CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26
NCERT Solutions for Exercise 9.3 Class 12 Maths Chapter 9 Differential Equations are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for exercise 9.3 Class 12 Maths chapter 9 comes under topic 9.4 of NCERT Class 12 Mathematics Book. The questions in exercise 9.3 Class 12 Maths are related to the concepts of forming a Differential Equation that represents a given family of curves. Differential equations related to the family of lines, parabolas, ellipse, circles etc are discussed. The procedures to form the differential equation that represents the family of a curve are detailed before the Class 12th Maths chapter 6 exercise 9.3. The other concepts discussed in the unit are detailed in the following exercises.
12th class Maths exercise 9.3 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also read -
$\frac{x}{a} + \frac{y}{b} = 1$
Answer:
Given equation is
$\frac{x}{a} + \frac{y}{b} = 1$
Differentiate both the sides w.r.t x
$\frac{d\left ( \frac{x}{a}+\frac{y}{b} \right )}{dx}=\frac{d(1)}{dx}$
$\frac{1}{a}+\frac{1}{b}.\frac{dy}{dx} = 0\\ \frac{dy}{dx} = -\frac{b}{a}$
Now, again differentiate it w.r.t x
$\frac{d^2y}{dx^2} =0$
Therefore, the required differential equation is $\frac{d^2y}{dx^2} =0$ or $y^{''} =0$
$y^2 = a(b^2 - x^2)$
Answer:
Given equation is
$y^2 = a(b^2 - x^2)$
Differentiate both the sides w.r.t x
$\frac{d\left ( y^2 \right )}{dx}=\frac{d(a(b^2-x^2))}{dx}$
$2y\frac{dy}{dx}= -2ax\\ \\ y.\frac{dy}{dx}= -ax\\ \\ y.y^{'}=-ax$ -(i)
Now, again differentiate it w.r.t x
$y^{'}.y^{'}+y.y^{''}= -a\\ (y^{'})^2+y.y^{''}=-a$ -(ii)
Now, divide equation (i) and (ii)
$\frac{(y^{'})^2+y.y^{''}}{y.y^{'}}= \frac{-a}{-ax}\\ \\ x(y^{'})^2+x.y.y^{''}=y.y^{'}\\ \\ x(y^{'})^2+x.y.y^{''}-y.y^{'}=0$
Therefore, the required differential equation is $x(y^{'})^2+x.y.y^{''}-y.y^{'}=0$
Answer:
Given equation is
$y = ae^{3x} + b e^{-2x}$ -(i)
Differentiate both the sides w.r.t x
$\frac{d\left ( y \right )}{dx}=\frac{d(ae^{3x}+be^{-2x})}{dx}$
$y^{'}=\frac{dy}{dx}= 3ae^{3x}-2be^{-2x}\\ \\$ -(ii)
Now, again differentiate w.r.t. x
$y^{''}= \frac{d^2y}{dx^2} = 9ae^{3x}+4be^{-2x}$ -(iii)
Now, multiply equation (i) with 2 and add equation (ii)
$2(ae^{3x}+be^{-2x})+(3a-2be^{-x}) = 2y+y^{'}\\ 5ae^{3x} = 2y+y^{'}\\ ae^{3x}= \frac{2y+y^{'}}{5}$ -(iv)
Now, multiply equation (i) with 3 and subtract from equation (ii)
$3(ae^{3x}+be^{-2x})-(3a-2be^{-x}) = 3y-y^{'}\\ 5be^{-2x} = 3y-y^{'}\\ be^{-2x}= \frac{3y-y^{'}}{5}$ -(v)
Now, put values from (iv) and (v) in equation (iii)
$y^{''}= 9.\frac{2y+y^{'}}{5}+4.\frac{3y-y^{'}}{5}\\ \\ y^{''}= \frac{18y+9y^{'}+12y-4y^{'}}{5}\\ \\ y^{''}= \frac{5(6y-y^{'})}{5}=6y-y^{'}\\ \\ y^{''}+y^{'}-6y=0$
Therefore, the required differential equation is $y^{''}+y^{'}-6y=0$
Answer:
Given equation is
$y = e^{2x}(a+bx)$ -(i)
Now, differentiate w.r.t x
$\frac{dy}{dx}= \frac{d(e^{2x}(a+bx))}{dx}= 2e^{2x}(a+bx)+e^{2x}.b$ -(ii)
Now, again differentiate w.r.t x
$y^{''}= \frac{d^2y}{dx^2}= \frac{d}{dx}\frac{dy}{dx} = 4e^{2x}(a+bx)+2be^{2x}+2be^{2x}= 4e^{2x}(a+bx)+4be^{2x}$ -(iii)
Now, multiply equation (ii) with 2 and subtract from equation (iii)
$4e^{2x}(a+bx)+4be^{2x}-2\left ( 2e^{2x}(a+bx)+be^{2x} \right )=y^{''}-2y^{'}\\ \\ 2be^{2x} = y^{''}-2y^{'}\\ \\ be^{2x}= \frac{y^{''}-2y^{'}}{2}$ -(iv)
Now,put the value in equation (iii)
$y^{''}=4y+4.\frac{y^{''}-2y^{'}}{2}\\ \\ y^{''}= 4y+2y^{''}-4y^{'}\\ \\ y^{''}-4y^{'}+4y=0$
Therefore, the required equation is $y^{''}-4y^{'}+4y=0$
$y=e^x(a\cos x + b\sin x)$
Answer:
Given equation is
$y=e^x(a\cos x + b\sin x)$ -(i)
Now, differentiate w.r.t x
$\frac{dy}{dx}= \frac{d(e^{x}(a\cos x+b\sin x))}{dx}= e^{x}(a\cos x+b\sin x)+e^x(-a\sin x+b\cos x )$ -(ii)
Now, again differentiate w.r.t x
$y^{''}= \frac{d^2y}{dx^2}= \frac{d}{dx}\frac{dy}{dx} =e^{x}(a\cos x+b\sin x)+e^x(-a\sin x+b\cos x )$ $+e^x(-a\sin x+b\cos x )+e^x(-a\cos x-b\sin x)$
$=2e^x(-a\sin x+b\cos x )$ -(iii)
Now, multiply equation (i) with 2 and multiply equation (ii) with 2 and add and subtract from equation (iii) respectively
we will get
$y^{''}-2y^{'}+2y = 0$
Therefore, the required equation is $y^{''}-2y^{'}+2y = 0$
Question:6 Form the differential equation of the family of circles touching the y-axis at origin.
Answer:
If the circle touches y-axis at the origin then the centre of the circle lies at the x-axis
Let r be the radius of the circle
Then, the equation of a circle with centre at (r,0) is
$(x-r)^2+(y-0)^2 = r^2$
$x^2+r^2-2xr+y^2=r^2\\ x^2+y^2-2xr=0$ -(i)
Now, differentiate w.r.t x
$2x+2y\frac{dy}{dx}-2r=0\\ y\frac{dy}{dx}\Rightarrow yy^{'}+x-r=0$
$yy^{'}+x=r$ -(ii)
Put equation (ii) in equation (i)
$x^2+y^2=2x(yy^{'}+x)\\ y^2=2xyy^{'}+x^2$
Therefore, the required equation is $y^2=2xyy^{'}+x^2$
Answer:
Equation of perabola having vertex at origin and axis along positive y-axis is
$x^2= 4ay$ (i)
Now, differentiate w.r.t. c
$2x= 4a\frac{dy}{dx}\\ \\ \frac{dy}{dx} =y^{'}= \frac{x}{2a}$
$a=\frac{x}{2y^{'}}$ -(ii)
Put value from equation (ii) in (i)
$x^2= 4y.\frac{x}{2y^{'}}\\ xy^{'}-2y = 0$
Therefore, the required equation is $xy^{'}-2y = 0$
Question:8 Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.
Answer:
Equation of ellipses having foci on y-axis and centre at origin is
$\frac{x^2}{b^2}+\frac{y^2}{a^2} = 1$ -
Now, differentiate w..r.t. x
$\frac{2x}{b^2}+\frac{2y}{a^2}.\frac{dy}{dx}=0\\$ -(i)
Now, again differentiate w.r.t. x
$\frac{2}{b^2}+\frac{2}{a^2}.y^{'}.y^{'}+\frac{2y}{a^2}.y^{''}=0\\ \\ \frac{1}{b^2}=-\frac{1}{a^2}\left ( (y^{'})^2+yy^{''} \right )$ -(ii)
Put value from equation (ii) in (i)
Our equation becomes
$\frac{2y}{a^2}y^{'}-\frac{2x}{a^2}\left ( (y^{'})^2+yy^{''} \right )=0\\ \\ 2yy^{'}-2(y^{'})^2x+2yy^{''}x=0\\ \\ xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Therefore, the required equation is $xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Answer:
Equation of hyperbolas having foci on x-axis and centre at the origin
$\frac{x^2}{b^2}+\frac{y^2}{a^2} = 1$
Now, differentiate w..r.t. x
$\frac{2x}{b^2}+\frac{2y}{a^2}.\frac{dy}{dx}=0\\$ -(i)
Now, again differentiate w.r.t. x
$\frac{2}{b^2}+\frac{2}{a^2}.y^{'}.y^{'}+\frac{2y}{a^2}.y^{''}=0\\ \\ \frac{1}{b^2}=-\frac{1}{a^2}\left ( (y^{'})^2+yy^{''} \right )$ -(ii)
Put value from equation (ii) in (i)
Our equation becomes
$\frac{2y}{a^2}y^{'}-\frac{2x}{a^2}\left ( (y^{'})^2+yy^{''} \right )=0\\ \\ 2yy^{'}-2(y^{'})^2x+2yy^{''}x=0\\ \\ xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Therefore, the required equation is $xyy^{''}-x(y^{'})^2+yy^{'}= 0$
Question:10 Form the differential equation of the family of circles having centre on y-axis and radius 3 units.
Answer:
Equation of the family of circles having centre on y-axis and radius 3 units
Let suppose centre is at (0,b)
Now, equation of circle with center (0,b) an radius = 3 units
$(x-0)^2+(y-b)^2=3^2 \ \ \ \ \ \ \ \ \ \ \ -(i)\\ x^2+y^2+b^2-2yb = 9$
Now, differentiate w.r.t x
we get,
$2x+2yy^{'}-2by^{'}= 0\\ 2x+2y(y-b)= 0\\ (y-b)=\frac{-x}{y^{'}} \ \ \ \ \ \ \ \ \ \ \ \ \ -(ii)$
Put value fro equation (ii) in (i)
$(x-0)^2+(\frac{-x}{y^{'}})^2=3^2 \\ x^2+\frac{x^2}{(y^{'})^2}=9\\ x^2(y^{'})^2+x^2=9(y^{'})^2\\ \\ (x^2-9)(y^{'})^2+x^2 = 0$
Therefore, the required differential equation is $(x^2-9)(y^{'})^2+x^2 = 0$
Question:11 Which of the following differential equations has $y = c_1e^x + c_2e^{-x}$ as the general solution?
(A) $\frac{d^2y}{dx^2} + y = 0$
(B) $\frac{d^2y}{dx^2} - y = 0$
(C) $\frac{d^2y}{dx^2} +1 = 0$
(D) $\frac{d^2y}{dx^2} -1 = 0$
Answer:
Given general solution is
$y = c_1e^x + c_2e^{-x}$
Differentiate it w.r.t x
we will get
$\frac{dy}{dx} = c_1e^x-c_2e^{-x}$
Again, Differentiate it w.r.t x
$\frac{d^2y}{dx^2} = c_1e^x+c_2e^{x}=y\\ \frac{d^2y}{dx^2} - y = 0$
Therefore, (B) is the correct answer
Question:12 Which of the following differential equations has $y = x$ as one of its particular solution?
(A) $\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + xy =x$
(B) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + xy =x$
(C) $\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + xy =0$
(D) $\frac{d^2y}{dx^2} + x\frac{dy}{dx} + xy =0$
Answer:
Given equation is
$y = x$
Now, on differentiating it w.r.t x
we get,
$\frac{dy}{dx} = 1$
and again on differentiating it w.r.t x
we get,
$\frac{d^2y}{dx^2} = 0$
Now, on substituting the values of $\frac{d^2y}{dx^2} , \frac{dy}{dx} \ and \ y$ in all the options we will find that only option c which is $\frac{d^2y}{dx^2} - x^2\frac{dy}{dx} + xy =0$ satisfies
Therefore, the correct answer is (C)
Examples 4 to 8 are given before the exercise 9.3 Class 12 Maths to get an idea of the concepts discussed in the NCERT Book of Class 12 Maths chapter topic 9.4. And 12 questions are given in the Class 12 Maths chapter 9 exercise 9.3 for practice and these are solved here by mathematics expert faculties. It is better to try to solve the questions without looking for solutions. If any doubts arise while solving use NCERT solutions for Class 12 Maths chapter 9 exercise 9.3.
Frequently Asked Questions (FAQs)
12 questions are explained through exercise 9.3 Class 12 Maths.
Two objective questions with 4 choices are given in the Class 12th Maths chapter 6 exercise 9.3.
Ellipse.
Students must be able to differentiate the given function. For this students should be aware of basic differentiation.
Yes, as NCERT is followed by CBSE students it is important to cover this chapter.
Yes, to solve certain problems or to represent a certain type of motions differential equations are used.
The concepts of order and degree of differential equations and general and particular solutions are covered.
The NCERT Class 12 exercise 9.3 covers the topic of forming differential equations of a family of curves.
On Question asked by student community
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.
LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters