-\log y+ \log c =\log (c/y)\\ =[\frac{x}{y}+e^{x/y}]= \frac{c}{y}\\\Rightarrow x+ye^{x/y}=c$
This is the required solution of the diff equation.
Question:11 Solve for a particular solution.
$(x + y)dy + (x -y)dx = 0;\ y =1\ when \ x =1$
Answer:
$\frac{dy}{dx}=\frac{-(x-y)}{x+y} =F(x,y)$ ..........................(i)
We can clearly say that it is a homogeneous equation.
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}=\frac{v-1}{v+1}\\ \Rightarrow x\frac{dv}{dx} = -\frac{(1+v^{2})}{1+v}$
$\frac{1+v}{1+v^{2}}dv = [\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}]dv=-\frac{dx}{x}$
On integrating both sides
$\\=\frac{1}{2}[\log (1+v^{2})]+\tan^{-1}v = -\log x +k\\ =\log(1+v^{2})+2\tan^{-1}v=-2\log x +2k\\ =\log[(1+(y/x)^{2}).x^{2}]+2\tan^{-1}(y/x)=2k\\ =\log(x^{2}+y^{2})+2\tan^{-1}(y/x) = 2k$ ......................(ii)
Now, y=1 and x= 1
$\\=\log 2 +2\tan^{-1}1=2k\\ =\pi/2+\log 2 = 2k\\$
After substituting the value of 2k in the equation. (ii)
$\log(x^{2}+y^2)+2\tan^{-1}(y/x)=\pi/2+\log 2$ This is the required solution.
Question:12 Solve for a particular solution.
$x^2dy + (xy + y^2)dx = 0; y =1\ \textup{when}\ x = 1$
Answer:
$\frac{dy}{dx}= \frac{-(xy+y^{2})}{x^{2}} = F(x,y)$ ...............................(i)
$F(\mu x, \mu y)=\frac{-\mu^{2}(xy+(\mu y)^{2})}{(\mu x)^{2}} =\mu ^{0}. F(x,y)$
Hence, it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i), we get
$\\=v+\frac{xdv}{dx}= -v- v^{2}\\ =\frac{xdv}{dx}=-v(v+2)\\ =\frac{dv}{v+2}=-\frac{dx}{x}\\ =1/2[\frac{1}{v}-\frac{1}{v+2}]dv=-\frac{dx}{x}$
Integrating on both sides, we get;
$\\=\frac{1}{2}[\log v -\log(v+2)]= -\log x+\log C\\ =\frac{v}{v+2}=(C/x)^{2}$
replace the value of v=y/x
$\frac{x^{2}y}{y+2x}=C^{2}$ .............................(ii)
Now y =1 and x = 1
$C = 1/\sqrt{3}$
therefore,
$\frac{x^{2}y}{y+2x}=1/3$
Required solution
Question:13 Solve for a particular solution.
$\left [x\sin^2\left(\frac{y}{x} \right ) - y \right ]dx + xdy = 0;\ y =\frac{\pi}{4}\ when \ x = 1$
Answer:
$\frac{dy}{dx}=\frac{-[x\sin^{2}(y/x)-y]}{x} = F(x,y)$ ..................(i)
$F(\mu x,\mu y)=\frac{-[\mu x\sin^{2}(\mu y/\mu x)-\mu y]}{\mu x}=\mu ^{0}.F(x,y)$
Hence, it is a homogeneous equation
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
On integrating both sides, we get;
$\\-\cot v =\log\left | x \right | -C\\ =\cot v = \log\left | x \right |+\log C$
On substituting v =y/x
$=\cot (y/x) = \log\left | Cx \right |$ ............................(ii)
Now, $y = \pi/4\ @ x=1$
$\\\cot (\pi/4) = \log C \\ =C=e^{1}$
Put this value of C in Eq. (ii)
$\cot (y/x)=\log\left | ex \right |$
Required solution.
Question:14 Solve for a particular solution.
Answer:
$\frac{dy}{dx} = \frac{y}{x} -cosec(y/x) =F(x,y)$ ....................................(i)
The above equation is homogeneous. So,
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}=v- cosec\ v\\ =x\frac{dv}{dx} = -cosec\ v\\ =-\frac{dv}{cosec\ v}= \frac{dx}{x}\\ =-\sin v dv = \frac{dx}{x}$
On integrating both sides, we get;
$\\=cos\ v = \log x +\log C =\log Cx\\ =\cos(y/x)= \log Cx$ .................................(ii)
now y = 0 and x =1 , we get
$C =e^{1}$
Put the value of C in Eq. 2
$\cos(y/x)=\log \left | ex \right |$
Question:15 Solve for a particular solution.
$2xy + y^2 - 2x^2\frac{dy}{dx} = 0 ;\ y = 2\ \textup{when}\ x = 1$
Answer:
The above equation can be written as:
$\frac{dy}{dx}=\frac{2xy+y^{2}}{2x^{2}} = F(x,y)$
By looking, we can say that it is a homogeneous equation.
Now, to solve use substitution y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}= \frac{2v+v^{2}}{2}\\ =x\frac{dv}{dx} = v^{2}/2\\ = \frac{2dv}{v^{2}}=\frac{dx}{x}$
integrating on both sides, we get;
$\\=-2/v=\log \left | x \right |+C\\ =-\frac{2x}{y}=\log \left | x \right |+C$ .............................(ii)
Now, y = 2 and x =1, we get
C =-1
Put this value in equation(ii)
$\\=-\frac{2x}{y}=\log \left | x \right |-1\\ \Rightarrow y = \frac{2x}{1- \log x}$
Answer:
$\frac{dx}{dy}= h\left(\frac{x}{y} \right )$
To solve this type of equation, put x/y = v
x = vy
option C is correct
Question 17 Which of the following is a homogeneous differential equation?
(A) $(4x + 6x +5)dy - (3y + 2x +4)dx = 0$
(B) $(xy)dx - (x^3 + y^3)dy = 0$
(C) $(x^3 +2y^2)dx + 2xydy =0$
(D) $y^2dx + (x^2 -xy -y^2)dy = 0$
Answer:
Option D is the right answer.
$y^2dx + (x^2 -xy -y^2)dy = 0$
$\frac{dy}{dx}=\frac{y^{2}}{x^{2}-xy-y^{2}} = F(x,y)$
We can take out lambda as a common factor, and it can be cancelled out
Class 12 Maths chapter 9 solutions Exercise 9.5 Page number: 328-329 Total questions: 19 |
Question:1 Find the general solution:
Answer:
The given equation is
$\frac{dy}{dx} + 2y = \sin x$
This is $\frac{dy}{dx} + py = Q$ type where p = 2 and Q = sin x
Now,
$I.F. = e^{\int pdx}= e^{\int 2dx}= e^{2x}$
Now, the solution of a given differential equation is given by the relation
$Y(I.F.) =\int (Q\times I.F.)dx +C$
$Y(e^{\int 2x }) =\int (\sin x\times e^{\int 2x })dx +C$
Let $I =\int (\sin x\times e^{\int 2x })$
$I = \sin x \int e^{2x}dx- \int \left ( \frac{d(\sin x)}{dx}.\int e^{2x}dx \right )dx\\ \\ I = \sin x.\frac{e^{2x}}{2}- \int \left ( \cos x.\frac{e^{2x}}{2} \right )\\ \\ I = \sin x. \frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x\int e^{2x}dx- \left ( \frac{d(\cos x)}{dx}.\int e^{2x}dx \right ) \right )dx\\ \\ I = \sin x\frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x.\frac{e^{2x}}{2}+ \int \left ( \sin x.\frac{e^{2x}}{2} \right ) \right )\\ \\ I = \sin x\frac{e^{2x}}{2}-\frac{1}{2}\left ( \cos x.\frac{e^{2x}}{2}+\frac{I}{2} \right ) \ \ \ \ \ \ \ \ \ \ \ (\because I = \int \sin xe^{2x})\\ \\ \frac{5I}{4}= \frac{e^{2x}}{4}\left ( 2\sin x-\cos x \right )\\ \\ I = \frac{e^{2x}}{5}\left ( 2\sin x-\cos x \right )$
Put the value of I in our equation
Now, our equation becomes
$Y.e^{x^2 }= \frac{e^{2x}}{5}\left (2 \sin x-\cos x \right )+C$
$Y= \frac{1}{5}\left (2 \sin x-\cos x \right )+C.e^{-2x}$
Therefore, the general solution is $Y= \frac{1}{5}\left (2 \sin x-\cos x \right )+C.e^{-2x}$
Question:2 Solve for general solution:
$\frac{dy}{dx} + 3y = e^{-2x}$
Answer:
The given equation is
$\frac{dy}{dx} + 3y = e^{-2x}$
This is $\frac{dy}{dx} + py = Q$ type where p = 3 and $Q = e^{-2x}$
Now,
$I.F. = e^{\int pdx}= e^{\int 3dx}= e^{3x}$
Now, the solution of the given differential equation is given by the relation
$Y(I.F.) =\int (Q\times I.F.)dx +C$
$Y(e^{ 3x }) =\int (e^{-2x}\times e^{ 3x })dx +C$
$Y(e^{ 3x }) =\int (e^{x})dx +C\\ Y(e^{3x})= e^x+C\\ Y = e^{-2x}+Ce^{-3x}$
Therefore, the general solution is $Y = e^{-2x}+Ce^{-3x}$
Question:3 Find the general solution
$\frac{dy}{dx} + \frac{y}{x} = x^2$
Answer:
The given equation is
$\frac{dy}{dx} + \frac{y}{x} = x^2$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{1}{x}$ and $Q = x^2$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{1}{x}dx}= e^{\log x}= x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x) =\int (x^2\times x)dx +C$
$y(x) =\int (x^3)dx +C\\ y.x= \frac{x^4}{4}+C\\$
Therefore, the general solution is $yx =\frac{x^4}{4}+C$
Question Solve for General Solution.
$\frac{dy}{dx} + (\sec x)y = \tan x \ \left(0\leq x < \frac{\pi}{2} \right )$
Answer:
The given equation is
$\frac{dy}{dx} + (\sec x)y = \tan x \ \left(0\leq x < \frac{\pi}{2} \right )$
This is $\frac{dy}{dx} + py = Q$ type where $p = \sec x$ and $Q = \tan x$
Now,
$I.F. = e^{\int pdx}= e^{\int \sec xdx}= e^{\log |\sec x+ \tan x|}= \sec x+\tan x$ $(\because 0\leq x\leq \frac{\pi}{2} \sec x > 0,\tan x > 0)$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sec x+\tan x) =\int ((\sec x+\tan x)\times \tan x)dx +C$
$y(\sec x+ \tan x) =\int (\sec x\tan x+\tan^2 x)dx +C\\y(\sec x+ \tan x) =\sec x+\int (\sec^2x-1)dx +C\\ y(\sec x+ \tan x) = \sec x +\tan x - x+C$
Therefore, the general solution is $y(\sec x+ \tan x) = \sec x +\tan x - x+C$
Question:5 Find the general solution.
$\cos^2 x\frac{dy}{dx} + y = \tan x\left(0\leq x < \frac{\pi}{2} \right )$
Answer:
The given equation is
$\cos^2 x\frac{dy}{dx} + y = \tan x\left(0\leq x < \frac{\pi}{2} \right )$
We can rewrite it as
$\frac{dy}{dx}+\sec^2x y= \sec^2x\tan x$
This is $\frac{dy}{dx} + py = Q$ where $p = \sec ^2x$ and $Q =\sec^2x \tan x$
Now,
$I.F. = e^{\int pdx}= e^{\int \sec^2 xdx}= e^{\tan x}$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(e^{\tan x}) =\int ((\sec^2 x\tan x)\times e^{\tan x})dx +C$
$ye^{\tan x} =\int \sec^2 x\tan xe^{\tan x}dx+C\\$
take
$e^{\tan x } = t\\ \Rightarrow \sec^2x.e^{\tan x}dx = dt$
$\int t.\log t dt = \log t.\int tdt-\int \left ( \frac{d(\log t)}{dt}.\int tdt \right )dt \\ \\ \int t.\log t dt = \log t . \frac{t^2}{2}- \int (\frac{1}{t}.\frac{t^2}{2})dt\\ \\ \int t.\log t dt = \log t.\frac{t^2}{2}- \int \frac{t}{2}dt\\ \\ \int t.\log t dt = \log t.\frac{t^2}{2}- \frac{t^2}{4}\\ \\ \int t.\log t dt = \frac{t^2}{4}(2\log t -1)$
Now put again $t = e^{\tan x}$
$\int \sec^2x\tan xe^{\tan x}dx = \frac{e^{2\tan x}}{4}(2\tan x-1)$
Put this value in our equation
$ye^{\tan x} =\frac{e^{2\tan x}}{4}(2\tan x-1)+C\\ \\$
Therefore, the general solution is $y =\frac{e^{\tan x}}{4}(2\tan x-1)+Ce^{-\tan x }\\$
Question:6 Solve for General Solution.
$x\frac{dy}{dx} + 2y = x^2\log x$
Answer:
The given equation is
$x\frac{dy}{dx} + 2y = x^2\log x$
We can rewrite it as
$\frac{dy}{dx} +2.\frac{y}{x}= x\log x$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{2}{x}$ and $Q = x\log x$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2}{x}dx}= e^{2\log x}=e^{\log x^2} = x^2$ $(\because 0\leq x\leq \frac{\pi}{2} \sec x > 0,\tan x > 0)$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x^2) =\int (x\log x\times x^2)dx +C$
$x^2y = \int x^3\log x+ C$
Let
$I = \int x^3\log x\\ \\ I = \log x\int x^3dx-\int \left ( \frac{d(\log x)}{dx}.\int x^3dx \right )dx\\ \\ I = \log x.\frac{x^4}{4}- \int \left ( \frac{1}{x}.\frac{x^4}{4} \right )dx\\ \\ I = \log x.\frac{x^4}{4}- \int \left ( \frac{x^3}{4} \right )dx\\ \\ I = \log x.\frac{x^4}{4}-\frac{x^4}{16}$
Put this value in our equation
$x^2y =\log x.\frac{x^4}{4}-\frac{x^4}{16}+ C\\ \\ y = \frac{x^2}{16}(4\log x-1)+C.x^{-2}$
Therefore, the general solution is $y = \frac{x^2}{16}(4\log x-1)+C.x^{-2}$
Question Solve for general solutions.
$x\log x\frac{dy}{dx} + y = \frac{2}{x}\log x$
Answer:
The given equation is
$x\log x\frac{dy}{dx} + y = \frac{2}{x}\log x$
We can rewrite it as
$\frac{dy}{dx}+\frac{y}{x\log x}= \frac{2}{x^2}$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{1}{x\log x}$ and $Q =\frac{2}{x^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{1}{x\log x} dx}= e^{\log(\log x)} = \log x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\log x) =\int ((\frac{2}{x^2})\times \log x)dx +C$
take
$I=\int ((\frac{2}{x^2})\times \log x)dx$
$I = \log x.\int \frac{2}{x^2}dx-\int \left ( \frac{d(\log x)}{dt}.\int \frac{x^2}{2}dx \right )dx \\ \\ I= -\log x . \frac{2}{x}+ \int (\frac{1}{x}.\frac{2}{x})dx\\ \\ I = -\log x.\frac{2}{x}+ \int \frac{2}{x^2}dx\\ \\I = -\log x.\frac{2}{x}- \frac{2}{x}\\ \\$
Put this value in our equation
$y\log x =-\frac{2}{x}(\log x+1)+C\\ \\$
Therefore, the general solution is $y\log x =-\frac{2}{x}(\log x+1)+C\\ \\$
Question:8 Find the general solution.
$(1 + x^2)dy + 2xydx = \cot x dx\ (x\neq 0)$
Answer:
The given equation is
$(1 + x^2)dy + 2xydx = \cot x dx\ (x\neq 0)$
We can rewrite it as
$\frac{dy}{dx}+\frac{2xy}{(1+x^2)}= \frac{\cot x}{1+x^2}$
This is $\frac{dy}{dx} + py = Q$ type where $p = \frac{2x}{1+ x^2}$ and $Q =\frac{\cot x}{1+x^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2x}{1+ x^2} dx}= e^{\log(1+ x^2)} = 1+x^2$
Now, the solution of the given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(1+x^2) =\int ((\frac{\cot x}{1+x^2})\times (1+ x^2))dx +C$
$y(1+x^2) =\int \cot x dx+C\\ \\ y(1+x^2)= \log |\sin x|+ C\\ \\ y = (1+x^2)^{-1}\log |\sin x|+C(1+x^2)^{-1}$
Therefore, the general solution is $y = (1+x^2)^{-1}\log |\sin x|+C(1+x^2)^{-1}$
Question Solve for a general solution.
$x\frac{dy}{dx} + y -x +xy \cot x = 0\ (x \neq 0)$
Answer:
The given equation is
$x\frac{dy}{dx} + y -x +xy \cot x = 0\ (x \neq 0)$
We can rewrite it as
$\frac{dy}{dx}+y.\left ( \frac{1}{x}+\cot x \right )= 1$
This is $\frac{dy}{dx} + py = Q$ type where $p =\left ( \frac{1}{x}+\cot x \right )$ and $Q =1$
Now,
$I.F. = e^{\int pdx}= e^{\int \left ( \frac{1}{x}+\cot x \right ) dx}= e^{\log x +\log |\sin x|} = x.\sin x$
Now, the solution of the given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(x.\sin x) =\int 1\times x\sin xdx +C$
$y(x.\sin x) =\int x\sin xdx +C$
Let's take
$I=\int x\sin xdx \\ \\ I = x .\int \sin xdx-\int \left ( \frac{d(x)}{dx}.\int \sin xdx \right )dx\\ \\ I =- x.\cos x+ \int (\cos x)dx\\ \\ I = -x\cos x+\sin x$
Put this value in our equation
$y(x.\sin x)= -x\cos x+\sin x + C\\ y = -\cot x+\frac{1}{x}+\frac{C}{x\sin x}$
Therefore, the general solution is $y = -\cot x+\frac{1}{x}+\frac{C}{x\sin x}$
Question:10 Find the general solution.
Answer:
The given equation is
$(x+y)\frac{dy}{dx} = 1$
We can rewrite it as
$\frac{dy}{dx} = \frac{1}{x+y}\\ \\ x+ y =\frac{dx}{dy}\\ \\ \frac{dx}{dy}-x=y$
This is $\frac{dx}{dy} + px = Q$ type where $p =-1$ and $Q =y$
Now,
$I.F. = e^{\int pdy}= e^{\int -1 dy}= e^{-y}$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(e^{-y}) =\int y\times e^{-y}dy +C$
$xe^{-y}= \int y.e^{-y}dy + C$
Let's take
$I=\int ye^{-y}dy \\ \\ I = y .\int e^{-y}dy-\int \left ( \frac{d(y)}{dy}.\int e^{-y}dy \right )dy\\ \\ I =- y.e^{-y}+ \int e^{-y}dy\\ \\ I = - ye^{-y}-e^{-y}$
Put this value in our equation
$x.e^{-y} = -e^{-y}(y+1)+C\\ x = -(y+1)+Ce^{y}\\ x+y+1=Ce^y$
Therefore, the general solution is $x+y+1=Ce^y$
Question:11 Solve for a general solution.
Answer:
The given equation is
$y dx + (x - y^2)dy = 0$
We can rewrite it as
$\frac{dx}{dy}+\frac{x}{y}=y$
This is $\frac{dx}{dy} + px = Q$ type where $p =\frac{1}{y}$ and $Q =y$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{1}{y} dy}= e^{\log y } = y$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(y) =\int y\times ydy +C$
$xy= \int y^2dy + C$
$xy = \frac{y^3}{3}+C$
$x = \frac{y^2}{3}+\frac{C}{y}$
Therefore, the general solution is $x = \frac{y^2}{3}+\frac{C}{y}$
Question:12 Find the general solution.
$(x+3y^2)\frac{dy}{dx} = y\ (y > 0)$
Answer:
The given equation is
$(x+3y^2)\frac{dy}{dx} = y\ (y > 0)$
We can rewrite it as
$\frac{dx}{dy}-\frac{x}{y}= 3y$
This is $\frac{dx}{dy} + px = Q$ type where $p =\frac{-1}{y}$ and $Q =3y$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{-1}{y} dy}= e^{-\log y } =y^{-1}= \frac{1}{y}$
Now, the solution of a given differential equation is given by the relation
$x(I.F.) =\int (Q\times I.F.)dy +C$
$x(\frac{1}{y}) =\int 3y\times \frac{1}{y}dy +C$
$\frac{x}{y}= \int 3dy + C$
$\frac{x}{y}= 3y+ C$
$x = 3y^2+Cy$
Therefore, the general solution is $x = 3y^2 + Cy$
Question:13 Solve for a particular solution.
$\frac{dy}{dx} + 2y \tan x = \sin x; \ y = 0 \ when \ x =\frac{\pi}{3}$
Answer:
The given equation is
$\frac{dy}{dx} + 2y \tan x = \sin x; \ y = 0 \ when \ x =\frac{\pi}{3}$
This is $\frac{dy}{dx} + py = Q$ type where $p = 2\tan x$ and $Q = \sin x$
Now,
$I.F. = e^{\int pdx}= e^{\int 2\tan xdx}= e^{2\log |\sec x|}= \sec^2 x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sec^2 x) =\int ((\sin x)\times \sec^2 x)dx +C$
$y(\sec^2 x) =\int (\sin \times \frac{1}{\cos x}\times \sec x)dx +C\\ \\ y(\sec^2 x) = \int \tan x\sec xdx+ C\\ \\ y.\sec^2 x= \sec x+C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{3}$
at $x= \frac{\pi}{3}$
$0.\sec \frac{\pi}{3} = \sec \frac{\pi}{3}+C\\ \\ C = - 2$
Now,
$y.\sec^2 x= \sec x - 2\\ \frac{y}{\cos ^2x}= \frac{1}{\cos x}- 2\\ y = \cos x- 2\cos ^2 x$
Therefore, the particular solution is $y = \cos x- 2\cos ^2 x$
Question:14 Solve for a particular solution.
$(1 + x^2)\frac{dy}{dx} + 2xy =\frac{1}{1 + x^2}; \ y = 0 \ when \ x = 1$
Answer:
The given equation is
$(1 + x^2)\frac{dy}{dx} + 2xy =\frac{1}{1 + x^2}; \ y = 0 \ when \ x = 1$
We can rewrite it as
$\frac{dy}{dx}+\frac{2xy}{1+x^2}=\frac{1}{(1+x^2)^2}$
This is $\frac{dy}{dx} + py = Q$ type where $p =\frac{2x}{1+x^2}$ and $Q = \frac{1}{(1+x^2)^2}$
Now,
$I.F. = e^{\int pdx}= e^{\int \frac{2x}{1+x^2}dx}= e^{\log |1+x^2|}= 1+x^2$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(1+ x^2) =\int (\frac{1}{(1+x^2)^2}\times (1+x^2))dx +C$
$y(1+x^2) =\int \frac{1}{(1+x^2)}dx +C\\ \\ y(1+x^2) = \tan^{-1}x+ C\\ \\$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when x = 1
at x = 1
$0.(1+1^2) = \tan^{-1}1+ C\\ \\ C =- \frac{\pi}{4}$
Now,
$y(1+x^2)= \tan^{-1}x- \frac{\pi}{4}$
Therefore, the particular solution is $y(1+x^2)= \tan^{-1}x- \frac{\pi}{4}$
Question:15 Find the particular solution.
$\frac{dy}{dx} - 3y \cot x = \sin 2x;\ y = 2\ when \ x = \frac{\pi}{2}$
Answer:
The given equation is
$\frac{dy}{dx} - 3y \cot x = \sin 2x;\ y = 2\ when \ x = \frac{\pi}{2}$
This is $\frac{dy}{dx} + py = Q$ type where $p =-3\cot x$ and $Q =\sin 2x$
Now,
$I.F. = e^{\int pdx}= e^{-3\cot xdx}= e^{-3\log|\sin x|}= \sin ^{-3}x= \frac{1}{\sin^3x}$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\frac{1}{\sin^3 x}) =\int (\sin 2x\times\frac{1}{\sin^3 x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\sin x\cos x\times\frac{1}{\sin^3 x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\times \frac{\cos x}{\sin x}\times\frac{1}{\sin x})dx +C$
$\frac{y}{\sin^3 x} =\int (2\times\cot x\times cosec x)dx +C$
$\frac{y}{\sin^3 x} =-2cosec x +C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 2 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$\frac{2}{\sin^3\frac{\pi}{2}} = -2cosec \frac{\pi}{2}+C\\ \\ 2 = -2 +C\\ C = 4$
Now,
$y= 4\sin^3 x-2\sin^2x\\$
Therefore, the particular solution is $ y=4\sin^3 x-2\sin^2x$
Answer:
Let f(x, y) be the curve passing through the origin
Then, the slope of the tangent to the curve at the point (x, y) is given by $\frac{dy}{dx}$
Now, it is given that
$\frac{dy}{dx} = y + x\\ \\ \frac{dy}{dx}-y=x$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = -1 \ and \ Q = x$
Now,
$I.F. = e^{\int pdx}= e^{\int -1dx }= e^{-x}$
Now,
$y(I.F.)= \int (Q \times I.F. )dx+ C$
$y(e^{-x})= \int (x \times e^{-x} )dx+ C$
Now, Let
$I= \int (x \times e^{-x} )dx \\ \\ I = x.\int e^{-x}dx-\int \left ( \frac{d(x)}{dx}.\int e^{-x}dx \right )dx\\ \\ I = -xe^{-x}+\int e^{-x}dx\\ \\ I = -xe^{-x}-e^{-x}\\ \\ I = -e^{-x}(x+1)$
Put this value in our equation
$ye^{-x}= -e^{-x}(x+1)+C$
Now, by using boundary conditions, we will find the value of C
It is given that curve passing through origin i.e. (x , y) = (0 , 0)
$0.e^{-0}= -e^{-0}(0+1)+C\\ \\ C = 1$
Our final equation becomes
$ye^{-x}= -e^{-x}(x+1)+1\\ y+x+1=e^x$
Therefore, the required equation of the curve is $y+x+1=e^x$
Answer:
Let f(x, y) be the curve passing through the point (0, 2)
Then, the slope of the tangent to the curve at the point (x, y) is given by $\frac{dy}{dx}$
Now, it is given that
$\frac{dy}{dx} +5= y + x \\ \\ \frac{dy}{dx}-y=x-5$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = -1 \ and \ Q = x- 5$
Now,
$I.F. = e^{\int pdx}= e^{\int -1dx }= e^{-x}$
Now,
$y(I.F.)= \int (Q \times I.F. )dx+ C$
$y(e^{-x})= \int ((x-5) \times e^{-x} )dx+ C$
Now, Let
$I= \int ((x-5) \times e^{-x} )dx \\ \\ I = (x-5).\int e^{-x}dx-\int \left ( \frac{d(x-5)}{dx}.\int e^{-x}dx \right )dx\\ \\ I = -(x-5)e^{-x}+\int e^{-x}dx\\ \\ I = -xe^{-x}-e^{-x}+5e^{-x}\\ \\ I = -e^{-x}(x-4)$
Put this value in our equation
$ye^{-x}= -e^{-x}(x-4)+C$
Now, by using boundary conditions, we will find the value of C
It is given that the curve passing through point (0, 2)
$2.e^{-0}= -e^{-0}(0-4)+C\\ \\ C = -2$
Our final equation becomes
$ye^{-x}= -e^{-x}(x-4)-2\\ y=4-x-2e^x$
Therefore, the required equation of the curve is $y=4-x-2e^x$
Question:18 The Integrating Factor of the differential equation $x\frac{dy}{dx} - y = 2x^2$ is
Answer:
The given equation is
$x\frac{dy}{dx} - y = 2x^2$
We can rewrite it as
$\frac{dy}{dx}-\frac{y}{x}= 2x$
Now,
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = \frac{-1}{x} \ and \ Q = 2x$
Now,
$I.F. = e^{\int pdx} = e^{\int \frac{-1}{x}dx}= e^{\int -\log x }= x^{-1}= \frac{1}{x}$
Therefore, the correct answer is (C)
Question:19 The Integrating Factor of the differential equation $(1 - y^2)\frac{dx}{dy} + yx = ay \ \ (-1<y<1)$ is
(D) $\frac{1}{\sqrt{1 - y^2 }}$
Answer:
The given equation is
$(1 - y^2)\frac{dx}{dy} + yx = ay \ \ (-1<y<1)$
We can rewrite it as
$\frac{dx}{dy}+\frac{yx}{1-y^2}= \frac{ay}{1-y^2}$
It is $\frac{dx}{dy}+px= Q$ type of equation where $p = \frac{y}{1-y^2}\ and \ Q = \frac{ay}{1-y^2}$
Now,
$I.F. = e^{\int pdy}= e^{\int \frac{y}{1-y^2}dy}= e^{\frac{\log |1 - y^2|}{-2}}= (1-y^2)^{\frac{-1}{2}}= \frac{1}{\sqrt{1-y^2}}$
Therefore, the correct answer is (D)
Class 12 Maths chapter 9 solutions - Miscellaneous Exercise Page number: 333-335 Total questions: 15 |
Question:1 Indicate Order and Degree.
(i) $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
Answer:
The given function is
$\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
We can rewrite it as
$y''+5x(y')^2-6y = \log x$
Now, it is clear from the above that the highest order derivative present in the differential equation is $y''$
Therefore, the order of the given differential equation $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$ is 2
Now, the given differential equation is a polynomial equation in its derivative y '' and y 'and the power raised to y '' is 1
Therefore, its degree is 1
Question:1 Indicate Order and Degree.
(ii) $\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
Answer:
The given function is
$\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
We can rewrite it as
$(y')^3-4(y')^2+7y=\sin x$
Now, it is clear from the above that the highest order derivative present in the differential equation is y'.
Therefore, the order of the given differential equation is 1
Now, the given differential equation is a polynomial equation in its derivatives, and the power raised to y ' is 3
Therefore, its degree is 3
Question:1 Indicate Order and Degree.
(iii) $\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
Answer:
The given function is
$\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
We can rewrite it as
$y''''-\sin y''' = 0$
Now, it is clear from the above that the highest order derivative present in the differential equation is y''''
Therefore, the order of the given differential equation is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, its degree is not defined
(i) $xy = ae^x + be^{-x} + x^2\qquad :\ x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy +x^2 -2 =0$
Answer:
Given,
$xy = ae^x + be^{-x} + x^2$
Now, differentiating both sides w.r.t. x,
$x\frac{dy}{dx} + y = ae^x - be^{-x} + 2x$
Again, differentiating both sides w.r.t. x,
$\\ (x\frac{d^2y}{dx^2} + \frac{dy}{dx}) + \frac{dy}{dx} = ae^x + be^{-x} + 2 \\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = ae^x + be^{-x} + 2 \\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = xy -x^2 + 2 \\ \implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy + x^2 + 2$
Therefore, the given function is the solution of the corresponding differential equation.
(ii) $y = e^x(a\cos x + b \sin x )\qquad : \ \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Answer:
Given,
$y = e^x(a\cos x + b \sin x )$
Now, differentiating both sides w.r.t. x,
$\frac{dy}{dx} = e^x(-a\sin x + b \cos x ) + e^x(a\cos x + b \sin x ) =e^x(-a\sin x + b \cos x ) +y$
Again, differentiating both sides w.r.t. x,
$\\ \frac{d^2y}{dx^2} = e^x(-a\cos x - b \sin x ) + e^x(-a\sin x + b \cos x ) + \frac{dy}{dx} \\ = -y + (\frac{dy}{dx} -y) + \frac{dy}{dx} \\ \implies \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Therefore, the given function is the solution of the corresponding differential equation.
(iii) $y= x\sin 3x \qquad : \ \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$
Answer:
Given,
$y= x\sin 3x$
Now, differentiating both sides w.r.t. x,
$y= x\sin 3x \frac{dy}{dx} = x(3\cos 3x) + \sin 3x$
Again, differentiating both sides w.r.t. x,
$\\ \frac{d^2y}{dx^2} = 3x(-3\sin 3x) + 3\cos 3x + 3\cos 3x \\ = -9y + 6\cos 3x \\ \implies \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$
Therefore, the given function is the solution of the corresponding differential equation.
(iv) $x^2 = 2y^2\log y\qquad : \ (x^2 + y^2)\frac{dy}{dx} - xy = 0$
Answer:
Given,
$x^2 = 2y^2\log y$
Now, differentiating both sides w.r.t. x,
$\\ 2x = (2y^2.\frac{1}{y} + 2(2y)\log y)\frac{dy}{dx} = 2(y + 2y\log y)\frac{dy}{dx} \\ \implies \frac{dy}{dx} = \frac{x}{y(1+ 2\log y)}$
Putting $\frac{dy}{dx}\ and \ x^2$ values in LHS
$\\ (2y^2\log y + y^2)\frac{dy}{dx} - xy = y^2(2\log y + 1)\frac{x}{y(1+ 2\log y)} -xy \\ = xy - xy = 0 = RHS$
Therefore, the given function is the solution of the corresponding differential equation.
Answer:
Given,
$
\begin{aligned}
& \left(x^3-3 x y^2\right) d x=\left(y^3-3 x^2 y\right) d y \\
& \Longrightarrow \frac{d y}{d x}=\frac{\left(x^3-3 x y^2\right)}{\left(y^3-3 x^2 y\right)}
\end{aligned}
$
Now, let $\mathbf{y}=\mathrm{vx}$
$
\Longrightarrow \frac{d y}{d x}=\frac{d(v x)}{d x}=v+x \frac{d v}{d x}
$
Substituting the values of $y$ and $y^{\prime}$ in the equation,
$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{\left(x^3-3 x(v x)^2\right)}{\left((v x)^3-3 x^2(v x)\right)} \\
& \Longrightarrow v+x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v} \\
& \Longrightarrow x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v}-v=\frac{1-v^4}{v^3-3 v} \\
& \Longrightarrow\left(\frac{v^3-3 v}{1-v^4}\right) d v=\frac{d x}{x}
\end{aligned}
$
Integrating both sides, we get,
$
\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\log x+\log C^{\prime}
$
Now, $\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\int \frac{v^3}{1-v^4} d v-3 \int \frac{v d v}{1-v^4}$
$
\Rightarrow \int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=I_1-3 I_2 \text {, where } I_1=\int \frac{v^3}{1-v^4} d v \text { and } I_2=\int \frac{v d v}{1-v^4}
$
Let $1-v^4=\mathrm{t}$
$
\begin{aligned}
& \frac{d}{d v}\left(1-v^4\right)=\frac{d t}{d v} \\
& \Longrightarrow-4 v^3=\frac{d t}{d v} \\
& \Longrightarrow v^3 d v=-\frac{d t}{4}
\end{aligned}
$
Now,
$
\mathrm{I}_1=\int-\frac{\mathrm{dt}}{4}=-\frac{1}{4} \log \mathrm{t}=-\frac{1}{4} \log \left(1-\mathrm{v}^4\right)
$
and
$
I_2=\int \frac{v d v}{1-v^4}=\int \frac{v d v}{1-\left(v^2\right)^2}
$
Let $v^2=p$
$
\begin{aligned}
& \Rightarrow \frac{d}{d v}\left(v^2\right)=\frac{d p}{d v} \\
& \Rightarrow 2 v=\frac{d p}{d v}
\end{aligned}
$
Answer:
The given equation is
$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$
We can rewrite it as
$\frac{dy}{dx } =- \sqrt{\frac{1-y^2}{1-x^2}}\\ \\ \frac{dy}{\sqrt{1-y^2}}= \frac{-dx}{\sqrt{1-x^2}}$
Now, integrate on both sides
$\sin^{-1}y + C =- \sin ^{-1}x + C'\\ \\ \sin^{-1}y+\sin^{-1}x= C$
Therefore, the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$ is $\sin^{-1}y+\sin^{-1}x= C$
Given,
$
\begin{aligned}
& \frac{d y}{d x}+\frac{y^2+y+1}{x^2+x+1}=0 \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{y}^2+\mathrm{y}+1}{\mathrm{x}^2+\mathrm{x}+1}\right) \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}=\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}+\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1}=0
\end{aligned}
$
Integrating both sides,
$
\begin{aligned}
& \int \frac{d y}{y^2+y+1}+\int \frac{d x}{x^2+x+1}=C \\
& \Rightarrow \int \frac{d y}{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\int \frac{d y}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}=C \\
& \Rightarrow \frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{\mathrm{y}+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]+\frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]=C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 y+1}{\sqrt{3}}\right]+\tan ^{-1}\left[\frac{2 x+1}{\sqrt{3}}\right]=\mathrm{C} \Rightarrow \tan ^{-1}\left[\frac{\frac{2 y+1}{\sqrt{3}}+\frac{2 x+1}{\sqrt{3}}}{1-\frac{2 y+1}{\sqrt{3}} \cdot \frac{2 x+1}{\sqrt{3}}}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{\frac{2 x+2 y+2}{\sqrt{3}}}{1-\left(\frac{4 x y+2 x+2 y+1}{3}\right)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{3-4 x y-2 x-2 y-1}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{2(1-x-y-2 x y)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \frac{\sqrt{3}(x+y+1)}{(1-x-y-2 x y)}=\tan \left(\frac{\sqrt{3}}{2} c\right)
\end{aligned}
$
Let $\tan \left(\frac{\sqrt{3}}{2} c\right)=B$
$
x+y+1=\frac{2 B}{\sqrt{3}}(1-x-y-2 x y)
$
Let $A=\frac{2 B}{\sqrt{3}}$,
$
x+y+1=A(1-x-y-2 x y)
$
Hence proved.
Answer:
The given equation is
$\sin x \cos y dx + \cos x \sin y dy = 0.$
We can rewrite it as
$\frac{dy}{dx}= -\tan x\cot y\\ \\ \frac{dy}{\cot y}= -\tan xdx\\ \\ \tan y dy =- \tan x dx$
Integrate both tides
$\log |\sec y|+C' = -\log|sec x|- C''\\ \\ \log|\sec y | +\log|\sec x| = C\\ \\ \sec y .\sec x = e^{C}$
Now, by using boundary conditions, we will find the value of C
It is given that the curve passing through the point $\left(0,\frac{\pi}{4} \right )$
So,
$\sec \frac{\pi}{4} .\sec 0 = e^{C}\\ \\ \sqrt2.1= e^C\\ \\ C = \log \sqrt2$
Now,
$\sec y.\sec x= e^{\log \sqrt 2}\\ \\ \frac{\sec x}{\cos y} = \sqrt 2\\ \\ \cos y = \frac{\sec x}{\sqrt 2}$
Therefore, the equation of the curve passing through the point $\left(0,\frac{\pi}{4} \right )$ whose differential equation is $\sin x \cos y dx + \cos x \sin y dy = 0.$ is $\cos y = \frac{\sec x}{\sqrt 2}$
Answer:
The given equation is
$(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$
We can rewrite it as
$\frac{dy}{dx}= -\frac{(1+y^2)e^x}{(1+e^{2x})}\\ \\ \frac{dy}{1+y^2}= \frac{-e^xdx}{1+e^{2x}}$
Now, integrate both sides
$\tan^{-1}y + C' =\int \frac{-e^{x}dx}{1+e^{2x}}$
$\int \frac{-e^{x}dx}{1+e^{2x}}\\$
Put
$e^x = t \\ e^xdx = dt$
$\int \frac{dt}{1+t^2}= \tan^{-1}t + C''$
Put $t = e^x$ again
$\int \frac{-e^{x}dx}{1+e^{2x}} = -\tan ^{-1}e^x+C''$
Put this in our equation
$\tan^{-1}y = -\tan ^{-1}e^x+C\\ \tan^{-1}y +\tan ^{-1}e^x=C$
Now, by using boundary conditions, we will find the value of C
It is given that
y = 1 when x = 0
$\\ \tan^{-1}1 +\tan ^{-1}e^0=C\\ \\ \frac{\pi}{4}+\frac{\pi}{4}= C\\ C = \frac{\pi}{2}$
Now, put the value of C
$\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Therefore, the particular solution of the differential equation $(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$ is $\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Answer:
Given,
$ye^\frac{x}{y}dx = (xe^\frac{x}{y} + y^2)dy$
$\\ ye^\frac{x}{y}\frac{dx}{dy} = xe^\frac{x}{y} + y^2 \\ \implies e^\frac{x}{y}[y\frac{dx}{dy} -x] = y^2 \\ \implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} = 1$
Let $\large e^\frac{x}{y} = t$
Differentiating it w.r.t. y, we get,
$\\ \frac{d}{dy}e^\frac{x}{y} = \frac{dt}{dy} \\ \implies e^\frac{x}{y}.\frac{d}{dy}(\frac{x}{y}) = \frac{dt}{dy} \\ \implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} =\frac{dt}{dy}$
Thus, from these two equations, we get,
$\\ \frac{dt}{dy} = 1 \\ \implies \int dt = \int dy \\ \implies t = y + C$
$\Rightarrow e^{\frac{x}{y}}=y+C$
Answer:
The given equation is
$(x - y) (dx + dy) = dx - dy,$
Now, integrate both sides
Put
$(x-y ) = t\\ dx - dy = dt$
Now, the given equation becomes
$dx+dy= \frac{dt}{t}$
Now, integrate both sides
$x+ y + C '= \log t + C''$
Put $t = x- y$ again
$x+y = \log (x-y)+ C$
Now, by using boundary conditions, we will find the value of C
It is given that
y = -1 when x = 0
$0+(-1) = \log (0-(-1))+ C\\ C = -1$
Now, put the value of C
$x+y = \log |x-y|-1\\ \log|x-y|= x+y+1$
Therefore, the particular solution of the differential equation $(x - y) (dx + dy) = dx - dy,$ is $\log|x-y|= x+y+1$
Answer:
Given,
$\left[\frac{e^{-2\sqrt x}}{\sqrt x} - \frac{y}{\sqrt x} \right ]\frac{dx}{dy} = 1$
$\begin{aligned} & \Rightarrow \frac{d y}{d x}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}} \\ & \Rightarrow \frac{d y}{d x}+\frac{y}{\sqrt{x}}=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}\end{aligned}$
This equation is in the form of $\frac{d y}{d x}+p y=Q$
$
\begin{aligned}
& p=\frac{1}{\sqrt{x}} \text { and } Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}} \\
& \text { Now, I.F. }=e^{\int p d x}=e^{\int \frac{1}{\sqrt{x}} d x}=e^{2 \sqrt{x}}
\end{aligned}
$
We know that the solution of the given differential equation is:
$\begin{aligned} & y(I . F .)=\int(Q \cdot F .) d x+C \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int\left(\frac{\mathrm{e}^{-2 \sqrt{\mathrm{x}}}}{\sqrt{\mathrm{x}}} \times \mathrm{e}^{2 \sqrt{\mathrm{x}}}\right) \mathrm{dx}+C \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int \frac{1}{\sqrt{\mathrm{x}}} \mathrm{dx}+\mathrm{C} \\ & \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=2 \sqrt{\mathrm{x}}+C\end{aligned}$
Answer:
The given equation is
$\frac{dy}{dx} + y \cot x = 4x \textup{cosec} x\ (x\neq 0)$
This is $\frac{dy}{dx} + py = Q$ type where $p =\cot x$ and $Q = 4xcosec x$ $Q = 4x \ cosec x$
Now,
$I.F. = e^{\int pdx}= e^{\int \cot xdx}= e^{\log |\sin x|}= \sin x$
Now, the solution of a given differential equation is given by the relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sin x ) =\int (\sin x\times 4x \ cosec x)dx +C$
$y(\sin x) =\int(\sin x\times \frac{4x}{\sin x}) +C\\ \\ y(\sin x) = \int 4x + C\\ y\sin x= 2x^2+C$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$0.\sin \frac{\pi}{2 } = 2.\left ( \frac{\pi}{2} \right )^2+C\\ \\ C = - \frac{\pi^2}{2}$
Now, put the value of C
$y\sin x= 2x^2-\frac{\pi^2}{2}$
Therefore, the particular solution is $y\sin x= 2x^2-\frac{\pi^2}{2}, (sinx\neq0)$
Answer:
The given equation is
$(x+1)\frac{dy}{dx} = 2e^{-y} -1$
We can rewrite it as
$\frac{e^ydy}{2-e^y}= \frac{dx}{x+1}\\$
Integrate both sides
$\int \frac{e^ydy}{2-e^y}= \log |x+1|\\$
$\int \frac{e^ydy}{2-e^y}$
Put
$2-e^y = t\\ -e^y dy = dt$
$\int \frac{-dt}{t}=- \log |t|$
put $t = 2- e^y$ again
$\int \frac{e^ydy}{2-e^y} =- \log |2-e^y|$
Put this in our equation
$\log |2-e^y| + C'= \log|1+x| + C''\\ \log (2-e^y)^{-1}= \log (1+x)+\log C\\ \frac{1}{2-e^y}= C(1+x)$
Now, by using boundary conditions, we will find the value of C
It is given that y = 0 when x = 0
at x = 0
$\frac{1}{2-e^0}= C(1+0)\\ C = \frac{1}{2}$
Now, put the value of C
$\frac{1}{2-e^y} = \frac{1}{2}(1+x)\\ \\ \frac{2}{1+x}= 2-e^y\\ \frac{2}{1+x}-2= -e^y\\ -\frac{2x-1}{1+x} = -e^y\\ y = \log \frac{2x-1}{1+x}$
Therefore, the particular solution is $y = \log \frac{2x-1}{1+x}, x\neq-1$
Question:13 The general solution of the differential equation $\frac{ydx - xdy}{y} = 0$ is
Answer:
The given equation is
$\frac{ydx - xdy}{y} = 0$
We can rewrite it as
$dx = \frac{x}{y}dy\\ \frac{dy}{y}=\frac{dx}{x}$
Integrate both sides
We will get
$\log |y| = \log |x| + C\\ \log \frac{y}{x} = C \\ \frac{y}{x} = e^C\\ \frac{y}{x} = C\\ y = Cx$
Therefore, the answer is (C)
Question:14 The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is
(A) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$
(B) $ye^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$
(C) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$
(D) $xe^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$
Answer:
The given equation is
$\frac{dx}{dy} + P_1 x = Q_1$
And we know that the general equation of such type of differential equation is
$xe^{\int p_1dy} = \int (Q_1e^{\int p_1dy})dy+ C$
Therefore, the correct answer is (C)
Question:15 The general solution of the differential equation $e^x dy + (y e^x + 2x) dx = 0$ is
Answer:
The given equation is
$e^x dy + (y e^x + 2x) dx = 0$
We can rewrite it as
$\frac{dy}{dx}+y=-2xe^{-x}$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = 1 \ and \ Q = -2xe^{-x}$
Now,
$I.F. = e^{\int p dx }= e^{\int 1dx}= e^x$
Now, the general solution is
$y(I.F.) = \int (Q\times I.F.)dx+C$
$y(e^x) = \int (-2xe^{-x}\times e^x)dx+C\\ ye^x= \int -2xdx + C\\ ye^x=- x^2 + C\\ ye^x+x^2 = C$
Therefore, (C) is the correct answer
If you want to get a command of concepts, then the differential equations solutions of the NCERT exercise are listed below.
Given below are the subject-wise exemplar solutions of class 12 NCERT:
Here, we cover the topics of Differential Equations, which are important for building a strong understanding of mathematical concepts and developing problem-solving skills. These exercises help in the theoretical knowledge, enhance analytical thinking, and prepare students for exams by providing a wide range of practice problems that align with the syllabus.
Very easy to understand as these are prepared and explained in a detailed manner.
At the end of every chapter, there is an additional exercise called the Miscellaneous exercise, which is very important for you if you wish to develop a grip on the concepts.
NCERT solutions for Class 12 Maths Chapter 9 PDF download are prepared with different approaches, so it will give you new ways of solving the problems.
These are prepared and explained by the experts who know how best to answer the questions in the board exam. So, it will help you to score good marks in the exam
Here are the subject-wise links for the NCERT solutions of class 12:
Given below are the class-wise solutions of the NCERT :
Here are some useful links for NCERT books and the NCERT syllabus for class 12:
$ \frac{d y}{d x}+P(x) y=Q(x)$
To solve it:
1. Find the integrating factor (IF):
$ I F=e^{\int P(x) d x} $
2. Multiply the equation by IF.
3. Integrate both sides to get the general solution.
Differential equations are used in various real-world scenarios, including:
- Physics - Motion of objects, electric circuits.
- Biology - Population growth, spread of diseases.
- Engineering - Heat transfer, fluid mechanics.
- Economics - Predicting market trends, interest rates.
Solving linear differential equations using the integrating factor.
Finding general and particular solutions.
Forming differential equations from given conditions.
Applications-based problems like population growth and cooling laws.
General Solution: Solve the equation without specific conditions, including a constant C .
Particular Solution: Find C using given initial/boundary conditions.
Initial conditions are given values of the function and its derivatives at a specific point, used to find the particular solution.
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Register for ALLEN Scholarship Test & get up to 90% Scholarship
Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters