VMC VIQ Scholarship Test
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
NCERT Solutions for Exercise 9.5 Class 12 Maths Chapter 9 Differential Equations are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for exercise 9.5 Class 12 Maths chapter 9 comes under the topic of homogeneous differential equations. Before going to the sample questions and exercise 9.5 Class 12 Maths, the NCERT Book explains what is a homogeneous equation is and how to identify it. Then a few examples are given and proceed to NCERT solutions for Class 12 Maths chapter 9 exercise 9.5. Questions based on homogeneous differential equations are given in the Class 12 Maths chapter 9 exercise 9.5. Questions to find both particular and general solutions of homogeneous differential equations are present in the Class 12th Maths chapter 6 exercise 9.5.
12th class Maths exercise 9.5 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also check -
Differential Equations Class 12 Chapter 9 Exercise: 9.5
Question:1 Show that the given differential equation is homogeneous and solve each of them.
Answer:
The given diffrential eq can be written as
Let
Now,
Hence, it is a homogeneous equation.
To solve it put y = vx
Diff erentiating on both sides wrt
Substitute this value in equation (i)
Integrating on both side, we get;
Again substitute the value ,we get;
This is the required solution of given diff. equation
Question:2 Show that the given differential equation is homogeneousand solve each of them.
Answer:
the above differential eq can be written as,
............................(i)
Now,
Thus the given differential eq is a homogeneous equaion
Now, to solve substitute y = vx
Diff erentiating on both sides wrt
Substitute this value in equation (i)
Integrating on both sides, we get; (and substitute the value of )
this is the required solution
Question:3 Show that the given differential equation is homogeneous and solve each of them.
Answer:
The given differential eq can be written as;
....................................(i)
Hence it is a homogeneous equation.
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
Integrating on both sides, we get;
again substitute the value of
This is the required solution.
Question:4 Show that the given differential equation is homogeneous and solve each of them.
Answer:
we can write it as;
...................................(i)
Hence it is a homogeneous equation
Now, to solve substitute y = vx
Diff erentiating on both sides wrt
Substitute this value in equation (i)
integrating on both sides, we get
.............[ ]
This is the required solution.
Question:5 Show that the given differential equation is homogeneous and solve it.
Answer:
............(i)
Hence it is a homogeneous eq
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
On integrating both sides, we get;
after substituting the value of
This is the required solution
Question:6 Show that the given differential equation is homogeneous and solve it.
Answer:
.................................(i)
henxe it is a homogeneous equation
Now, to solve substitute y = vx
Diff erentiating on both sides wrt
Substitute this value in equation (i)
On integrating both sides,
Substitute the value of v=y/x , we get
Required solution
Question:7 Solve.
Answer:
......................(i)
By looking at the equation we can directly say that it is a homogenous equation.
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
integrating on both sides, we get
substitute the value of v= y/x , we get
Required solution
Question:8 Solve.
Answer:
...............................(i)
it is a homogeneous equation
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
On integrating both sides we get;
Required solution
Question:9 Solve.
Answer:
..................(i)
hence it is a homogeneous eq
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
integrating on both sides, we get; ( substituting v =y/x)
This is the required solution of the given differential eq
Question:10 Solve.
Answer:
.......................................(i)
Hence it is a homogeneous equation.
Now, to solve substitute x = yv
Diff erentiating on both sides wrt
Substitute this value in equation (i)
Integrating on both sides, we get;
This is the required solution of the diff equation.
Question:11 Solve for particular solution.
Answer:
..........................(i)
We can clearly say that it is a homogeneous equation.
Now, to solve substitute y = vx
Diff erentiating on both sides wrt
Substitute this value in equation (i)
On integrating both sides
......................(ii)
Now, y=1 and x= 1
After substituting the value of 2k in eq. (ii)
This is the required solution.
Question:12 Solve for particular solution.
Answer:
...............................(i)
Hence it is a homogeneous equation
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i), we get
Integrating on both sides, we get;
replace the value of v=y/x
.............................(ii)
Now y =1 and x = 1
therefore,
Required solution
Question:13 Solve for particular solution.
Answer:
..................(i)
Hence it is a homogeneous eq
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
on integrating both sides, we get;
On substituting v =y/x
............................(ii)
Now,
put this value of C in eq (ii)
Required solution.
Question:14 Solve for particular solution.
Answer:
....................................(i)
the above eq is homogeneous. So,
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
on integrating both sides, we get;
.................................(ii)
now y = 0 and x =1 , we get
put the value of C in eq 2
Question:15 Solve for particular solution.
Answer:
The above eq can be written as;
By looking, we can say that it is a homogeneous equation.
Now, to solve substitute y = vx
Differentiating on both sides wrt
Substitute this value in equation (i)
integrating on both sides, we get;
.............................(ii)
Now, y = 2 and x =1, we get
C =-1
put this value in equation(ii)
Question:16 A homogeneous differential equation of the from can be solved by making the substitution.
(A)
(B)
(C)
(D)
Answer:
for solving this type of equation put x/y = v
x = vy
option C is correct
Question:17 Which of the following is a homogeneous differential equation?
(A)
(B)
(C)
(D)
Answer:
Option D is the right answer.
we can take out lambda as a common factor and it can be cancelled out
To practice the concepts given in topic 9.5.2, 4 example questions are given prior to the exercise 9.5 Class 12 Maths. There are 17 questions in the Class 12 Maths chapter 9 exercise 9.5 and 2 questions of this have 4 choices. As mentioned in the first para certain questions in the Class 12th Maths chapter 6 exercise 9.5 are to find the general solutions and some questions are to find the particular solutions of homogeneous differential equations.
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
Two objective type questions with 4 choices are given in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.5.
The first step is to verify the given differential equation is homogeneous or not.
4 examples are given.
Yes, the concepts of basic integrals studied in the NCERT Class 12 Maths chapter 7 is required to solve exercise 9.5
The differential equations of variable separable form.
Three exercises are coming under the topic .5
The idea of a linear differential equation is discussed after exercise 9.5 Class 12 Maths.
Five
Application Date:05 September,2024 - 20 September,2024
Admit Card Date:13 September,2024 - 07 October,2024
Admit Card Date:13 September,2024 - 07 October,2024
Application Date:17 September,2024 - 30 September,2024
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
Hello student,
If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:
Remember
, these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.
I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.
Good luck with your studies!
Hello Aspirant , Hope your doing great . As per your query , your eligible for JEE mains in the year of 2025 , Every candidate can appear for the JEE Main exam 6 times over three consecutive years . The JEE Main exam is held two times every year, in January and April.
Hi there,
Hope you are doing fine
Yes you are certainly eligible for giving the jee exam in the year 2025. You must pass the maths exam with at least 75% criteria as required by jee and provide the marksheet and the passing certificate while registering for the exam.
Pursuing maths as an additional subject while taking biology as your main subject does not offer any hindrance in you appearing for the jee examination. It is indeed an privilege to pursue both maths and biology as the subjects and prepare for the same.
There will be no issue in filling the form while registering for the exam as it will only require your basic details and marksheet which you can provide by attaching the marksheet of maths also. Also, a detailed roadmap is also available on the official websites on how to fill the registration form. So you can fill the form easily.
Hope this resolves your query.
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer! Trusted by 3,500+ universities globally