Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
NCERT Solutions for Exercise 9.3 Class 12 Maths Chapter 9 Differential Equations are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for exercise 9.3 Class 12 Maths chapter 9 comes under topic 9.4 of NCERT Class 12 Mathematics Book. The questions in exercise 9.3 Class 12 Maths are related to the concepts of forming a Differential Equation that represents a given family of curves. Differential equations related to the family of lines, parabolas, ellipse, circles etc are discussed. The procedures to form the differential equation that represents the family of a curve are detailed before the Class 12th Maths chapter 6 exercise 9.3. The other concepts discussed in the unit are detailed in the following exercises.
12th class Maths exercise 9.3 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also read -
Take Aakash iACST and get instant scholarship on coaching programs.
$\frac{x}{a} + \frac{y}{b} = 1$
Answer:
Given equation is
$\frac{x}{a} + \frac{y}{b} = 1$
Differentiate both the sides w.r.t x
$\frac{d\left ( \frac{x}{a}+\frac{y}{b} \right )}{dx}=\frac{d(1)}{dx}$
$\frac{1}{a}+\frac{1}{b}.\frac{dy}{dx} = 0\\ \frac{dy}{dx} = -\frac{b}{a}$
Now, again differentiate it w.r.t x
$\frac{d^2y}{dx^2} =0$
Therefore, the required differential equation is $\frac{d^2y}{dx^2} =0$ or $y^{''} =0$
$y^2 = a(b^2 - x^2)$
Answer:
Given equation is
$y^2 = a(b^2 - x^2)$
Differentiate both the sides w.r.t x
$\frac{d\left ( y^2 \right )}{dx}=\frac{d(a(b^2-x^2))}{dx}$
$2y\frac{dy}{dx}= -2ax\\ \\ y.\frac{dy}{dx}= -ax\\ \\ y.y^{'}=-ax$ -(i)
Now, again differentiate it w.r.t x
$y^{'}.y^{'}+y.y^{''}= -a\\ (y^{'})^2+y.y^{''}=-a$ -(ii)
Now, divide equation (i) and (ii)
$\frac{(y^{'})^2+y.y^{''}}{y.y^{'}}= \frac{-a}{-ax}\\ \\ x(y^{'})^2+x.y.y^{''}=y.y^{'}\\ \\ x(y^{'})^2+x.y.y^{''}-y.y^{'}=0$
Therefore, the required differential equation is $x(y^{'})^2+x.y.y^{''}-y.y^{'}=0$
Answer:
Given equation is
$y = ae^{3x} + b e^{-2x}$ -(i)
Differentiate both the sides w.r.t x
$\frac{d\left ( y \right )}{dx}=\frac{d(ae^{3x}+be^{-2x})}{dx}$
$y^{'}=\frac{dy}{dx}= 3ae^{3x}-2be^{-2x}\\ \\$ -(ii)
Now, again differentiate w.r.t. x
$y^{''}= \frac{d^2y}{dx^2} = 9ae^{3x}+4be^{-2x}$ -(iii)
Now, multiply equation (i) with 2 and add equation (ii)
$2(ae^{3x}+be^{-2x})+(3a-2be^{-x}) = 2y+y^{'}\\ 5ae^{3x} = 2y+y^{'}\\ ae^{3x}= \frac{2y+y^{'}}{5}$ -(iv)
Now, multiply equation (i) with 3 and subtract from equation (ii)
$3(ae^{3x}+be^{-2x})-(3a-2be^{-x}) = 3y-y^{'}\\ 5be^{-2x} = 3y-y^{'}\\ be^{-2x}= \frac{3y-y^{'}}{5}$ -(v)
Now, put values from (iv) and (v) in equation (iii)
$y^{''}= 9.\frac{2y+y^{'}}{5}+4.\frac{3y-y^{'}}{5}\\ \\ y^{''}= \frac{18y+9y^{'}+12y-4y^{'}}{5}\\ \\ y^{''}= \frac{5(6y-y^{'})}{5}=6y-y^{'}\\ \\ y^{''}+y^{'}-6y=0$
Therefore, the required differential equation is $y^{''}+y^{'}-6y=0$
Answer:
Given equation is
$y = e^{2x}(a+bx)$ -(i)
Now, differentiate w.r.t x
$\frac{dy}{dx}= \frac{d(e^{2x}(a+bx))}{dx}= 2e^{2x}(a+bx)+e^{2x}.b$ -(ii)
Now, again differentiate w.r.t x
$y^{''}= \frac{d^2y}{dx^2}= \frac{d}{dx}\frac{dy}{dx} = 4e^{2x}(a+bx)+2be^{2x}+2be^{2x}= 4e^{2x}(a+bx)+4be^{2x}$ -(iii)
Now, multiply equation (ii) with 2 and subtract from equation (iii)
$4e^{2x}(a+bx)+4be^{2x}-2\left ( 2e^{2x}(a+bx)+be^{2x} \right )=y^{''}-2y^{'}\\ \\ 2be^{2x} = y^{''}-2y^{'}\\ \\ be^{2x}= \frac{y^{''}-2y^{'}}{2}$ -(iv)
Now,put the value in equation (iii)
$y^{''}=4y+4.\frac{y^{''}-2y^{'}}{2}\\ \\ y^{''}= 4y+2y^{''}-4y^{'}\\ \\ y^{''}-4y^{'}+4y=0$
Therefore, the required equation is $y^{''}-4y^{'}+4y=0$
$y=e^x(a\cos x + b\sin x)$
Answer:
Given equation is
$y=e^x(a\cos x + b\sin x)$ -(i)
Now, differentiate w.r.t x
$\frac{dy}{dx}= \frac{d(e^{x}(a\cos x+b\sin x))}{dx}= e^{x}(a\cos x+b\sin x)+e^x(-a\sin x+b\cos x )$ -(ii)
Now, again differentiate w.r.t x
$y^{''}= \frac{d^2y}{dx^2}= \frac{d}{dx}\frac{dy}{dx} =e^{x}(a\cos x+b\sin x)+e^x(-a\sin x+b\cos x )$ $+e^x(-a\sin x+b\cos x )+e^x(-a\cos x-b\sin x)$
$=2e^x(-a\sin x+b\cos x )$ -(iii)
Now, multiply equation (i) with 2 and multiply equation (ii) with 2 and add and subtract from equation (iii) respectively
we will get
$y^{''}-2y^{'}+2y = 0$
Therefore, the required equation is $y^{''}-2y^{'}+2y = 0$
Question:6 Form the differential equation of the family of circles touching the y-axis at origin.
Answer:
If the circle touches y-axis at the origin then the centre of the circle lies at the x-axis
Let r be the radius of the circle
Then, the equation of a circle with centre at (r,0) is
$(x-r)^2+(y-0)^2 = r^2$
$x^2+r^2-2xr+y^2=r^2\\ x^2+y^2-2xr=0$ -(i)
Now, differentiate w.r.t x
$2x+2y\frac{dy}{dx}-2r=0\\ y\frac{dy}{dx}\Rightarrow yy^{'}+x-r=0$
$yy^{'}+x=r$ -(ii)
Put equation (ii) in equation (i)
$x^2+y^2=2x(yy^{'}+x)\\ y^2=2xyy^{'}+x^2$
Therefore, the required equation is $y^2=2xyy^{'}+x^2$
Answer:
Equation of perabola having vertex at origin and axis along positive y-axis is
$x^2= 4ay$ (i)
Now, differentiate w.r.t. c
$2x= 4a\frac{dy}{dx}\\ \\ \frac{dy}{dx} =y^{'}= \frac{x}{2a}$
$a=\frac{x}{2y^{'}}$ -(ii)
Put value from equation (ii) in (i)
$x^2= 4y.\frac{x}{2y^{'}}\\ xy^{'}-2y = 0$
Therefore, the required equation is $xy^{'}-2y = 0$
Question:8 Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Answer:
Equation of ellipses having foci on y-axis and centre at origin is
$\frac{x^2}{b^2}+\frac{y^2}{a^2} = 1$ -
Now, differentiate w..r.t. x
$\frac{2x}{b^2}+\frac{2y}{a^2}.\frac{dy}{dx}=0\\$ -(i)
Now, again differentiate w.r.t. x
$\frac{2}{b^2}+\frac{2}{a^2}.y^{'}.y^{'}+\frac{2y}{a^2}.y^{''}=0\\ \\ \frac{1}{b^2}=-\frac{1}{a^2}\left ( (y^{'})^2+yy^{''} \right )$ -(ii)
Put value from equation (ii) in (i)
Our equation becomes
$\frac{2y}{a^2}y^{'}-\frac{2x}{a^2}\left ( (y^{'})^2+yy^{''} \right )=0\\ \\ 2yy^{'}-2(y^{'})^2x+2yy^{''}x=0\\ \\ xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Therefore, the required equation is $xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Answer:
Equation of hyperbolas having foci on x-axis and centre at the origin
$\frac{x^2}{b^2}+\frac{y^2}{a^2} = 1$
Now, differentiate w..r.t. x
$\frac{2x}{b^2}+\frac{2y}{a^2}.\frac{dy}{dx}=0\\$ -(i)
Now, again differentiate w.r.t. x
$\frac{2}{b^2}+\frac{2}{a^2}.y^{'}.y^{'}+\frac{2y}{a^2}.y^{''}=0\\ \\ \frac{1}{b^2}=-\frac{1}{a^2}\left ( (y^{'})^2+yy^{''} \right )$ -(ii)
Put value from equation (ii) in (i)
Our equation becomes
$\frac{2y}{a^2}y^{'}-\frac{2x}{a^2}\left ( (y^{'})^2+yy^{''} \right )=0\\ \\ 2yy^{'}-2(y^{'})^2x+2yy^{''}x=0\\ \\ xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Therefore, the required equation is $xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Question:10 Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Answer:
Equation of the family of circles having centre on y-axis and radius 3 units
Let suppose centre is at (0,b)
Now, equation of circle with center (0,b) an radius = 3 units
$(x-0)^2+(y-b)^2=3^2 \ \ \ \ \ \ \ \ \ \ \ -(i)\\ x^2+y^2+b^2-2yb = 9$
Now, differentiate w.r.t x
we get,
$2x+2yy^{'}-2by^{'}= 0\\ 2x+2y(y-b)= 0\\ (y-b)=\frac{-x}{y^{'}} \ \ \ \ \ \ \ \ \ \ \ \ \ -(ii)$
Put value fro equation (ii) in (i)
$(x-0)^2+(\frac{-x}{y^{'}})^2=3^2 \\ x^2+\frac{x^2}{(y^{'})^2}=9\\ x^2(y^{'})^2+x^2=9(y^{'})^2\\ \\ (x^2-9)(y^{'})^2+x^2 = 0$
Therefore, the required differential equation is $(x^2-9)(y^{'})^2+x^2 = 0$
Question:11 Which of the following differential equations has $y = c_1e^x + c_2e^{-x}$ as the general solution?
(A) $\frac{d^2y}{dx^2} + y = 0$
(B) $\frac{d^2y}{dx^2} - y = 0$
(C) $\frac{d^2y}{dx^2} +1 = 0$
(D) $\frac{d^2y}{dx^2} -1 = 0$
Answer:
Given general solution is
$y = c_1e^x + c_2e^{-x}$
Differentiate it w.r.t x
we will get
$\frac{dy}{dx} = c_1e^x-c_2e^{-x}$
Again, Differentiate it w.r.t x
$\frac{d^2y}{dx^2} = c_1e^x+c_2e^{x}=y\\ \frac{d^2y}{dx^2} - y = 0$
Therefore, (B) is the correct answer
Question:12 Which of the following differential equations has $y = x$ as one of its particular solution?
(A) $\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + xy =x$
(B) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + xy =x$
(C) $\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + xy =0$
(D) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + xy =0$
Answer:
Given equation is
$y = x$
Now, on differentiating it w.r.t x
we get,
$\frac{dy}{dx} = 1$
and again on differentiating it w.r.t x
we get,
$\frac{d^2y}{dx^2} = 0$
Now, on substituting the values of $\frac{d^2y}{dx^2} , \frac{dy}{dx} \ and \ y$ in all the options we will find that only option c which is $\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + xy =0$ satisfies
Therefore, the correct answer is (C)
Examples 4 to 8 are given before the exercise 9.3 Class 12 Maths to get an idea of the concepts discussed in the NCERT Book of Class 12 Maths chapter topic 9.4. And 12 questions are given in the Class 12 Maths chapter 9 exercise 9.3 for practice and these are solved here by mathematics expert faculties. It is better to try to solve the questions without looking for solutions. If any doubts arise while solving use NCERT solutions for Class 12 Maths chapter 9 exercise 9.3.
Frequently Asked Questions (FAQs)
Ellipse.
Students must be able to differentiate the given function. For this students should be aware of basic differentiation.
Yes, as NCERT is followed by CBSE students it is important to cover this chapter.
Yes, to solve certain problems or to represent a certain type of motions differential equations are used.
The concepts of order and degree of differential equations and general and particular solutions are covered.
The NCERT Class 12 exercise 9.3 covers the topic of forming differential equations of a family of curves.
12 questions are explained through exercise 9.3 Class 12 Maths.
Two objective questions with 4 choices are given in the Class 12th Maths chapter 6 exercise 9.3.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE