NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.3 - Differential Equations

NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.3 - Differential Equations

Komal MiglaniUpdated on 08 May 2025, 02:26 PM IST

Consider a tank with a hole at the bottom. The exit rate of water is a function of the water level in the tank. As the water level reduces, the flow rate reduces. This can be represented with a differential equation.

This Story also Contains

  1. Class 12 Maths Chapter 9 Exercise 9.3 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 9: Exercise 9.3
  3. Topics covered in Chapter 9 Differential Equation: Exercise 9.3
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

The NCERT Solutions for Class 12 Maths Chapter 9 – Exercise 9.3 teach students exactly how to determine solutions to such equations. These are designed by subject matter experts from Careers360 as per the new CBSE 2025–26 syllabus and are described in depth in step-by-step manner. NCERT Chapter 9 Exercise 9.3 is differential equations under the category of variable separable, where the variables can be rearranged such that all the terms of one variable are placed on one side and the remaining terms are placed on the other side. Students will also encounter special cases where the equation needs to be transformed into separable form prior to using the method.

Class 12 Maths Chapter 9 Exercise 9.3 Solutions: Download PDF

This material provides easy solutions to all the questions of Exercise 9.3 of Differential Equations. The PDF can be downloaded by the students for practice and enhancement of the chapter for board and and competitive exams

Download PDF

NCERT Solutions Class 12 Maths Chapter 9: Exercise 9.3

Question 1: Find the general solution: $\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$

Answer:

Given,

$\frac{dy}{dx} = \frac{1-\cos x}{1 + \cos x}$

$\\ \implies\frac{dy}{dx} = \frac{2sin^2\frac{x}{2}}{2cos^2\frac{x}{2}} = tan^2\frac{x}{2} \\$

$\implies dy = (sec^2\frac{x}{2} - 1)dx$

$\\ \implies \int dy = \int sec^2\frac{x}{2}dx - \int dx \\$

$\implies y = 2tan^{-1}\frac{x}{2} - x + C$

Question 2: Find the general solution: $\frac{dy}{dx} = \sqrt{4-y^2}\ (-2 < y < 2)$

Answer:

Given, in the question

$\frac{dy}{dx} = \sqrt{4-y^2}$

$\\ \implies \frac{dy}{\sqrt{4-y^2}} = dx \\ \implies \int \frac{dy}{\sqrt{4-y^2}} = \int dx$

$\\ (\int \frac{dy}{\sqrt{a^2-y^2}} = sin^{-1}\frac{y}{a})\\$

The required general solution:

$\\ \implies sin^{-1}\frac{y}{2} = x + C$

Question 3: Find the general solution: $\frac{dy}{dx} + y = 1 (y\neq 1)$

Answer:

Given, in the question

$\frac{dy}{dx} + y = 1$

$\\ \implies \frac{dy}{dx} = 1- y \\$

$\implies \int\frac{dy}{1-y} = \int dx$

$(\int\frac{dx}{x} = lnx)$

$\\ \implies -log(1-y) = x + C\ \ (We\ can\ write\ C= log k) \\$

$\implies log k(1-y) = -x \\$

$\implies 1- y = \frac{1}{k}e^{-x} \\$

The required general equation

$\implies y = 1 -\frac{1}{k}e^{-x}$

Question 4: Find the general solution: $\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$

Answer:

Given,

$\sec^2 x \tan y dx + \sec^2 y \tan x dy = 0$

$\\ \implies \frac{sec^2 y}{tan y}dy = -\frac{sec^2 x}{tan x}dx \\$

$\implies \int \frac{sec^2 y}{tan y}dy = - \int \frac{sec^2 x}{tan x}dx$

Now, let tany = t and tanx = u

$sec^2 y dy = dt\ and\ sec^2 x dx = du$

$\\ \implies \int \frac{dt}{t} = -\int \frac{du}{u} \\$

$\implies log t = -log u +logk \\ \implies t = \frac{1}{ku} \\$

$\implies tany = \frac{1}{ktanx}$

Question 5: Find the general solution:

$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$

Answer:

Given, in the question

$(e^x + e^{-x})dy - (e^x - e^{-x})dx = 0$

$\\ \implies dy = \frac{(e^x - e^{-x})}{(e^x + e^{-x})}dx$

Let,

$\\ (e^x + e^{-x}) = t \\$

$\implies (e^x - e^{-x})dx = dt$

$\\ \implies \int dy = \int \frac{dt}{t} \\$

$\implies y = log t + C \\ $

$\implies y = log(e^x + e^{-x}) + C$

This is the general solution

Question 6: Find the general solution: $\frac{dy}{dx} = (1+x^2)(1+y^2)$

Answer:

Given, in the question

$\frac{dy}{dx} = (1+x^2)(1+y^2)$

$\\ \implies \int \frac{dy}{(1+y^2)} = \int (1+x^2)dx$

$(\int \frac{dx}{(1+x^2)} =tan^{-1}x +c)$

$\\ \implies tan^{-1}y = x+\frac{x^3}{3} + C$

Question 7: Find the general solution: $y\log y dx - x dy = 0$

Answer:

Given,

$y\log y dx - x dy = 0$

$\\ \implies \frac{1}{ylog y}dy = \frac{1}{x}dx$

let logy = t

=> 1/ydy = dt

$\\ \implies \int \frac{dt}{t} = \int \frac{1}{x}dx \\$

$\implies \log t = \log x + \log k \\$

$\implies t = kx \\$

$\implies \log y = kx$

This is the general solution

Question 8: Find the general solution: $x^5\frac{dy}{dx} = - y^5$

Answer:

Given, in the question

$x^5\frac{dy}{dx} = - y^5$

$\\ \implies \int \frac{dy}{y^5} = - \int \frac{dx}{x^5} \\$

$\implies \frac{y^{-4}}{-4} = -\frac{x^{-4}}{-4} + C \\$

$\implies \frac{1}{y^4} + \frac{1}{x^4} = C$

This is the required general equation.

Question 9: Find the general solution: $\frac{dy}{dx} = \sin^{-1}x$

Answer:

Given, in the question

$\frac{dy}{dx} = \sin^{-1}x$

$\implies \int dy = \int \sin^{-1}xdx$

Now,

$\int (u.v)dx = u\int vdx - \int(\frac{du}{dx}.\int vdx)dx$

Here, u = $\sin^{-1}x$ and v = 1

$\implies y = \sin^{-1}x .x - \int(\frac{1}{\sqrt{1-x^2}}.x)dx$

$\\ Let\ 1- x^2 = t \\$

$\implies -2xdx = dt \implies xdx = -dt/2$

$\\ \implies y = x\sin^{-1}x+ \int(\frac{dt}{2\sqrt{t}}) \\ $

$\implies y = x\sin^{-1}x + \frac{1}{2}.2\sqrt{t} + C \\$

$\implies y = x\sin^{-1}x + \sqrt{1-x^2} + C$

Question 10: Find the general solution $e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$

Answer:

Given,

$e^x\tan y dx + (1-e^x)\sec^2 y dy = 0$

$\\ \implies e^x\tan y dx = - (1-e^x)\sec^2 y dy \\ $

$\implies \int \frac{\sec^2 y }{\tan y}dy = -\int \frac{e^x }{(1-e^x)}dx$

$\\ let\ tany = t \ and \ 1-e^x = u \\$

$\implies \sec^2 ydy = dt\ and \ -e^xdx = du$

$\\ \therefore \int \frac{dt }{t} = \int \frac{du }{u} \\$

$\implies \log t = \log u + \log k \\$

$\implies t = ku \\$

$\implies \tan y= k (1-e^x)$

Question 11: Find a particular solution satisfying the given condition:

$(x^3 + x^2 + x + 1)\frac{dy}{dx} = 2x^2 + x; \ y = 1\ \textup{when}\ x = 0$

Answer:

Given, in the question

$
\begin{aligned}
& \left(x^3+x^2+x+1\right) \frac{d y}{d x}=2 x^2+x \\
& \Longrightarrow \int d y=\int \frac{2 x^2+x}{\left(x^3+x^2+x+1\right)} d x \\
& \left(x^3+x^2+x+1\right)=(x+1)\left(x^2+1\right)
\end{aligned}
$


Now,

$
\begin{aligned}
& \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A}{x+1}+\frac{B x+C}{x^2+1} \\
& \Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{A x^2+A(B x+C)(x+1)}{(x+1)\left(x^2+1\right)} \\
& \Rightarrow 2 x^2+x=A x^2+A+B x+C x+C \\
& \Rightarrow 2 x^2+x=(A+B) x^2+(B+C) x+A+C
\end{aligned}
$


Now comparing the coefficients

$
A+B=2 ; B+C=1 ; A+C=0
$


Solving these:

$
\mathrm{A}=\frac{1}{2}, \mathrm{~B}=\frac{3}{2}, \mathrm{C}=-\frac{1}{2}
$


Putting the values of $A, B, C$ :

$
\Rightarrow \frac{2 x^2+x}{(x+1)\left(x^2+1\right)}=\frac{1}{2} \frac{1}{(x+1)}+\frac{1}{2} \frac{3 x-1}{x^2+1}
$


Therefore,

$
\begin{aligned}
& \Rightarrow \int d y=\frac{1}{2} \int \frac{1}{x+1} d x+\frac{1}{2} \int \frac{3 x-1}{x^2+1} d x \\
& \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{2} \int \frac{\mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \int \frac{\mathrm{dx}}{\mathrm{x}^2+1} \\
& \Rightarrow \mathrm{y}=\frac{1}{2} \log (\mathrm{x}+1)+\frac{3}{4} \int \frac{2 \mathrm{x}}{\mathrm{x}^2+1} \mathrm{dx}-\frac{1}{2} \tan ^{-1} \mathrm{x}
\end{aligned}
$

Question 12: Find a particular solution satisfying the given condition:

$x(x^2 -1)\frac{dy}{dx} =1;\ y = 0\ \textup{when} \ x = 2$

Answer:

Given, in the question $x\left(x^2-1\right) \frac{d y}{d x}=1$

$
\begin{aligned}
& \Longrightarrow \int d y=\int \frac{d x}{x\left(x^2-1\right)} \\
& \Longrightarrow \int d y=\int \frac{d x}{x(x-1)(x+1)}
\end{aligned}
$


Let,

$
\begin{aligned}
& \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A}{x}+\frac{B}{x+1}+\frac{c}{x-1} \\
& \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{A(x-1)(x+1)+B(x)(x-1)+C(x)(x+1)}{x(x+1)(x-1)} \\
& \Rightarrow \frac{1}{x(x+1)(x-1)}=\frac{(A+B+C) x^2+(B-C) x-A}{x(x+1)(x-1)}
\end{aligned}
$


Now comparing the values of $A, B, C$

$
A+B+C=0 ; B-C=0 ; A=-1
$


Solving these:

$
\mathrm{B}=\frac{1}{2} \text { and } \mathrm{C}=\frac{1}{2}
$


Now putting the values of $A, B, C$,

$
\begin{aligned}
& \Rightarrow \frac{1}{x(x+1)(x-1)}=-\frac{1}{x}+\frac{1}{2}\left(\frac{1}{x+1}\right)+\frac{1}{2}\left(\frac{1}{x-1}\right) \\
& \Rightarrow \int d y=-\int \frac{1}{x} d x+\frac{1}{2} \int\left(\frac{1}{x+1}\right) d x+\frac{1}{2} \int\left(\frac{1}{x-1}\right) d x \\
& \Rightarrow y=-\log x+\frac{1}{2} \log (x+1)+\frac{1}{2} \log (x-1)+\log c \\
& \left.\Rightarrow \mathrm{y}=\frac{1}{2} \log \left[\frac{\mathrm{c}^2(\mathrm{x}-1)(\mathrm{x}+1)}{\mathrm{x}^2}\right\}----\mathrm{iii}\right)
\end{aligned}
$


Given, $\mathrm{y}=0$ when $\mathrm{x}=2$

$
\begin{aligned}
& 0=\frac{1}{2} \log \left[\frac{\mathrm{c}^2(2-1)(2+1)}{4}\right\} \\
& \Rightarrow \log \frac{3 \mathrm{c}^2}{4}=0
\end{aligned}
$


$
\Rightarrow 3 c^2=4
$


Therefore,

$
\begin{aligned}
& \Longrightarrow y=\frac{1}{2} \log \left[\frac{4(x-1)(x+1)}{3 x^2}\right] \\
& \Longrightarrow y=\frac{1}{2} \log \left[\frac{4\left(x^2-1\right)}{3 x^2}\right]
\end{aligned}
$

Question 13: Find a particular solution satisfying the given condition:

$\cos\left(\frac{dy}{dx} \right ) = a\ (a\in R);\ y = 1\ \textup{when}\ x = 0$

Answer:

Given,

$\cos\left(\frac{dy}{dx} \right ) = a$

$\\ \implies \frac{dy}{dx} = \cos^{-1}a \\$

$\implies \int dy = \int\cos^{-1}a\ dx \\$

$\implies y = x\cos^{-1}a + c$

Now, y =1 when x =0

1 = 0 + c

Therefore, c = 1

Putting the value of c:

$\implies y = x\cos^{-1}a + 1$

Question 14: Find a particular solution satisfying the given condition:

$\frac{dy}{dx} = y\tan x; \ y =1\ \textup{when}\ x = 0$

Answer:

Given,

$\frac{dy}{dx} = y\tan x$

$\\ \implies \int \frac{dy}{y} = \int \tan x\ dx \\$

$\implies \log y = \log \sec x + \log k \\$

$\implies y = k\sec x$

Now, y=1 when x =0

1 = ksec0

$\implies$ k = 1

Putting the vlue of k:

y = sec x

Question 15: Find the equation of a curve passing through the point (0, 0) and whose differential equation is $y' = e^x\sin x$ .

Answer:

We first find the general solution of the given differential equation

Given,

$y' = e^x\sin x$

$\\ \implies \int dy = \int e^x\sin xdx$

$\\ Let I = \int e^x\sin xdx \\$

$\implies I = \sin x.e^x - \int(\cos x. e^x)dx \\$

$\implies I = e^x\sin x - [e^x\cos x - \int(-\sin x.e^x)dx] \\$

$\implies 2I = e^x(\sin x - \cos x) \\$

$\implies I = \frac{1}{2}e^x(\sin x - \cos x)$

$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + c$

Now, Since the curve passes through (0,0)

y = 0 when x =0

$\\ \therefore 0 = \frac{1}{2}e^0(\sin 0 - \cos 0) + c \\$

$\implies c = \frac{1}{2}$

Putting the value of c, we get:

$\\ \therefore y = \frac{1}{2}e^x(\sin x - \cos x) + \frac{1}{2} \\$

$\implies 2y -1 = e^x(\sin x - \cos x)$

Question 16: For the differential equation $xy\frac{dy}{dx} = (x+2)(y+2)$ , find the solution curve passing through the point (1, –1).

Answer:

We first find the general solution of the given differential equation

Given,

$xy\frac{dy}{dx} = (x+2)(y+2)$

$\\ \implies \int \frac{y}{y+2}dy = \int \frac{x+2}{x}dx \\ $

$\implies \int \frac{(y+2)-2}{y+2}dy = \int (1 + \frac{2}{x})dx \\ $

$\implies \int (1 - \frac{2}{y+2})dy = \int (1 + \frac{2}{x})dx \\$

$\implies y - 2\log (y+2) = x + 2\log x + C$

Now, Since the curve passes through (1,-1)

y = -1 when x = 1

$\\ \therefore -1 - 2\log (-1+2) = 1 + 2\log 1 + C \\$

$\implies -1 -0 = 1 + 0 +C \\ \implies C = -2$

Putting the value of C:

$\\ y - 2\log (y+2) = x + 2\log x + -2 \\$

$\implies y -x + 2 = 2\log x(y+2)$

Question 17: Find the equation of a curve passing through the point $( 0 ,-2)$ given that at any point $(x,y)$ on the curve, the product of the slope of its tangent and y coordinate of the point is equal to the x coordinate of the point.

Answer:

According to the question,

$y\frac{dy}{dx} =x$

$\\ \implies \int ydy =\int xdx \\$

$\implies \frac{y^2}{2} = \frac{x^2}{2} + c$

Now, Since the curve passes through (0,-2).

x =0 and y = -2

$\\ \implies \frac{(-2)^2}{2} = \frac{0^2}{2} + c \\ \implies c = 2$

Putting the value of c, we get

$\\ \frac{y^2}{2} = \frac{x^2}{2} + 2 \\ \implies y^2 = x^2 + 4$

Question 18: At any point (x, y) of a curve, the slope of the tangent is twice the slope of the line segment joining the point of contact to the point (– 4, –3). Find the equation of the curve given that it passes through (–2, 1).

Answer:

Slope m of line joining (x,y) and (-4,-3) is $\frac{y+3}{x+4}$

According to the question,

$\\ \frac{dy}{dx} = 2(\frac{y+3}{x+4}) \\$

$\implies \int \frac{dy}{y+3} = 2\int \frac{dx}{x+4} \\$

$\implies \log (y+3) = 2\log (x+4) + \log k \\$

$\implies (y+3) = k(x+4)^2$

Now, Since the curve passes through (-2,1)

x = -2 , y =1

$\\ \implies (1+3) = k(-2+4)^2 \\ \implies k =1$

Putting the value of k, we get

$\\ \implies y+3 = (x+4)^2$

Question 19: The volume of spherical balloon being inflated changes at a constant rate. If initially its radius is 3 units and after 3 seconds it is 6 units. Find the radius of balloon after t seconds.

Answer:

Volume of a sphere, $V = \frac{4}{3}\pi r ^3$

Given, Rate of change is constant.

$\\ \therefore \frac{dV}{dt} = c \\$

$\implies \frac{d}{dt} (\frac{4}{3}\pi r ^3) = c \\ $

$\implies \int d(\frac{4}{3}\pi r ^3) = c\int dt \\$

$\implies \frac{4}{3}\pi r ^3 = ct + k$

Now, at t=0, r=3 and at t=3 , r =6

Putting these value:

$\frac{4}{3}\pi (3) ^3 = c(0) + k \\ \implies k = 36\pi$

Also,

$\frac{4}{3}\pi (6) ^3 = c(3) + 36\pi \\ $

$\implies 3c = 252\pi \\ \implies c = 84\pi$

Putting the value of c and k:

$\\ \frac{4}{3}\pi r ^3 = 84\pi t + 36\pi \\$

$\implies r ^3 = (21 t + 9)(3) = 62t + 27 \\$

$\implies r = \sqrt[3]{62t + 27}$

Question 20: In a bank, principal increases continuously at the rate of r % per year. Find the value of r if Rs 100 double itself in 10 years (log e 2 = 0.6931).

Answer:

Let p be the principal amount and t be the time.

According to question,

$\frac{dp}{dt} = (\frac{r}{100})p$

$\\ \implies \int\frac{dp}{p} = \int (\frac{r}{100})dt \\ $

$\implies \log p = \frac{r}{100}t + C$

$\\ \implies p = e^{\frac{rt}{100} + C}$

Now, at t =0 , p = 100

and at t =10, p = 200

Putting these values,

$\\ \implies 100 = e^{\frac{r(0)}{100} + C} = e^C$

Also,

, $\\ \implies 200 = e^{\frac{r(10)}{100} + C} = e^{\frac{r}{10}}.e^C = e^{\frac{r}{10}}.100 \\$

$\implies e^{\frac{r}{10}} = 2 \\$

$\implies \frac{r}{10} = \ln 2 = 0.6931 \\ $

$\implies r = 6.93$

So value of r = 6.93%

Question 21: In a bank, principal increases continuously at the rate of 5% per year. An amount of Rs 1000 is deposited with this bank, how much will it worth after 10 years (e 0.5 = 1.648).

Answer:

Let p be the principal amount and t be the time.

According to question,

$\frac{dp}{dt} = (\frac{5}{100})p$

$\\ \implies \int\frac{dp}{p} = \int (\frac{1}{20})dt \\$

$\implies \log p = \frac{1}{20}t + C$

$\\ \implies p = e^{\frac{t}{20} + C}$

Now, at t =0 , p = 1000

Putting these values,

$\\ \implies 1000 = e^{\frac{(0)}{20} + C} = e^C$

Also, At t=10 \,

$\\ \implies p = e^{\frac{(10)}{20} + C} = e^{\frac{1}{2}}.e^C = e^{\frac{1}{2}}.1000 \\$

$\implies p =(1.648)(1000) = 1648$

After 10 years, the total amount would be Rs.1648

Question 22: In a culture, the bacteria count is 1,00,000. The number is increased by 10% in 2 hours. In how many hours will the count reach 2,00,000, if the rate of growth of bacteria is proportional to the number present?

Answer:

Let n be the number of bacteria at any time t.

According to question,

$\frac{dn}{dt} = kn\ \ (k\ is\ a\ constant)$

$\\ \implies \int \frac{dn}{n} = \int kdt \\$

$\implies \log n = kt + C$

Now, at t=0, n = 100000

$\\ \implies \log (100000) = k(0) + C \\$

$\implies C = 5$

Again, at t=2, n= 110000

$\\ \implies \log (110000) = k(2) + 5 \\$

$\implies \log 11 + 4 = 2k + 5 \\$

$\implies 2k = \log 11 -1 =\log \frac{11}{10} \\$

$\implies k = \frac{1}{2}\log \frac{11}{10}$

Using these values, for n= 200000

$\\ \implies \log (200000) = kt + C \\ $

$\implies \log 2 +5 = kt + 5 \\ \implies (\frac{1}{2}\log \frac{11}{10})t = \log 2 $

$\\ \implies t = \frac{2\log 2}{ \log \frac{11}{10}}$

Question 23: The general solution of the differential equation $\frac{dy}{dx} = e^{x+y}$ is

(A) $e^x + e^{-y} = C$

(B) $e^{x }+ e^{y} = C$

(C) $e^{-x }+ e^{y} = C$

(D) $e^{-x }+ e^{-y} = C$

Answer:

Given,

$\frac{dy}{dx} = e^{x+y}$

$\\ \implies\frac{dy}{dx} = e^x.e^y \\ \implies\int \frac{dy}{e^y} = \int e^x.dx \\$

$\implies -e^{-y} = e^x + C \\ \implies e^x + e^{-y} = K\ \ \ \ (Option A)$

Also check -

Topics covered in Chapter 9 Differential Equation: Exercise 9.3


TopicsDescriptionExample
Variable Separable MethodInvolves separating variables x and y on opposite sides of the equation and integrating both sides. Used when a differential equation can be expressed as: $\frac{d y}{d x}=g(x) \cdot h(y)$

Solve: $\frac{d y}{d x}=x y$

$
\begin{aligned}
& \Rightarrow \frac{1}{y} d y=x d x \\
& \Rightarrow \int \frac{1}{y} d y=\int x d x
\end{aligned}
$

Equations Already in Separable FormSome differential equations are already arranged so that dy and dx can be directly separated.$\begin{aligned} & \text { Solve: } \frac{d y}{d x}=\frac{x^2}{1+y^2} \\ & \Rightarrow\left(1+y^2\right) d y=x^2 d x \\ & \Rightarrow \int\left(1+y^2\right) d y=\int x^2 d x \\ & \Rightarrow y+\frac{y^3}{3}=\frac{x^3}{3}+C\end{aligned}$
Implicit SolutionsSolutions are sometimes left in implicit form (not solved for y explicitly). This is valid and acceptable in many cases.From above: $y+\frac{y^3}{3}=\frac{x^3}{3}+C$ is an implicit solution.
Solving Using Initial ConditionsAfter finding the general solution, plug in the given values (initial conditions) to find the constant C for the particular solution.Given: $\frac{d y}{d x}=x y, y=1$ when $x=0$
General: $y=C e^{\frac{x^2}{2}}$
Apply: $1=C e^0 \Rightarrow C=1$
$\Rightarrow$ Final: $y=e^{\frac{x^2}{2}}$
Rearranging to Separable FormIf the equation isn't already in separable form, rearrange terms algebraically to isolate variables on each side.

Solve: $x \frac{d y}{d x}=y$

$
\begin{aligned}
& \Rightarrow \frac{d y}{d x}=\frac{y}{x} \\
& \Rightarrow \frac{1}{y} d y=\frac{1}{x} d x
\end{aligned}
$

Also Read-

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Frequently Asked Questions (FAQs)

Q: Name the subtopics discussed in 9.4
A:

The topics discussed are listed below

Differential equations of variable separable type, homogeneous and linear differential equations. 

Q: What is the order and degree of differential equations handled in topic 9.1?
A:

The differential equations of order 1 and degree 1 are handled.

Q: What type of differential equation is solved in exercise 9.3 Class 12 Maths?
A:

Differential equations of variable separable type are solved in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.3.

Q: How many questions are there in Class 12 Maths chapter 9 exercise 9.3?
A:

Twenty-three questions are explained in the Class 12th Maths chapter 6 exercise 9.3.

Q: In topic 9.4, the number of sub-topics discussed is?
A:

Three subtopics are discussed in topic 9.4.

Q: In session 9.4 of NCERT Class, 12 Maths book how many methods to solve the first-degree first-order differential equations are discussed?
A:

3 methods are discussed. 

Q: How many questions of exercise 9.1 are multiple-choice questions?
A:

One question is of objective type with 4 choices.

Q: How many solved examples are given in topic 9.5.1?
A:

Six example problems and their solutions are given under topic 9.5.1.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the