VMC VIQ Scholarship Test
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
NCERT Solutions for Exercise 9.1 Class 12 Maths Chapter 9 Differential Equations are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for exercise 9.1 Class 12 Maths chapter 9 introduces the questions related to differential equations. In the NCERT Class 11 Mathematics Book and also chapter 5 of Class 12 Maths, the concepts of derivatives are discussed. Exercise 9.1 Class 12 Maths gives an idea about equations involving derivatives. NCERT solutions for Class 12 Maths chapter 9 exercise 9.1 give clarity about the concept of degree and order of a differential equation. A few examples are also given in the NCERT Book to understand the same.
Here are solutions to Class 12 Maths chapter 9 exercise 9.1 prepared by expert Mathematics faculties. 12th class Maths exercise 9.1 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also check -
Question:1 Determine order and degree (if defined) of differential equation
Answer:
Given function is
We can rewrite it as
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, the order of the given differential equation is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined
Question:2 Determine order and degree (if defined) of differential equation
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, the order of the given differential equation is 1
Now, the given differential equation is a polynomial equation in its derivatives and its highest power raised to y ' is 1
Therefore, it's a degree is 1.
Question:3 Determine order and degree (if defined) of differential equation
Answer:
Given function is
We can rewrite it as
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, the order of the given differential equation is 2
Now, the given differential equation is a polynomial equation in its derivatives and power raised to s '' is 1
Therefore, it's a degree is 1
Question:4 Determine order and degree (if defined) of differential equation.
Answer:
Given function is
We can rewrite it as
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, the order of the given differential equation is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined
Question:5 Determine order and degree (if defined) of differential equation.
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 2
Now, the given differential equation is a polynomial equation in it's dervatives and power raised to is 1
Therefore, it's degree is 1
Question:6 Determine order and degree (if defined) of differential equation
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 3
Now, the given differential equation is a polynomial equation in it's dervatives and power raised to is 2
Therefore, it's degree is 2
Question:7 Determine order and degree (if defined) of differential equation
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 3
Now, the given differential equation is a polynomial equation in it's dervatives and power raised to is 1
Therefore, it's degree is 1
Question:8 Determine order and degree (if defined) of differential equation
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 1
Now, the given differential equation is a polynomial equation in it's dervatives and power raised to is 1
Therefore, it's degree is 1
Question:9 Determine order and degree (if defined) of differential equation
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 2
Now, the given differential equation is a polynomial equation in it's dervatives and power raised to is 1
Therefore, it's degree is 1
Question:10 Determine order and degree (if defined) of differential equation
Answer:
Given function is
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 2
Now, the given differential equation is a polynomial equation in it's dervatives and power raised to is 1
Therefore, it's degree is 1
Question:11 The degree of the differential equation is
(A) 3
(B) 2
(C) 1
(D) not defined
Answer:
Given function is
We can rewrite it as
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 2
Now, the given differential equation is a not polynomial equation in it's dervatives
Therefore, it's degree is not defined
Therefore, answer is (D)
Question:12 The order of the differential equation is
(A) 2
(B) 1
(C) 0
(D) Not Defined
Answer:
Given function is
We can rewrite it as
Now, it is clear from the above that, the highest order derivative present in differential equation is
Therefore, order of given differential equation is 2
Therefore, answer is (A)
There is one example prior to exercise 9.1 Class 12 Maths and 12 questions in the Class 12 Maths chapter 9 exercise 9.1. Two questions of Class 12th Maths chapter 6 exercise 9.1 are multiple objective type questions. All the questions in NCERT solutions for Class 12 Maths chapter 9 exercise 9.1 are to find the order and degree of the given differential equations.
One fill in the blank or multiple choice type or very short answer can be expected from exercise 9.1 Class 12 Maths for CBSE Class 12 Maths Board Exams
Not only CBSE, but certain state boards also follow the NCERT Syllabus. Therefore the NCERT solutions for Class 12 Maths chapter 9 exercise 9.1 can be used to prepare for state boards that follow NCERT.
12 questions and their answers are given in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.1
7 exercises. In which one is miscellaneous exercises.
Miscellaneous exercise covers question from whole chapter and exercise questions covers topics discussed in that particular area.
The concepts of order and degree of differential equations are covered in the Class 12 Maths chapter 9 exercise 9.1.
One solved example is given in the NCERT book before exercise 9.1 Class 12 Maths.
Yes, Students can expect questions from this part for JEE Mains.
Yes, these solutions of exercise 9.1 are prepared by expert faculty and are reviewed.
It is necessary to get clarity over the topics degree and order of a differential equation. NCERT Solutions for Class 12 Maths chapter 9 exercise 9.1 helps for the same.
Application Date:09 September,2024 - 14 November,2024
Application Date:09 September,2024 - 14 November,2024
Admit Card Date:04 October,2024 - 29 November,2024
Admit Card Date:04 October,2024 - 29 November,2024
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 15th NOV'24! Trusted by 3,500+ universities globally
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE