VMC VIQ Scholarship Test
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
NCERT Solutions for Exercise 9.6 Class 12 Maths Chapter 9 Differential Equations are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for exercise 9.6 Class 12 Maths chapter 9 looks into the questions related to first-order linear differential equations. NCERT solutions for Class 12 Maths chapter 9 exercise 9.6 gives an insight into the concepts of linear differential equations and steps involved in solving linear differential equations. There are a few solved examples before the exercise 9.6 Class 12 Maths. The given sample questions give an idea about the steps involved in solving. Once these example questions are understood, students can solve Class 12 Maths chapter 9 exercise 9.6. The solutions to the Class 12th Maths chapter 6 exercise 9.6 are designed by expert Mathematics faculties and the same can be used to prepare for board exams that follow NCERT and also for competitive exams like JEE Main.
12th class Maths exercise 9.6 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also check -
Question:1 Find the general solution:
Answer:
Given equation is
This is type where p = 2 and Q = sin x
Now,
Now, the solution of given differential equation is given by relation
Let
Put the value of I in our equation
Now, our equation become
Therefore, the general solution is
Question:2 Solve for general solution:
Answer:
Given equation is
This is type where p = 3 and
Now,
Now, the solution of given differential equation is given by the relation
Therefore, the general solution is
Question:3 Find the general solution
Answer:
Given equation is
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Therefore, the general solution is
Question:4 Solve for General Solution.
Answer:
Given equation is
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Therefore, the general solution is
Question:5 Find the general solution.
Answer:
Given equation is
we can rewrite it as
This is where and
Now,
Now, the solution of given differential equation is given by relation
take
Now put again
Put this value in our equation
Therefore, the general solution is
Question:6 Solve for General Solution.
Answer:
Given equation is
Wr can rewrite it as
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Let
Put this value in our equation
Therefore, the general solution is
Question:7 Solve for general solutions.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of given differential equation is given by relation
take
Put this value in our equation
Therefore, the general solution is
Question:8 Find the general solution.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of the given differential equation is given by the relation
Therefore, the general solution is
Question:9 Solve for general solution.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of the given differential equation is given by the relation
Lets take
Put this value in our equation
Therefore, the general solution is
Question:10 Find the general solution.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Lets take
Put this value in our equation
Therefore, the general solution is
Question:11 Solve for general solution.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Therefore, the general solution is
Question:12 Find the general solution.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Therefore, the general solution is
Question:13 Solve for particular solution.
Answer:
Given equation is
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Now, by using boundary conditions we will find the value of C
It is given that y = 0 when
at
Now,
Therefore, the particular solution is
Question:14 Solve for particular solution.
Answer:
Given equation is
we can rewrite it as
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Now, by using boundary conditions we will find the value of C
It is given that y = 0 when x = 1
at x = 1
Now,
Therefore, the particular solution is
Question:15 Find the particular solution.
Answer:
Given equation is
This is type where and
Now,
Now, the solution of given differential equation is given by relation
Now, by using boundary conditions we will find the value of C
It is given that y = 2 when
at
Now,
Therefore, the particular solution is
Answer:
Let f(x , y) is the curve passing through origin
Then, the slope of tangent to the curve at point (x , y) is given by
Now, it is given that
It is type of equation where
Now,
Now,
Now, Let
Put this value in our equation
Now, by using boundary conditions we will find the value of C
It is given that curve passing through origin i.e. (x , y) = (0 , 0)
Our final equation becomes
Therefore, the required equation of the curve is
Answer:
Let f(x , y) is the curve passing through point (0 , 2)
Then, the slope of tangent to the curve at point (x , y) is given by
Now, it is given that
It is type of equation where
Now,
Now,
Now, Let
Put this value in our equation
Now, by using boundary conditions we will find the value of C
It is given that curve passing through point (0 , 2)
Our final equation becomes
Therefore, the required equation of curve is
Question:18 The Integrating Factor of the differential equation is
(A)
(B)
(C)
(D)
Answer:
Given equation is
we can rewrite it as
Now,
It is type of equation where
Now,
Therefore, the correct answer is (C)
Question:19 The Integrating Factor of the differential equation is
(A)
(B)
(C)
(D)
Answer:
Given equation is
we can rewrite it as
It is type of equation where
Now,
Therefore, the correct answer is (D)
A few examples are solved in the book just before the exercise 9.6 Class 12 Maths to get an idea of how these types of differential equations are solved. After the examples Class, 12 Maths chapter 9 exercise 9.6 are given and the NCERT solutions for Class 12 Maths chapter 9 exercise 9.6 are given here. There are 19 questions in the NCERT syllabus Class 12th Maths chapter 6 exercise 9.6. A few of them is to find the particular solutions of linear differential equations and the rest to find the general solutions. Two of the given questions are of multiple-choice type.
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
19 questions are given in the exercise 9.6 Class 12 Maths.
Linear differential equations have been discussed through exercise 9.6.
Two questions of 4 choices are given in exercise 9.6.
No topics are discussed after exercise 9.6.
Yes, miscellaneous exercise is given after 9.6.
The concepts covered in NCERT solutions for Class 12 Maths chapter 9 exercise 9.6 are important from the chapter differential equations.
No, it is important to go through the chapter as it holds a good weightage for board exams
7 exercises are present in the Class 12 NCERT Maths chapter Differential Equations.
You can use them people also used problem
Hi,
The Medhavi National Scholarship Program, under the Human Resources & Development Mission (HRDM), offers financial assistance to meritorious students through a scholarship exam. To be eligible, candidates must be between 16 and 40 years old as of the last date of registration and have at least passed the 10th grade from a recognized board. Higher qualifications, such as 11th/12th grade, graduation, post-graduation, or a diploma, are also acceptable.
To apply, download the Medhavi App from the Google Play Store, sign up, and read the detailed notification about the scholarship exam. Complete the registration within the app, take the exam from home using the app, and receive your results within two days. Following this, upload the necessary documents and bank account details for verification. Upon successful verification, the scholarship amount will be directly transferred to your bank account.
The scholarships are categorized based on the marks obtained in the exam: Type A for those scoring 60% or above, Type B for scores between 50% and 60%, and Type C for scores between 40% and 50%. The cash scholarships range from Rs. 2,000 to Rs. 18,000 per month, depending on the exam and the marks obtained.
Since you already have a 12th-grade qualification with 84%, you meet the eligibility criteria and can apply for the Medhavi Scholarship exam. Preparing well for the exam can increase your chances of receiving a higher scholarship.
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
Hello student,
If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:
Remember
, these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.
I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.
Good luck with your studies!
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer!