Careers360 Logo
Browse by Stream
  • Engineering and Architecture

    Exams

    • JEE Main 2023
    • JEE Advanced 2023
    • MET 2023
    • VITEEE 2023
    • AEEE 2023
    • GATE 2023
    • UPESEAT Exam 2023
    • View All Engineering Exams

    Colleges

    • Colleges Accepting B.Tech Applications
    • Top Engineering Colleges in India
    • Engineering Colleges in India
    • Engineering Colleges in Tamil Nadu
    • Engineering Colleges Accepting JEE Main
    • Top Engineering Colleges in Hyderabad
    • Top Engineering Colleges in Bangalore
    • Top Engineering Colleges in Maharashtra

    Predictors

    • JEE Main Rank Predictor
    • JEE Main College Predictor
    • GATE College Predictor with PSU Chances
    • AP EAMCET College Predictor
    • TS EAMCET College Predictor
    • KEAM College Predictor
    • View All College Predictors
    • JEE Advanced College Predictor

    Resources

    • JEE Main online Preparation
      Latest
    • JOSAA Counselling 2022
    • FREE Previous Year Sample Papers
    • GATE Result 2023
    • VITEEE Application Form 2023
    • Compare Colleges
    • B.Tech College Applications
    • GATE Result Live

    Quick links

    • BTech
    • Mechanical Engineering
    • Civil Engineering
    • Aeronautical Engineering
    • Information Technology
    • Electronic Engineering

    B.Tech CompanionUse Now
    Your one-stop Counselling package for JEE Main, JEE Advanced and BITSAT

  • Management and Business Administration

    Exams

    • CAT 2023
    • CMAT 2023
    • UPESMET 2023
    • IBSAT 2022
    • MAT 2023
    • IIFT 2023
    • KIITEE 2023
    • View All Management Exams

    Colleges & Courses

    • MBA
    • MBA College Admissions
    • MBA Colleges in India
    • Top MBA Colleges in India
    • Top Online MBA Colleges in India
    • Online MBA
    • CAT Result 2022
    • BBA Colleges in India

    Predictors

    • CAT Percentile Predictor 2023
    • CAT 2023 College Predictor
    • XAT College Predictor 2023
    • CMAT College Predictor 2023
    • SNAP College Predictor 2022
    • MAT College Predictor 2022
    • NMAT College Predictor
    • View All

    Resources

    • CMAT Registration 2023
    • FREE Previous Year Sample Papers
    • Download Helpful Ebooks
    • List of Popular Branches
    • QnA - Get answers to your doubts
    • IIM Shortlist 2022
    • IIM Fees Structure 2022
    • XAT Exam 2023 Live
  • Law

    Exams

    • CLAT 2024
    • AILET 2024
    • ULSAT 2023
    • TS LAWCET 2023
    • MH CET 2023
    • LSAT India 2023
    • AIBE 2023
    • View All

    Colleges

    • Colleges Accepting Admissions
    • Top Law Colleges in India
    • Law College Accepting CLAT Score
    • List of Law Colleges in India
    • Top Law Colleges in Delhi
    • Top Law Collages in Indore
    • Top Law Colleges in Chandigarh
    • Top Law Collages in Lucknow

    Predictors & E-Books

    • CLAT College Predictor
    • MHCET Law ( 5 Year L.L.B) College Predictor
    • AILET College Predictor
    • Sample Papers
    • E-Books

    Resources

    • Compare Law Collages
    • QnA - Get answers to your doubts
    • Careers360 Youtube Channel
    • CLAT Admit Card 2023
    • AILET Admit Card 2023
    • SLAT Application Form 2023
    • CLAT 2023 Exam Live
  • Learn

    Engineering Preparation

    • JEE Main
    • Knockout JEE Main 2022
    • Test Series JEE Main 2022
    • JEE Main 2022 Rank Booster
    • Knockout JEE Main 2022 (Easy Installments)

    Medical Preparation

    • NEET
    • Knockout NEET 2022
    • Test Series NEET 2022
    • Rank Booster NEET 2022
    • Knockout NEET 2022 (Easy Installments)

    Online Courses

    • JEE Main One Month Course
    • NEET One Month Course

    Products

    • Knockout JEE Main 2022 (Easy Installments)
    • IIT JEE Foundation Course
    • Knockout BITSAT 2022
    • Knockout BITSAT-JEE Main 2022
    • Career Guidance Tool
  • Media, Mass Communication and Journalism

    Exams

    • IPU CET BJMC
    • JMI Mass Communication Entrance Exam
    • IIMC Entrance Exam
    • JET Exam
    • NPAT 2023
    • View All

    Colleges

    • Compare Colleges
    • Media & Journalism colleges in Delhi
    • Media & Journalism colleges in Bangalore
    • Media & Journalism colleges in Mumbai
    • Colleges Accepting Admissions
    • List of Media & Journalism Colleges in India
    • View All

    Resources

    • Free Ebooks
    • Free Sample Papers
    • List of Popular Branches
    • QnA - Get answers to your doubts
    • Careers360 Youtube Channel
  • Animation and Design

    Exams

    • NIFT 2023
    • CEED 2023
    • UCEED 2023
    • NID DAT 2023
    • SMEAT 2022
    • IICD 2023
    • UPES DAT 2023
    • View All

    Colleges

    • Design Colleges in India
    • Fashion Design Colleges in Bangalore
    • Fashion Design Colleges in Mumbai
    • Fashion Design Colleges in Pune
    • Fashion Design Colleges in Delhi
    • Fashion Design Colleges in Hyderabad
    • Fashion Design Colleges in India
    • Top Design Colleges in India

    Animation Courses

    • Animation Courses in India
    • Animation Courses in Bangalore
    • Animation Courses in Mumbai
    • Animation Courses in Pune
    • Animation Courses in Chennai
    • Animation Courses in Hyderabad

    Resources

    • Free Sample Papers
    • Free Design E-books
    • List of Branches
    • QnA - Get answers to your doubts
    • Careers360 Youtube channel
    • NIFT College Predictor
  • Medicine and Allied Sciences

    Exams

    • NEET 2023
    • NEET PG 2023
    • NEET MDS 2023
    • FMGE 2022
    • INI CET 2023
    • AIIMS Nursing
    • NEET SS

    Colleges

    • Top Medical Colleges in India
    • Top Medical Colleges in India accepting NEET Score
    • Medical Colleges accepting NEET
    • List of Medical Colleges in India
    • Medical Colleges In Karnataka
    • Medical Colleges in Maharashtra
    • Medical Colleges in India Accepting NEET PG

    Predictors

    • NEET College Predictor
    • NEET PG College Predictor
    • NEET MDS College Predictor
    • DNB CET College Predictor
    • DNB PDCET College Predictor
    • View All

    Resources

    • NEET 2022 Counselling
    • NEET 2022 Result
    • NEET Cut off 2022
    • NEET Application Form 2023
    • NEET Online Preparation
    • NEET Question Papers
    • Download Helpful E-books
    • QnA - Get answers to your doubts

    NEET CompanionUse Now
    Your one-stop Counselling package for NEET, AIIMS and JIPMER

  • Arts, Commerce & Sciences

    Exams

    • CUET 2023
    • CUET PG 2023
    • IGNOU Admission 2023
    • DU Admission 2023
    • DUET Exam 2022
    • DDU Entrance Exam 2022
    • IIT JAM 2023
    • ICAR AIEEA Exam 2023

    Colleges

    • Universities in India 2023
    • Top Universities in India 2022
    • Colleges Accepting Admissions
    • Top Universities in Uttar Pradesh 2022
    • Top Universities in Bihar 2022
    • Top Universities in Madhya Pradesh 2022
    • Top Universities in Tamil Nadu 2022
    • Central Universities in India

    Upcoming Events/Predictors

    • DU College Predictor 2022
    • IIT JAM Result 2023
    • CUET PG Application Form 2023
    • IIT JAM Cut Off 2023
    • CUET Mock Test 2023
    • CUET Participating Universities 2023
    • CUET PG Exam Pattern 2023

    Resources

    • CUET Application Form 2023
    • CUET Cut Off 2023
    • CUET Exam Date 2023
    • CUET Syllabus 2023
    • CUET PG 2023
    • IGNOU Result
    • CUET PG Cut off 2022
    • E-Books and Sample Papers
  • Computer Application and IT

    Exams

    • NIMCET
    • AIMA UGAT
    • View All

    Colleges

    • Compare Colleges
    • IT Colleges in Tamil Nadu
    • IT Colleges in Uttar Pradesh
    • Colleges Accepting Admissions
    • MCA Colleges in India
    • BCA Colleges in India

    Resources

    • Sample Papers
    • Free Ebooks
    • QnA - Get answers to your doubts
    • Careers360 Youtube Channel

    Quick Links

    • MCA
    • BCA
    • Information Technology Courses
    • Programming Courses
    • Web Development Courses
    • Data Analytics Courses
    • Big Data Analytics Courses
  • Online Courses and Certifications

    Top Streams

    • IT & Software Certification Courses
    • Engineering and Architecture Certification Courses
    • Programming And Development Certification Courses
    • Business and Management Courses
    • Marketing Certification Courses
    • Health and Fitness Certification Courses
    • Design Certification Courses
    • View All

    Specializations

    • Digital Marketing Certification Courses
    • Cyber Security Certification Courses
    • Artificial Intelligence Certification Courses
    • Business Analytics Certification Courses
    • Data Science Certification Courses
    • Cloud Computing Certification Courses
    • Machine Learning Certification Courses
    • View All Certification Courses

    Resources

    • UG Degree Courses
    • PG Degree Courses
    • Online MBA
    • Short Term Courses
    • Free Courses
    • Online Degrees and Diplomas
    • Expert Reviews
    • Compare Courses

    Top Providers

    • Coursera Courses
    • Udemy Courses
    • Edx Courses
    • Swayam Courses
    • upGrad Courses
    • Simplilearn Courses
    • Great Learning Courses
    • View All
  • Hospitality and Tourism

    Exams

    • NCHMCT JEE 2023
    • Mah BHMCT CET
    • MAH HM CET
    • PUTHAT
    • IHM-A
    • View All

    Colleges

    • Top Hotel Management Colleges in Delhi
    • Top Hotel Management Colleges in Hyderabad
    • Top Hotel Management Colleges in Mumbai
    • Top Hotel Management Colleges in Tamil Nadu
    • Top Hotel Management Colleges in Maharashtra
    • View All

    Resources

    • Free Ebooks
    • Sample Papers
    • BHM Course
    • B.Sc Hotel Management
    • Hotel Management
    • Diploma in Hotel Management and Catering Technology
    • List of Popular Branches

    Diploma Colleges

    • Top Diploma Colleges in Maharashtra
  • Pharmacy

    Exams

    • RUHS Pharmacy Admission Test
    • UPESPAT 2022
    • GPAT
    • KAHER-AIET
    • NIPER JEE
    • View All
    • UPESPAT 2023

    Colleges

    • Top Pharmacy Colleges in India 2022
    • Pharmacy Colleges in Pune
    • Pharmacy Colleges in Mumbai
    • Colleges Accepting GPAT Score
    • Pharmacy Colleges in Lucknow
    • List of Pharmacy Colleges in Nagpur
    • View All

    Resources

    • GPAT Question Papers
    • GPAT Result
    • NIPER JEE Admit Card
    • B. Pharma
    • M. Pharma
    • Free Ebooks
    • Free Sample Papers
    • Careers360 Youtube Channel
  • Finance & Accounts

    Exams

    • CA Intermediate
    • CA Foundation
    • CA Final
    • CS Executive
    • CS Professional
    • CFA Exam
    • CSEET
    • ACET

    Resources

    • Difference between CA and CS
    • Difference between CA and CMA
    • CA Full form
    • CMA Full form
    • CS Full form
    • Free Ebooks
    • Free Sample Papers
    • CA Salary In India

    Top Courses & Careers

    • Bachelor of Commerce (B.Com)
    • Master of Commerce (M.Com)
    • Company Secretary
    • Cost Accountant
    • Charted Accountant
    • Credit Manager
    • Financial Advisor

    Colleges

    • Top Commerce Colleges in India
    • Top Government Commerce Colleges in India
    • Top Private Commerce Colleges in India
    • Top M.Com Colleges in Mumbai
    • Top B.Com Colleges in India
  • Competition

    Exams

    • NDA 2023
    • UPSC IAS 2023
    • CDS 2023
    • AFCAT 2023
    • SSC CGL 2023
    • IBPS RRB 2023
    • CTET 2023
    • View All

    Upcoming Events

    • UGC NET Admit Card 2023
    • CDS Admit Card 2023
    • NDA Admit Card 2023
    • SSC CGL Result 2023 Tier 2
    • SSC CHSL Admit Card 2023
    • AFCAT 1 Result 2023
    • UPTET Notification 2023
    • SSC MTS Admit Card 2023

    Resources

    • Previous Year Sample Papers
    • Free Competition E-books
    • Sarkari Result
    • QnA- Get your doubts answered
    • UPSC Previous Year Sample Papers
    • CTET Previous Year Sample Papers
    • SBI Clerk Previous Year Sample Papers
    • NDA Previous Year Sample Papers

    Other Exams

    • UPTET 2023
    • SSC CHSL 2023
    • UP PCS 2023
    • UGC NET 2023
    • RRB NTPC 2023
    • IBPS PO 2023
    • IBPS Clerk 2023
    • IBPS SO 2023
  • Study Abroad

    Exams

    • TOEFL 2023
    • LSAT 2023
    • IELTS 2023
    • GRE 2023
    • SAT 2023
    • ACT 2023
    • MCAT 2023
    • View All

    Colleges

    • Computer Science Colleges
    • Business Management Studies Colleges
    • Best M.Sc. Colleges
    • Top Universities in UK
    • Top Universities in Australia
    • View All

    Top Countries

    • Study in USA
    • Study in UK
    • Study in Canada
    • Study in Australia
    • Study in Ireland
    • Study in Germany
    • Study in Singapore
    • Study in Europe

    Student Visas

    • Student Visa Canada
    • Student Visa UK
    • Student Visa USA
    • Student Visa Australia
    • Student Visa Germany
    • Student Visa New Zealand
    • Student Visa Ireland
  • School

    Exams

    • CBSE Class 10th
    • CBSE Class 12th
    • UP Board 10th
    • UP Board 12th
    • ISC Class 12th
    • Bihar Board 12th
    • Bihar Board 10th
    • View All

    Ranking

    • Top Schools in India
    • Top Schools in Delhi
    • Top Schools in Mumbai
    • Top Schools in Chennai
    • Top Schools in Hyderabad
    • Top Schools in Kolkata
    • Government Schools in India
    • CBSE Schools in India

    Products & Resources

    • KVPY Test Series
    • RD Sharma Solutions
    • JEE Main Knockout April
    • Free Sample Papers
    • Free Ebooks
    • Sainik School Admission
    • CBSE Class 12 Date Sheet 2023
    • Essays

    NCERT Solutions

    • NCERT
    • NCERT Solutions
    • NCERT Solutions for Class 12
    • NCERT Solutions for Class 11
    • NCERT solutions for Class 10
    • NCERT solutions for Class 9
    • NCERT solutions for Class 8
    • NCERT Solutions for Class 7
Login
My Companion New
  • NEET Companion Buy Now
  • B.Tech Companion Buy Now
Search Colleges, Exams, Schools & more

Popular Searches

  • सीबीएसई 12वीं डेट शीट 2023
  • Bihar Board 10th Result 2023
  • Bihar Board 12th Result 2023
  • CBSE Class 12 Date Sheet 2023
  • CBSE Class 10 Date Sheet 2023
  • Sainik School Result 2023 for Class 6 & 9
  • NCERT Solutions for Class 6 to 12
  • UP Board 12th Time Table 2023
  • RD Sharma Solutions For Class 9 to 12 Maths
  • सीबीएसई क्लास 10 डेट शीट 2023
  • Home
  • NCERT
  • NCERT Solutions Class 12 Maths
  • Three Dimensional Geometry

NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

Edited By Apoorva Singh | Updated on Feb 23, 2023 - 10:25 a.m. IST
subscribe Subscribe to Premium
Download Guide Download PDF

NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry - In the Class 12 Maths Chapter 11 NCERT solutions you will learn how to use vector algebra to study three dimensional geometry. Understanding vector algebra is a prerequisite for 3d geometry class 12. The practice of NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry will be helpful in solving three dimensional problems given in NCERT Books for Class 12.

Share Facebook Twitter
Table of contents
NCERT Solutions for Class 12 Maths  Chapter 11 Three Dimensional Geometry

NCERT Class 12 Maths solutions chapter 11 makes the study simple and effective. It is also very helpful to solve problems asked in the CBSE Board as well as entrance exam related to chapter three dimensional geometry class 12. NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry will build your base for many other higher-level concepts like tensors and manifolds due to that this ch 11maths class 12 becomes very important. If you want to know more about 3d geometry class 12 then you can also check NCERT solutions for other classes.

Also read:

  • Class 12 Maths Chapter 11 Three Dimensional Geometry Notes
  • Ncert Exemplar Solutions For Class 12 Maths Chapter 11 Three Dimensional Geometry
In this chapter we deal with formulas like-
  • If l, m, n are the direction cosines of a line, then l^2+m^2+n^2=1 .
  • Q(x_{2}, y_{2}, z_{2}) and P(x_{1}, y_{1}, z_{1}) Direction cosines of a line joining two points PQ=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2} are \frac{X_2-X_1}{PQ},\:\frac{Y_2-Y_1}{PQ},\:\frac{Z_2-Z_1}{PQ} , where
  • If l, m, n are the direction cosines and a, b, c are the direction of a line then-
\dpi{80} l=\frac{a}{\sqrt{a^2+b^2+c^2}} ; m=\frac{b}{\sqrt{a^2+b^2+c^2}}; n=\frac{c}{\sqrt{a^2+b^2+c^2}}


NCERT solutions for class 12 maths chapter 11 three dimensional geometry-Exercise: 11.1

Question:1 If a line makes angles 90^{\circ}, 135^{\circ},45^{\circ} with the x, y and z-axes respectively, find its direction cosines.

Answer:

Let the direction cosines of the line be l,m, and n.

So, we have

l = \cos90^{\circ}=0

m = \cos135^{\circ}=-\frac{1}{\sqrt2}

n= \cos45^{\circ}=\frac{1}{\sqrt2}

Therefore the direction cosines of the lines are 0,\ -\frac{1}{\sqrt2},and\ \ \frac{1}{\sqrt2} .

Question:2 Find the direction cosines of a line which makes equal angles with the coordinate axes.

Answer:

If the line is making equal angle with the coordinate axes. Then,

Let the common angle made is \alpha with each coordinate axes.

Therefore, we can write;

l = \cos \alpha,\ m= \cos \alpha,and\ n= \cos \alpha

And as we know the relation; l^2+m^2+n^2 = 1

\Rightarrow \cos^2 \alpha +\cos^2 \alpha+\cos^2 \alpha = 1

\Rightarrow \cos^2 \alpha = \frac{1}{3}

or \cos \alpha =\pm \frac{1}{\sqrt3}

Thus the direction cosines of the line are \pm \frac{1}{\sqrt3},\ \pm \frac{1}{\sqrt3},and\ \pm \frac{1}{\sqrt3}

Question:3 If a line has the direction ratios –18, 12, – 4, then what are its direction cosines ?

Answer:

GIven a line has direction ratios of -18, 12, – 4 then its direction cosines are;

Line having direction ratio -18 has direction cosine:

\frac{-18}{\sqrt{(-18)^2+(12)^2+(-4)^2}} = \frac{-18}{22} = \frac{-9}{11}

Line having direction ratio 12 has direction cosine:

\frac{12}{\sqrt{(-18)^2+(12)^2+(-4)^2}} = \frac{12}{22} =\frac{6}{11}

Line having direction ratio -4 has direction cosine:

\frac{12}{\sqrt{(-4)^2+(12)^2+(-4)^2}} = \frac{-4}{22} = \frac{-2}{11}

Thus, the direction cosines are \frac{-9}{11},\ \frac{6}{11},\ \frac{-2}{11} .

Question:4 Show that the points (2, 3, 4), (– 1, – 2, 1), (5, 8, 7) are collinear.

Answer:

We have the points, A (2, 3, 4),B (– 1, – 2, 1),C (5, 8, 7);

And as we can find the direction ratios of the line joining the points (x_{1},y_{1},z_{1}) \ and\ (x_{2},y_{2},z_{2}) is given by x_{2}-x_{1}, y_{2}-y_{1}, \ and\ z_{2}-z_{1}.

The direction ratios of AB are (-1-2), (-2-3),\ and\ (1-4) i.e., -3,\ -5,\ and\ -3

The direction ratios of BC are (5-(-1)), (8-(-2)),\ and\ (7-1) i.e., 6,\ 10,\ and\ 6 .

We can see that the direction ratios of AB and BC are proportional to each other and is -2 times.

\therefore AB is parallel to BC. and as point B is common to both AB and BC,

Hence the points A, B and C are collinear.

Question:5 Find the direction cosines of the sides of the triangle whose vertices are (3, 5, – 4), (– 1, 1, 2) and (– 5, – 5, – 2).

Answer:

Given vertices of the triangle \triangle ABC (3, 5, – 4), (– 1, 1, 2) and (– 5, – 5, – 2).

1633927872313

Finding each side direction ratios;

\Rightarrow Direction ratios of side AB are (-1-3), (1-5),\ and\ (2-(-4)) i.e.,

-4,-4,\ and\ 6.

Therefore its direction cosines values are;

\frac{-4}{\sqrt{(-4)^2+(-4)^2+(6)^2}},\ \frac{-4}{\sqrt{(-4)^2+(-4)^2+(6)^2}},\ \frac{6}{\sqrt{(-4)^2+(-4)^2+(6)^2}} or\ \frac{-4}{2\sqrt{17}},\frac{-4}{2\sqrt{17}},\frac{6}{2\sqrt{17}}\ or\ \frac{-2}{\sqrt{17}},\frac{-2}{\sqrt{17}},\frac{3}{\sqrt{17}}

SImilarly for side BC;

\Rightarrow Direction ratios of side BC are (-5-(-1)), (-5-1),\ and\ (-2-2) i.e.,

-4,-6,\ and\ -4.

Therefore its direction cosines values are;

\frac{-4}{\sqrt{(-4)^2+(-6)^2+(-4)^2}},\ \frac{-6}{\sqrt{(-4)^2+(-6)^2+(-4)^2}},\ \frac{-4}{\sqrt{(-4)^2+(-6)^2+(-4)^2}} or\ \frac{-4}{2\sqrt{17}},\frac{-6}{2\sqrt{17}},\frac{-4}{2\sqrt{17}}\ or\ \frac{-2}{\sqrt{17}},\frac{-3}{\sqrt{17}},\frac{-2}{\sqrt{17}}

\Rightarrow Direction ratios of side CA are (-5-3), (-5-5),\ and\ (-2-(-4)) i.e.,

-8,-10,\ and\ 2.

Therefore its direction cosines values are;

\frac{-8}{\sqrt{(-8)^2+(10)^2+(2)^2}},\ \frac{-5}{\sqrt{(-8)^2+(10)^2+(2)^2}},\ \frac{2}{\sqrt{(-8)^2+(10)^2+(2)^2}} or\ \frac{-8}{2\sqrt{42}},\frac{-10}{2\sqrt{42}},\frac{2}{2\sqrt{42}}\ or\ \frac{-4}{\sqrt{42}},\frac{-5}{\sqrt{42}},\frac{1}{\sqrt{42}}

NCERT solutions for class 12 maths chapter 11 three dimensional geometry-Exercise: 11.2

Question:1 Show that the three lines with direction cosines

\frac{12}{13}, \frac{-3}{13},\frac{-4}{13};\frac{4}{13},\frac{12}{13},\frac{3}{13};\frac{3}{13},\frac{-4}{13},\frac{12}{13} are mutually perpendicular.

Answer:

GIven direction cosines of the three lines;

L_{1}\ \left ( \frac{12}{13}, \frac{-3}{13},\frac{-4}{13} \right ) L_{2}\ \left ( \frac{4}{13}, \frac{12}{13},\frac{3}{13} \right ) L_{3}\ \left ( \frac{3}{13}, \frac{-4}{13},\frac{12}{13} \right )

And we know that two lines with direction cosines l_{1},m_{1},n_{1} and l_{2},m_{2},n_{2} are perpendicular to each other, if l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}=0

Hence we will check each pair of lines:

Lines L_{1}\ and\ L_{2} ;

l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}= \left [ \frac{12}{13}\times\frac{4}{13} \right ]+\left [ \frac{-3}{13}\times\frac{12}{13} \right ]+\left [ \frac{-4}{13}\times \frac{3}{13} \right ]

= \left [ \frac{48}{169} \right ]-\left [ \frac{36}{169} \right ]-\left [ \frac{12}{169} \right ]= 0

\therefore the lines L_{1}\ and\ L_{2} are perpendicular.

Lines L_{2}\ and\ L_{3} ;

l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}= \left [ \frac{4}{13}\times\frac{3}{13} \right ]+\left [ \frac{12}{13}\times\frac{-4}{13} \right ]+\left [ \frac{3}{13}\times \frac{12}{13} \right ]

= \left [ \frac{12}{169} \right ]-\left [ \frac{48}{169} \right ]+\left [ \frac{36}{169} \right ]= 0

\therefore the lines L_{2}\ and\ L_{3} are perpendicular.

Lines L_{3}\ and\ L_{1} ;

l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}= \left [ \frac{3}{13}\times\frac{12}{13} \right ]+\left [ \frac{-4}{13}\times\frac{-3}{13} \right ]+\left [ \frac{12}{13}\times \frac{-4}{13} \right ]

= \left [ \frac{36}{169} \right ]+\left [ \frac{12}{169} \right ]-\left [ \frac{48}{169} \right ]= 0

\therefore the lines L_{3}\ and\ L_{1} are perpendicular.

Thus, we have all lines are mutually perpendicular to each other.

Question:2 Show that the line through the points (1, – 1, 2), (3, 4, – 2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Answer:

We have given points where the line is passing through it;

Consider the line joining the points (1, – 1, 2) and (3, 4, – 2) is AB and line joining the points (0, 3, 2) and (3, 5, 6).is CD.

So, we will find the direction ratios of the lines AB and CD;

Direction ratios of AB are a_{1},b_{1}, c_{1}

(3-1),\ (4-(-1)),\ and\ (-2-2) or 2,\ 5,\ and\ -4

Direction ratios of CD are a_{2},b_{2}, c_{2}

(3-0),\ (5-3)),\ and\ (6-2) or 3,\ 2,\ and\ 4 .

Now, lines AB and CD will be perpendicular to each other if a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} =0

a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} =\left ( 2\times3 \right ) +\left ( 5\times2 \right )+ \left ( -4\times 4 \right )

= 6+10-16 = 0

Therefore, AB and CD are perpendicular to each other.

Question:3 Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (– 1, – 2, 1), (1, 2, 5).

Answer:

We have given points where the line is passing through it;

Consider the line joining the points (4, 7, 8) and (2, 3, 4) is AB and line joining the points (– 1, – 2, 1) and (1, 2, 5)..is CD.

So, we will find the direction ratios of the lines AB and CD;

Direction ratios of AB are a_{1},b_{1}, c_{1}

(2-4),\ (3-7),\ and\ (4-8) or -2,\ -4,\ and\ -4

Direction ratios of CD are a_{2},b_{2}, c_{2}

(1-(-1)),\ (2-(-2)),\ and\ (5-1) or 2,\ 4,\ and\ 4 .

Now, lines AB and CD will be parallel to each other if \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Therefore we have now;

\frac{a_{1}}{a_{2}} = \frac{-2}{2}=-1 \frac{b_{1}}{b_{2}} = \frac{-4}{4}=-1 \frac{c_{1}}{c_{2}} = \frac{-4}{4}=-1

\therefore \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Hence we can say that AB is parallel to CD.

Question:4 Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector 3\widehat{i}+2\widehat{j}-2\widehat{k} .

Answer:

It is given that the line is passing through A (1, 2, 3) and is parallel to the vector \vec{b}=3\widehat{i}+2\widehat{j}-2\widehat{k}

We can easily find the equation of the line which passes through the point A and is parallel to the vector \vec{b} by the known relation;

\vec{r} = \vec{a} +\lambda\vec{b} , where \lambda is a constant.

So, we have now,

\\\mathrm{\Rightarrow \vec{r} = \widehat{i}+2\widehat{j}+3\widehat{k} + \lambda(3\widehat{i}+2\widehat{j}-2\widehat{k})}

Thus the required equation of the line.

Question:5 Find the equation of the line in vector and in cartesian form that passes through the point with position vector 2\widehat{i}-\widehat{j}+4\widehat{k} and is in the direction \widehat{i}+2\widehat{j}-\widehat{k} .

Answer:

Given that the line is passing through the point with position vector 2\widehat{i}-\widehat{j}+4\widehat{k} and is in the direction of the line \widehat{i}+2\widehat{j}-\widehat{k} .

And we know the equation of the line which passes through the point with the position vector \vec{a} and parallel to the vector \vec{b} is given by the equation,

\vec{r} = \vec{a} +\lambda\vec{b}

\Rightarrow \vec{r} =2\widehat{i}-\widehat{j}+4\widehat{k} + \lambda(\widehat{i}+2\widehat{j}-\widehat{k})

So, this is the required equation of the line in the vector form.

\vec{r} =x\widehat{i}+y\widehat{j}+z\widehat{k} = (\lambda+2)\widehat{i}+(2\lambda-1)\widehat{j}+(-\lambda+4)\widehat{k}

Eliminating \lambda , from the above equation we obtain the equation in the Cartesian form :

\frac{x-2}{1}= \frac{y+1}{2} =\frac{z-4}{-1}

Hence this is the required equation of the line in Cartesian form.

Question:6 Find the cartesian equation of the line which passes through the point (– 2, 4, – 5) and parallel to the line given by \frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} .

Answer:

Given a line which passes through the point (– 2, 4, – 5) and is parallel to the line given by the \frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} ;

The direction ratios of the line, \frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6} are 3,5 and 6 .

So, the required line is parallel to the above line.

Therefore we can take direction ratios of the required line as 3k , 5k , and 6k , where k is a non-zero constant.

And we know that the equation of line passing through the point (x_{1},y_{1},z_{1}) and with direction ratios a, b, c is written by: \frac{x-x_{1}}{a} = \frac{y-y_{1}}{b} = \frac{z-z_{1}}{c} .

Therefore we have the equation of the required line:

\frac{x+2}{3k} = \frac{y-4}{5k} = \frac{z+5}{6k}

or \frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6} = k

The required line equation.

Question:7 The cartesian equation of a line is \frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{7} . Write its vector form .

Answer:

Given the Cartesian equation of the line;

\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{7}

Here the given line is passing through the point (5,-4,6) .

So, we can write the position vector of this point as;

\vec{a} = 5\widehat{i}-4\widehat{j}+6\widehat{k}

And the direction ratios of the line are 3 , 7 , and 2.

This implies that the given line is in the direction of the vector, \vec{b} = 3\widehat{i}+7\widehat{j}+2\widehat{k} .

Now, we can easily find the required equation of line:

As we know that the line passing through the position vector \vec{a} and in the direction of the vector \vec{b} is given by the relation,

\vec{r} = \vec{a} + \lambda \vec{b},\ \lambda \epsilon R

So, we get the equation.

\vec{r} = 5\widehat{i}-4\widehat{j}+6\widehat{k} + \lambda(3\widehat{i}+7\widehat{j}+2\widehat{k}),\ \lambda \epsilon R

This is the required equation of the line in the vector form.

Question:8 Find the vector and the cartesian equations of the lines that passes through the origin and (5, – 2, 3).

Answer:

GIven that the line is passing through the (0,0,0) and (5,-2,3)

Thus the required line passes through the origin.

\therefore its position vector is given by,

\vec{a} = \vec{0}

So, the direction ratios of the line through (0,0,0) and (5,-2,3) are,

(5-0) = 5, (-2-0) = -2, (3-0) = 3

The line is parallel to the vector given by the equation, \vec{b} = 5\widehat{i}-2\widehat{j}+3\widehat{k}

Therefore the equation of the line passing through the point with position vector \vec{a} and parallel to \vec{b} is given by;

\vec{r} = \vec{a}+\lambda\vec{b},\ where\ \lambda \epsilon R

\Rightarrow\vec{r} = 0+\lambda (5\widehat{i}-2\widehat{j}+3\widehat{k})

\Rightarrow\vec{r} = \lambda (5\widehat{i}-2\widehat{j}+3\widehat{k})

Now, the equation of the line through the point (x_{1},y_{1},z_{1}) and the direction ratios a, b, c is given by;

\frac{x-x_{1}}{a} = \frac{y-y_{1}}{b} =\frac{z-z_{1}}{c}

Therefore the equation of the required line in the Cartesian form will be;

\frac{x-0}{5} = \frac{y-0}{-2} =\frac{z-0}{3}

OR \frac{x}{5} = \frac{y}{-2} =\frac{z}{3}

Question:9 Find the vector and the cartesian equations of the line that passes through the points (3, – 2, – 5), (3, – 2, 6).

Answer:

Let the line passing through the points A(3,-2,-5) and B(3,-2,6) is AB;

Then as AB passes through through A so, we can write its position vector as;

\vec{a} =3\widehat{i}-2\widehat{j}-5\widehat{k}

Then direction ratios of PQ are given by,

(3-3)= 0,\ (-2+2) = 0,\ (6+5)=11

Therefore the equation of the vector in the direction of AB is given by,

\vec{b} =0\widehat{i}-0\widehat{j}+11\widehat{k} = 11\widehat{k}

We have then the equation of line AB in vector form is given by,

\vec{r} =\vec{a}+\lambda\vec{b},\ where\ \lambda \epsilon R

\Rightarrow \vec{r} = (3\widehat{i}-2\widehat{j}-5\widehat{k}) + 11\lambda\widehat{k}

So, the equation of AB in Cartesian form is;

\frac{x-x_{1}}{a} =\frac{y-y_{1}}{b} =\frac{z-z_{1}}{c}

or \frac{x-3}{0} =\frac{y+2}{0} =\frac{z+5}{11}

Question:10 Find the angle between the following pairs of lines:

(i) \overrightarrow{r}=2\widehat{i}-5\widehat{j}+\widehat{k}+\lambda (3\widehat{i}+2\widehat{j}+6\widehat{k}) and \overrightarrow{r}=7\widehat{i}-6\widehat{k}+\mu (\widehat{i}+2\widehat{j}+2\widehat{k})

Answer:

To find the angle A between the pair of lines \vec{b_{1}}\ and\ \vec{b_{2}} we have the formula;

\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |

We have two lines :

\overrightarrow{r}=2\widehat{i}-5\widehat{j}+\widehat{k}+\lambda (3\widehat{i}+2\widehat{j}+6\widehat{k}) and

\overrightarrow{r}=7\widehat{i}-6\widehat{k}+\mu (\widehat{i}+2\widehat{j}+2\widehat{k})

The given lines are parallel to the vectors \vec{b_{1}}\ and\ \vec{b_{2}} ;

where \vec{b_{1}}= 3\widehat{i}+2\widehat{j}+6\widehat{k} and \vec{b_{2}}= \widehat{i}+2\widehat{j}+2\widehat{k} respectively,

Then we have

\vec{b_{1}}.\vec{b_{2}} =(3\widehat{i}+2\widehat{j}+6\widehat{k}).(\widehat{i}+2\widehat{j}+2\widehat{k})

=3+4+12 = 19

and |\vec{b_{1}}| = \sqrt{3^2+2^2+6^2} = 7

|\vec{b_{2}}| = \sqrt{1^2+2^2+2^2} = 3

Therefore we have;

\cos A = \left | \frac{19}{7\times3} \right | = \frac{19}{21}

or A = \cos^{-1} \left ( \frac{19}{21} \right )

Question:10 Find the angle between the following pairs of lines:

(ii) \overrightarrow{r}= 3\widehat{i}+\widehat{j}-2\widehat{k}+\lambda (\widehat{i}-\widehat{j}-2\widehat{k}) and \overrightarrow{r}= 2\widehat{i}-\widehat{j}-56\widehat{k}+\mu (3\widehat{i}-5\widehat{j}-4\widehat{k})

Answer:

To find the angle A between the pair of lines \vec{b_{1}}\ and\ \vec{b_{2}} we have the formula;

\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |

We have two lines :

\overrightarrow{r}= 3\widehat{i}+\widehat{j}-2\widehat{k}+\lambda (\widehat{i}-\widehat{j}-2\widehat{k}) and

\overrightarrow{r}= 2\widehat{i}-\widehat{j}-56\widehat{k}+\mu (3\widehat{i}-5\widehat{j}-4\widehat{k})

The given lines are parallel to the vectors \vec{b_{1}}\ and\ \vec{b_{2}} ;

where \vec{b_{1}}= \widehat{i}-\widehat{j}-2\widehat{k} and \vec{b_{2}}= 3\widehat{i}-5\widehat{j}-4\widehat{k} respectively,

Then we have

\vec{b_{1}}.\vec{b_{2}} =(\widehat{i}-\widehat{j}-2\widehat{k}).(3\widehat{i}-5\widehat{j}-4\widehat{k})

=3+5+8 = 16

and |\vec{b_{1}}| = \sqrt{1^2+(-1)^2+(-2)^2} = \sqrt{6}

|\vec{b_{2}}| = \sqrt{3^2+(-5)^2+(-4)^2} = \sqrt{50} = 5\sqrt2

Therefore we have;

\cos A = \left | \frac{16}{\sqrt6 \times5\sqrt2} \right | = \frac{16}{10\sqrt3}

or A = \cos^{-1} \left ( \frac{8}{5\sqrt3} \right )

Question:11 Find the angle between the following pair of lines:

(i) \frac{x-2}{2}= \frac{y-1}{5}= \frac{z+3}{-3} and \frac{x+2}{-1}= \frac{y-4}{8}= \frac{z-5}{4}

Answer:

Given lines are;

\frac{x-2}{2}= \frac{y-1}{5}= \frac{z+3}{-3} and \frac{x+2}{-1}= \frac{y-4}{8}= \frac{z-5}{4}

So, we two vectors \vec{b_{1}}\ and\ \vec{b_{2}} which are parallel to the pair of above lines respectively.

\vec{b_{1}}\ =2\widehat{i}+5\widehat{j}-3\widehat{k} and \vec{b_{2}}\ =-\widehat{i}+8\widehat{j}+4\widehat{k}

To find the angle A between the pair of lines \vec{b_{1}}\ and\ \vec{b_{2}} we have the formula;

\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |

Then we have

\vec{b_{1}}.\vec{b_{2}} =(2\widehat{i}+5\widehat{j}-3\widehat{k}).(-\widehat{i}+8\widehat{j}+4\widehat{k})

=-2+40-12 = 26

and |\vec{b_{1}}| = \sqrt{2^2+5^2+(-3)^2} = \sqrt{38}

|\vec{b_{2}}| = \sqrt{(-1)^2+(8)^2+(4)^2} = \sqrt{81} = 9

Therefore we have;

\cos A = \left | \frac{26}{\sqrt{38} \times9} \right | = \frac{26}{9\sqrt{38}}

or A = \cos^{-1} \left ( \frac{26}{9\sqrt{38}} \right )

Question:11 Find the angle between the following pair of lines:

(ii) \frac{x}{2}= \frac{y}{2}=\frac{z}{1} and \frac{x -5}{4}= \frac{y-2}{1}=\frac{z-3}{8}

Answer:

Given lines are;

\frac{x}{2}= \frac{y}{2}=\frac{z}{1} and \frac{x -5}{4}= \frac{y-2}{1}=\frac{z-3}{8}

So, we two vectors \vec{b_{1}}\ and\ \vec{b_{2}} which are parallel to the pair of above lines respectively.

\vec{b_{1}}\ =2\widehat{i}+2\widehat{j}+\widehat{k} and \vec{b_{2}}\ =4\widehat{i}+\widehat{j}+8\widehat{k}

To find the angle A between the pair of lines \vec{b_{1}}\ and\ \vec{b_{2}} we have the formula;

\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |

Then we have

\vec{b_{1}}.\vec{b_{2}} =(2\widehat{i}+2\widehat{j}+\widehat{k}).(4\widehat{i}+\widehat{j}+8\widehat{k})

=8+2+8 = 18

and |\vec{b_{1}}| = \sqrt{2^2+2^2+1^2} = \sqrt{9} = 3

|\vec{b_{2}}| = \sqrt{(4)^2+(1)^2+(8)^2} = \sqrt{81} = 9

Therefore we have;

\cos A = \left | \frac{18}{ 3\times9} \right | = \frac{2}{3}

or A = \cos^{-1} \left ( \frac{2}{3} \right )

Question:12 Find the values of p so that the lines \frac{1-x}{3}=\frac{7y-14}{2p}= \frac{z-3}{2} and \frac{7-7x}{3p}=\frac{y-5}{1}= \frac{6-z}{5} are at right angles.

Answer:

First we have to write the given equation of lines in the standard form;

\frac{x-1}{-3}=\frac{y-2}{\frac{2p}{7}}= \frac{z-3}{2} and \frac{x-1}{\frac{-3p}{7}}=\frac{y-5}{1}= \frac{z-6}{-5}

Then we have the direction ratios of the above lines as;

-3,\ \frac{2p}{7},\ 2 and \frac{-3p}{7},\ 1,\ -5 respectively..

Two lines with direction ratios a_{1},b_{1},c_{1} and a_{2},b_{2},c_{2} are perpendicular to each other if, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}= 0

\therefore (-3).\left ( \frac{-3p}{7} \right )+(\frac{2p}{7}).(1) + 2.(-5) = 0

\Rightarrow \frac{9p}{7}+ \frac{2p}{7} =10

\Rightarrow 11p =70

\Rightarrow p =\frac{70}{11}

Thus, the value of p is \frac{70}{11} .

Question:13 Show that the lines \frac{x-5}{7}=\frac{y+2}{-3}=\frac{z}{1} and \frac{x}{1}=\frac{y}{2}=\frac{z}{3} are perpendicular to each other.

Answer:

First, we have to write the given equation of lines in the standard form;

\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1} and \frac{x}{1}=\frac{y}{2}=\frac{z}{3}

Then we have the direction ratios of the above lines as;

7,\ -5,\ 1 and 1,\ 2,\ 3 respectively..

Two lines with direction ratios a_{1},b_{1},c_{1} and a_{2},b_{2},c_{2} are perpendicular to each other if, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}= 0

\therefore 7(1) + (-5)(2)+1(3) = 7-10+3 = 0

Therefore the two lines are perpendicular to each other.

Question:14 Find the shortest distance between the lines

\overrightarrow{r}=(\widehat{i}+2\widehat{j}+\widehat{k})+\lambda (\widehat{i}-\widehat{j}+\widehat{k}) and \overrightarrow{r}=(2\widehat{i}-\widehat{j}-\widehat{k})+\mu (2\widehat{i}+\widehat{j}+2\widehat{k})

Answer:

So given equation of lines;

\overrightarrow{r}=(\widehat{i}+2\widehat{j}+\widehat{k})+\lambda (\widehat{i}-\widehat{j}+\widehat{k}) and \overrightarrow{r}=(2\widehat{i}-\widehat{j}-\widehat{k})+\mu (2\widehat{i}+\widehat{j}+2\widehat{k}) in the vector form.

Now, we can find the shortest distance between the lines \vec{r} = \vec{a_{1}}+\lambda\vec{b_{1}} and \vec{r} = \vec{a_{2}}+\mu \vec{b_{2}} , is given by the formula,

d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |

Now comparing the values from the equation, we obtain

\vec{a_{1}} = \widehat{i}+2\widehat{j}+\widehat{k} \vec{b_{1}} = \widehat{i}-\widehat{j}+\widehat{k}

\vec{a_{2}} = 2\widehat{i}-\widehat{j}-\widehat{k} \vec{b_{2}} = 2\widehat{i}+\widehat{j}+2\widehat{k}

\vec{a_{2}} -\vec{a_{1}} =\left ( 2\widehat{i}-\widehat{j}-\widehat{k} \right ) - \left ( \widehat{i}+2\widehat{j}+\widehat{k} \right ) = \widehat{i}-3\widehat{j}-2\widehat{k}

Then calculating

\vec{b_{1}}\times \vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 1 & -1 &1 \\ 2& 1 &2 \end{vmatrix}

\vec{b_{1}}\times \vec{b_{2}} = (-2-1)\widehat{i} - (2-2) \widehat{j} +(1+2) \widehat{k} = -3\widehat{i}+3\widehat{k}

\Rightarrow \left | \vec{b_{1}}\times \vec{b_{2}} \right | = \sqrt{(-3)^2+(3)^2} = \sqrt{9+9} =\sqrt{18} =3\sqrt2

So, substituting the values now in the formula above we get;

d =\left | \frac{\left ( -3\widehat{i}+3\widehat{k} \right ).(\widehat{i}-3\widehat{j}-2\widehat{k})}{3\sqrt2} \right |

\Rightarrow d = \left | \frac{-3.1+3(-2)}{3\sqrt2} \right |

d = \left | \frac{-9}{3\sqrt2} \right | = \frac{3}{\sqrt2} = \frac{3\sqrt2}{2}

Therefore, the shortest distance between the two lines is \frac{3\sqrt2}{2} units.

Question:15 Find the shortest distance between the lines

\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} and \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}

Answer:

We have given two lines:

\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1} and \frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}

Calculating the shortest distance between the two lines,

\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}} and \frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}

by the formula

d = \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1} &b_{1} &c_{1} \\ a_{2}&b_{2} &c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^2+(c_{1}a_{2}-c_{2}a_{1})^2+(a_{1}b_{2}-a_{2}b_{1})^2}}

Now, comparing the given equations, we obtain

x_{1} = -1,\ y_{1} =-1,\ z_{1} =-1

a_{1} = 7,\ b_{1} =-6,\ c_{1} =1

x_{2} = 3,\ y_{2} =5,\ z_{2} =7

a_{2} = 1,\ b_{2} =-2,\ c_{2} =1

Then calculating determinant

\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1} &b_{1} &c_{1} \\ a_{2}&b_{2} &c_{2} \end{vmatrix} = \begin{vmatrix} 4 &6 &8 \\ 7& -6& 1\\ 1& -2& 1 \end{vmatrix}

= 4(-6+2)-6(7-1)+8(-14+6)

= -16-36-64

=-116

Now calculating the denominator,

\sqrt{(b_{1}c_{2}-b_{2}c_{1})^2+(c_{1}a_{2}-c_{2}a_{1})^2+(a_{1}b_{2}-a_{2}b_{1})^2} = \sqrt{(-6+2)^2+(1+7)^2+(-14+6)^2} = \sqrt{16+36+64}

= \sqrt{116} = 2\sqrt{29}

So, we will substitute all the values in the formula above to obtain,

d = \frac{-116}{2\sqrt{29}} = \frac{-58}{\sqrt{29}} = \frac{-2\times29}{\sqrt{29}} = -2\sqrt{29}

Since distance is always non-negative, the distance between the given lines is

2\sqrt{29} units.

Question:16 Find the shortest distance between the lines whose vector equations are \overrightarrow{r}=(\widehat{i}+2\widehat{j}+3\widehat{k})+ \lambda (\widehat{i}-3\widehat{j}+2\widehat{k}) and

\overrightarrow{r}=(4\widehat{i}+5\widehat{j}+6\widehat{k})+ \mu (2\widehat{i}+3\widehat{j}+\widehat{k})

Answer:

Given two equations of line

\overrightarrow{r}=(\widehat{i}+2\widehat{j}+3\widehat{k})+ \lambda (\widehat{i}-3\widehat{j}+2\widehat{k}) \overrightarrow{r}=(4\widehat{i}+5\widehat{j}+6\widehat{k})+ \mu (2\widehat{i}+3\widehat{j}+\widehat{k}) in the vector form.

So, we will apply the distance formula for knowing the distance between two lines \vec{r} =\vec{a_{1}}+\lambda{b_{1}} and \vec{r} =\vec{a_{2}}+\lambda{b_{2}}

d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |

After comparing the given equations, we obtain

\vec{a_{1}} = \widehat{i}+2\widehat{j}+3\widehat{k} \vec{b_{1}} = \widehat{i}-3\widehat{j}+2\widehat{k}

\vec{a_{2}} = 4\widehat{i}+5\widehat{j}+6\widehat{k} \vec{b_{2}} = 2\widehat{i}+3\widehat{j}+\widehat{k}

\vec{a_{2}}-\vec{a_{1}} = (4\widehat{i}+5\widehat{j}+6\widehat{k}) - (\widehat{i}+2\widehat{j}+3\widehat{k})

= 3\widehat{i}+3\widehat{j}+3\widehat{k}

Then calculating the determinant value numerator.

\vec{b_{1}}\times\vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 1& -3 &2 \\ 2& 3& 1 \end{vmatrix}

= (-3-6)\widehat{i}-(1-4)\widehat{j}+(3+6)\widehat{k} = -9\widehat{i}+3\widehat{j}+9\widehat{k}

That implies, \left | \vec{b_{1}}\times\vec{b_{2}} \right | = \sqrt{(-9)^2+(3)^2+(9)^2}

= \sqrt{81+9+81} = \sqrt{171} =3\sqrt{19}

\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )=(-9\widehat{i}+3\widehat{j}+9\widehat{k})(3\widehat{i}+3\widehat{j}+3\widehat{k})

= (-9\times3)+(3\times3)+(9\times3) = 9

Now, after substituting the value in the above formula we get,

d= \left | \frac{9}{3\sqrt{19}} \right | = \frac{3}{\sqrt{19}}

Therefore, \frac{3}{\sqrt{19}} is the shortest distance between the two given lines.

Question:17 Find the shortest distance between the lines whose vector equations are

\overrightarrow{r}=(1-t)\widehat{i}+(t-2)\widehat{j}+(3-2t)\widehat{k} and \overrightarrow{r}=(s+1)\widehat{i}+(2s-1)\widehat{j}-(2s+1)\widehat{k}

Answer:

Given two equations of the line

\overrightarrow{r}=(1-t)\widehat{i}+(t-2)\widehat{j}+(3-2t)\widehat{k} \overrightarrow{r}=(s+1)\widehat{i}+(2s-1)\widehat{j}-(2s+1)\widehat{k} in the vector form.

So, we will apply the distance formula for knowing the distance between two lines \vec{r} =\vec{a_{1}}+\lambda{b_{1}} and \vec{r} =\vec{a_{2}}+\lambda{b_{2}}

d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |

After comparing the given equations, we obtain

\vec{a_{1}} = \widehat{i}-2\widehat{j}+3\widehat{k} \vec{b_{1}} = -\widehat{i}+\widehat{j}-2\widehat{k}

\vec{a_{2}} = \widehat{i}-\widehat{j}-\widehat{k} \vec{b_{2}} = \widehat{i}+2\widehat{j}-2\widehat{k}

\vec{a_{2}}-\vec{a_{1}} = (\widehat{i}-\widehat{j}-\widehat{k}) - (\widehat{i}-2\widehat{j}+3\widehat{k}) = \widehat{j}-4\widehat{k}

Then calculating the determinant value numerator.

\vec{b_{1}}\times\vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ -1& 1 &-2 \\ 1& 2& -2 \end{vmatrix}

= (-2+4)\widehat{i}-(2+2)\widehat{j}+(-2-1)\widehat{k} = 2\widehat{i}-4\widehat{j}-3\widehat{k}

That implies,

\left | \vec{b_{1}}\times\vec{b_{2}} \right | = \sqrt{(2)^2+(-4)^2+(-3)^2}

= \sqrt{4+16+9} = \sqrt{29}

\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )=(2\widehat{i}-4\widehat{j}-3\widehat{k})(\widehat{j}-4\widehat{k}) = -4+12 = 8

Now, after substituting the value in the above formula we get,

d= \left | \frac{8}{\sqrt{29}} \right | = \frac{8}{\sqrt{29}}

Therefore, \frac{8}{\sqrt{29}} units are the shortest distance between the two given lines.


NCERT solutions for class 12 maths chapter 11 three dimensional geometry-Exercise: 11.3

Question:1(a) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2

Answer:

Equation of plane Z=2, i.e. 0x+0y+z=2

The direction ratio of normal is 0,0,1

\therefore \, \, \, \sqrt{0^2+0^2+1^2}=1

Divide equation 0x+0y+z=2 by 1 from both side

We get, 0x+0y+z=2

Hence, direction cosins are 0,0,1.

The distance of the plane from the origin is 2.

Question:1(b) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1

Answer:

Given the equation of the plane is x+y+z=1 or we can write 1x+1y+1z=1

So, the direction ratios of normal from the above equation are, 1,\1,\ and\ 1 .

Therefore \sqrt{1^2+1^2+1^2} =\sqrt{3}

Then dividing both sides of the plane equation by \sqrt{3} , we get

\frac{x}{\sqrt3}+\frac{y}{\sqrt3}+\frac{z}{\sqrt3}=\frac{1}{\sqrt3}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are \frac{1}{\sqrt3},\ \frac{1}{\sqrt3},\ \frac{1}{\sqrt3} and the distance of the plane from the origin is \frac{1}{\sqrt3} units.

Question:1(c) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y - z = 5

Answer:

Given the equation of plane is 2x+3y-z=5

So, the direction ratios of normal from the above equation are, 2,\3,\ and\ -1 .

Therefore \sqrt{2^2+3^2+(-1)^2} =\sqrt{14}

Then dividing both sides of the plane equation by \sqrt{14} , we get

\frac{2x}{\sqrt{14}}+\frac{3y}{\sqrt{14}}-\frac{z}{\sqrt{14}}=\frac{5}{\sqrt{14}}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are \frac{2}{\sqrt{14}},\ \frac{3}{\sqrt{14}},\ \frac{-1}{\sqrt{14}} and the distance of the plane from the origin is \frac{5}{\sqrt{14}} units.

Question:1(d) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0

Answer:

Given the equation of plane is 5y+8=0 or we can write 0x-5y+0z=8

So, the direction ratios of normal from the above equation are, 0,\ -5,\ and\ 0 .

Therefore \sqrt{0^2+(-5)^2+0^2} =5

Then dividing both sides of the plane equation by 5 , we get

-y = \frac{8}{5}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are 0,\ -1,\ and\ 0 and the distance of the plane from the origin is \frac{8}{5} units.

Question:2 Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k} .

Answer:

We have given the distance between the plane and origin equal to 7 units and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k} .

So, it is known that the equation of the plane with position vector \vec{r} is given by, the relation,

\vec{r}.\widehat{n} =d , where d is the distance of the plane from the origin.

Calculating \widehat{n} ;

\widehat{n} = \frac{\vec{n}}{|\vec{n}|} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{(3)^2+(5)^2+(6)^2}} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}}

\vec{r}.\left ( \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}} \right ) = 7 is the vector equation of the required plane.

Question:3(a) Find the Cartesian equation of the following planes:

\overrightarrow{r}.(\widehat{i}+\widehat{j}-\widehat{k})=2

Answer:

Given the equation of the plane \overrightarrow{r}.(\widehat{i}+\widehat{j}-\widehat{k})=2

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by,

\vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(\widehat{i}+\widehat{j}-\widehat{k}) =2

Or, x+y-z=2

Therefore this is the required Cartesian equation of the plane.

Question:3(b) Find the Cartesian equation of the following planes:

\overrightarrow{r}.(2\widehat{i}+3\widehat{i}-4\widehat{k})=1

Answer:

Given the equation of plane \overrightarrow{r}.(2\widehat{i}+3\widehat{i}-4\widehat{k})=1

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by,

\vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(2\widehat{i}+3\widehat{j}-4\widehat{k}) =1

Or, 2x+3y-4z=1

Therefore this is the required Cartesian equation of the plane.

Question:3(c) Find the Cartesian equation of the following planes:

\overrightarrow{r}.\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right ]=15

Answer:

Given the equation of plane \overrightarrow{r}.\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right ]=15

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by, \vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right] =15

Or, (s-2t)x+(3-t)y+(2s+t)z=15

Therefore this is the required Cartesian equation of the plane.

Question:4(a) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2 x + 3y + 4 z - 12 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given a plane equation 2x+3y+4z-12=0 ,

Or, 2x+3y+4z=12

The direction ratios of the normal of the plane are 2, 3 and 4 .

Therefore \sqrt{(2)^2+(3)^2+(4)^2} = \sqrt{29}

So, now dividing both sides of the equation by \sqrt{29} we will obtain,

\frac{2}{\sqrt{29}}x+\frac{3}{\sqrt{29}}y+\frac{4}{\sqrt{29}}z = \frac{12}{\sqrt{29}}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left [ \frac{2}{\sqrt{29}}.\frac{12}{\sqrt{29}},\frac{3}{\sqrt{29}}.\frac{12}{\sqrt{29}},\frac{4}{\sqrt{29}}.\frac{12}{\sqrt{29}} \right ] or \left [ \frac{24}{29}, \frac{36}{49}, \frac{48}{29} \right ]

Question:4(b) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z - 6 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given a plane equation 3y+4z-6=0 ,

Or, 0x+3y+4z=6

The direction ratios of the normal of the plane are 0,3 and 4 .

Therefore \sqrt{(0)^2+(3)^2+(4)^2} = 5

So, now dividing both sides of the equation by 5 we will obtain,

0x+\frac{3}{5}y+\frac{4}{5}z = \frac{6}{5}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left (0,\frac{3}{5}.\frac{6}{5},\frac{4}{5}.\frac{6}{5} \right ) or \left ( 0, \frac{18}{25}, \frac{24}{25} \right )

Question:4(c) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given plane equation x+y+z=1 .

The direction ratios of the normal of the plane are 1,1 and 1 .

Therefore \sqrt{(1)^2+(1)^2+(1)^2} = \sqrt3

So, now dividing both sides of the equation by \sqrt3 we will obtain,

\frac{x}{\sqrt3}+\frac{y}{\sqrt3}+\frac{z}{\sqrt3} = \frac{1}{\sqrt3}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left ( \frac{1}{\sqrt3}.\frac{1}{\sqrt3},\frac{1}{\sqrt3}.\frac{1}{\sqrt3},\frac{1}{\sqrt3}.\frac{1}{\sqrt3} \right ) or \left ( \frac{1}{3},\frac{1}{3},\frac{1}{3} \right ) ..

Question: 4(d) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given plane equation 5y+8=0 .

or written as 0x-5y+0z=8

The direction ratios of the normal of the plane are 0, -5 and 0 .

Therefore \sqrt{(0)^2+(-5)^2+(0)^2} = 5

So, now dividing both sides of the equation by 5 we will obtain,

-y=\frac{8}{5}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left ( 0,-1(\frac{8}{5}),0 \right ) or \left ( 0,\frac{-8}{5},0 \right ) .

Question:5(a) Find the vector and cartesian equations of the planes (a) that passes through the point (1, 0, – 2) and the normal to the plane is \widehat{i}+\widehat{j}-\widehat{k}.

Answer:

Given the point A (1,0,-2) and the normal vector \widehat{n} which is perpendicular to the plane is \widehat{n} = \widehat{i}+\widehat{j}-\widehat{k}

The position vector of point A is \vec {a} = \widehat{i}-2\widehat{k}

So, the vector equation of the plane would be given by,

(\vec{r}-\vec{a}).\widehat{n} = 0

Or \left [ \vec{r}-(\widehat{i}-2\widehat{k}) \right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

where \vec{r} is the position vector of any arbitrary point A(x,y,z) in the plane.

\therefore \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}

Therefore, the equation we get,

\left [(x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}-2\widehat{k}) \right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

\Rightarrow \left [(x-1)\widehat{i}+y\widehat{j}+(z+2)\widehat{k}\right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

\Rightarrow(x-1)+y-(z+2) = 0

\Rightarrow x+y-z-3=0 or x+y-z=3

So, this is the required Cartesian equation of the plane.

Question:5(b) Find the vector and cartesian equations of the planes

that passes through the point (1,4, 6) and the normal vector to the plane is \widehat{i}-2\widehat{j}+\widehat{k} .

Answer:

Given the point A (1,4,6) and the normal vector \widehat{n} which is perpendicular to the plane is \widehat{n} = \widehat{i}-2\widehat{j}+\widehat{k}

The position vector of point A is \vec {a} = \widehat{i}+4\widehat{j}+6\widehat{k}

So, the vector equation of the plane would be given by,

(\vec{r}-\vec{a}).\widehat{n} = 0

Or \left [ \vec{r}-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

where \vec{r} is the position vector of any arbitrary point A(x,y,z) in the plane.

\therefore \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}

Therefore, the equation we get,

\left [ (x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

\Rightarrow \left [(x-1)\widehat{i}+(y-4)\widehat{j}+(z-6)\widehat{k}\right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

(x-1)-2(y-4)+(z-6)=0

\Rightarrow x-2y+z+1=0

So, this is the required Cartesian equation of the plane.

Question:6(a) Find the equations of the planes that passes through three points.

(1, 1, – 1), (6, 4, – 5), (– 4, – 2, 3)

Answer:

The equation of the plane which passes through the three points A(1,1,-1),\ B(6,4,-5),\ and\ C(-4,-2,3) is given by;

Determinant method,

\begin{vmatrix} 1 &1 &-1 \\ 6& 4 & -5\\ -4& -2 &3 \end{vmatrix} = (12-10)-(18-20)-(-12+16)

Or, = 2+2-4 = 0

Here, these three points A, B, C are collinear points.

Hence there will be an infinite number of planes possible which passing through the given points.

Question:6(b) Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (– 2, 2, – 1)

Answer:

The equation of the plane which passes through the three points A(1,1,0),\ B(1,2,1),\ and\ C(-2,2,-1) is given by;

Determinant method,

\begin{vmatrix} 1 &1 &0 \\ 1& 2 & 1\\ -2& 2 &-1 \end{vmatrix} = (-2-2)-(2+2)= -8 \neq 0

As determinant value is not equal to zero hence there must be a plane that passes through the points A, B, and C.

Finding the equation of the plane through the points, (x_{1},y_{1},z_{1}), (x_{2},y_{2},z_{2})\ and\ (x_{3},y_{3},z_{3})

\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix} = 0

After substituting the values in the determinant we get,

\begin{vmatrix} x-1 &y-1 &z \\ 0& 1 &1 \\ -3& 1&-1 \end{vmatrix} = 0

\Rightarrow(x-1)(-1-1)-(y-1)(0+3)+z(0+3) = 0

\Rightarrow-2x+2-3y+3+3z = 0

2x+3y-3z = 5

So, this is the required Cartesian equation of the plane.

Question:7 Find the intercepts cut off by the plane 2x + y – z = 5.

Answer:

Given plane 2x + y-z = 5

We have to find the intercepts that this plane would make so,

Making it look like intercept form first:

By dividing both sides of the equation by 5 (as we have to make the R.H.S =1) , we get then,

\frac{2}{5}x+\frac{y}{5}-\frac{z}{5} =1

\Rightarrow \frac{x}{\frac{5}{2}}+\frac{y}{5}+\frac{z}{-5} =1

So, as we know that from the equation of a plane in intercept form, \frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1 where a,b,c are the intercepts cut off by the plane at x,y, and z-axes respectively.

Therefore after comparison, we get the values of a,b, and c.

a = \frac{5}{2},\ b=5,\ and\ c=-5 .

Hence the intercepts are \frac{5}{2},\ 5,\ and\ -5 .

Question:8 Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Answer:

Given that the plane is parallel to the ZOX plane.

So, we have the equation of plane ZOX as y = 0 .

And an intercept of 3 on the y-axis \Rightarrow b =3

Intercept form of a plane given by;

\frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1

So, here the plane would be parallel to the x and z-axes both.

we have any plane parallel to it is of the form, y=a .

Equation of the plane required is y=3 .

Question:9 Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).

Answer:

The equation of any plane through the intersection of the planes,

3x-y+2z-4=0\ and\ x+y+z-2=0

Can be written in the form of; (3x-y+2z-4)\ +\alpha( x+y+z-2)= 0 , where \alpha \epsilon R

So, the plane passes through the point (2,2,1) , will satisfy the above equation.

(3\times2-2+2\times1-4)+\alpha(2+2+1-2) = 0

That implies 2+3\alpha= 0

\alpha = \frac{-2}{3}

Now, substituting the value of \alpha in the equation above we get the final equation of the plane;

(3x-y+2z-4)\ +\alpha( x+y+z-2)= 0

(3x-y+2z-4)\ +\frac{-2}{3}( x+y+z-2)= 0

\Rightarrow 9x-3y+6z-12\ -2 x-2y-2z+4= 0

\Rightarrow 7x-5y+4z-8= 0 is the required equation of the plane.

Question:10 Find the vector equation of the plane passing through the intersection of the planes \overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})=7 , \overrightarrow{r}(2\widehat{i}+5\widehat{j}+3\widehat{k})=9 and through the point (2, 1, 3).

Answer:

Here \vec{n_{1}} =2 \widehat{i}+2\widehat{j}-3\widehat{k} and \vec{n_{2}} = 2\widehat{i}+5\widehat{j}+3\widehat{k}

and d_{1} = 7 and d_{2} = 9

Hence, using the relation \vec{r}.(\vec{n_{1}}+\lambda\vec{n_{2}}) = d_{1}+\lambda d_{2} , we get

\vec{r}.[2\widehat{i}+2\widehat{j}-3\widehat{k}+\lambda(2\widehat{i}+5\widehat{j}+3\widehat{k})] = 7+9\lambda

or \vec{r}.[(2+2\lambda)\widehat{i}+(2+5\lambda)\widehat{j}+(3\lambda-3)\widehat{k}] = 7+9\lambda ..............(1)

where, \lambda is some real number.

Taking \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k} , we get

(\vec{x\widehat{i}+y\widehat{j}+z\widehat{k}}).[(2+2\lambda)\widehat{i}+(2+5\lambda)\widehat{j}+(3\lambda-3)\widehat{k}] = 7+9\lambda

or x(2+2\lambda) + y(2+5\lambda) +z(3\lambda-3) = 7+9\lambda

or 2x+2y-3z-7 + \lambda(2x+5y+3z-9) = 0 .............(2)

Given that the plane passes through the point (2,1,3) , it must satisfy (2), i.e.,

(4+2-9-7) + \lambda(4+5+9-9) = 0

or \lambda = \frac{10}{9}

Putting the values of \lambda in (1), we get

\vec{r}\left [\left ( 2+\frac{20}{9} \right )\widehat{i}+\left ( 2+\frac{50}{9} \right )\widehat{j}+\left ( \frac{10}{3}-3 \right )\widehat{k} \right ] = 7+10

or \vec{r}\left ( \frac{38}{9}\widehat{i}+\frac{68}{9}\widehat{j}+\frac{1}{3}\widehat{k} \right ) = 17

or \vec{r}.\left ( 38\widehat{i}+68\widehat{j}+3\widehat{k} \right ) = 153

which is the required vector equation of the plane.

Question:11 Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0.

Answer:

The equation of the plane through the intersection of the given two planes, x+y+z =1 and 2x+3y+4z =5 is given in Cartesian form as;

(x+y+z-1) +\lambda(2x+3y+4z -5) = 0

or (1+2\lambda)x(1+3\lambda)y+(1+4\lambda)z-(1+5\lambda) = 0 ..................(1)

So, the direction ratios of (1) plane are a_{1},b_{1},c_{1} which are (1+2\lambda),(1+3\lambda),\ and\ (1+4\lambda) .

Then, the plane in equation (1) is perpendicular to x-y+z= 0 whose direction ratios a_{2},b_{2},c_{2} are 1,-1,\ and\ 1 .

As planes are perpendicular then,

a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

we get,

(1+2\lambda) -(1+3\lambda)+(1+4\lambda) = 0

or 1+3\lambda = 0

or \lambda = -\frac{1}{3}

Then we will substitute the values of \lambda in the equation (1), we get

\frac{1}{3}x-\frac{1}{3}z+\frac{2}{3} = 0

or x-z+2=0

This is the required equation of the plane.

Question:12 Find the angle between the planes whose vector equations are \overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})= 5 and \overrightarrow{r}.(3\widehat{i}-3\widehat{j}+5\widehat{k})= 3 .

Answer:

Given two vector equations of plane

\overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})= 5 and \overrightarrow{r}.(3\widehat{i}-3\widehat{j}+5\widehat{k})= 3 .

Here, \vec{n_{1}} = 2\widehat{i}+2\widehat{j}-3\widehat{k} and \vec{n_{2}} = 3\widehat{i}-3\widehat{j}+5\widehat{k}

The formula for finding the angle between two planes,

\cos A = \left | \frac{\vec{n_{1}}.\vec{n_{2}}}{|\vec{n_{1}}||\vec{n_{2}}|} \right | .............................(1)

\vec{n_{1}}.\vec{n_{2}} = (2\widehat{i}+2\widehat{j}-3\widehat{k})(3\widehat{i}-3\widehat{j}+5\widehat{k}) = 2(3)+2(-3)-3(5) = -15

|\vec{n_{1}}| =\sqrt{(2)^2+(2)^2+(-3)^2} =\sqrt{17}

and |\vec{n_{2}}| =\sqrt{(3)^2+(-3)^2+(5)^2} =\sqrt{43}

Now, we can substitute the values in the angle formula (1) to get,

\cos A = \left | \frac{-15}{\sqrt{17}\sqrt{43}} \right |

or \cos A =\frac{15}{\sqrt{731}}

or A = \cos^{-1}\left ( \frac{15}{\sqrt{731}} \right )

Question:13(a) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 7x + 5y + 6z + 30 = 0\ and\ 3x -y - 10z + 4 = 0

Here,

a_{1} = 7,b_{1} = 5, c_{1} = 6 and a_{2} = 3,b_{2} = -1, c_{2} = -10

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{7}{3}, \frac{b_{1}}{b_{2}}=\frac{5}{-1},\frac{c_{1}}{c_{2}} = \frac{6}{-10}

Clearly, the given planes are NOT parallel. \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 7(3)+5(-1)+6(-10) = 21-5-60 = -44 \neq 0 .

Clearly, the given planes are NOT perpendicular.

Then find the angle between them,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |

= \cos^{-1}\left | \frac{-44}{\sqrt{7^2+5^2+6^2}.\sqrt{3^2+(-1)^2+(-10)^2}} \right |

= \cos^{-1}\left | \frac{-44}{\sqrt{110}.\sqrt{110}} \right |

= \cos^{-1}\left ( \frac{44}{110} \right )

= \cos^{-1}\left ( \frac{2}{5} \right )

Question:13(b) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x + y + 3z -2 = 0\ and\ x -2y + 5 = 0

Here,

a_{1} = 2,b_{1} = 1, c_{1} = 3 and a_{2} = 1,b_{2} = -2, c_{2} = 0

So, applying each condition to check:

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 2(1)+1(-2)+3(0) = 2-2+0 = 0 .

Thus, the given planes are perpendicular to each other.

Question:13(c) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x - 2y + 4z + 5 = 0\ and\ 3x -3y +6z -1 = 0

Here,

a_{1} = 2,b_{1} = -2, c_{1} = 4 and a_{2} = 3,b_{2} = -3, c_{2} = 6

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{-2}{-3}=\frac{2}{3},\ and\ \frac{c_{1}}{c_{2}} = \frac{4}{6}=\frac{2}{3}

Thus, the given planes are parallel as \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Question:13(d) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x - y + 3z -1 = 0\ and\ 2x -y +3z + 3 = 0

Here,

a_{1} = 2,b_{1} = -1, c_{1} = 3 and a_{2} = 2,b_{2} = -1, c_{2} = 3

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{2}{2}=1, \frac{b_{1}}{b_{2}}=\frac{-1}{-1} =1,\frac{c_{1}}{c_{2}} = \frac{3}{3} = 1

Therefore \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Thus, the given planes are parallel to each other.

Question:13(e) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

4x + 8y + z – 8 = 0 and y + z – 4 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 4x + 8y + z -8 = 0\ and\ y + z - 4 = 0

Here,

a_{1} = 4,b_{1} = 8, c_{1} = 1 and a_{2} = 0,b_{2} = 1, c_{2} = 1

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{4}{0}, \frac{b_{1}}{b_{2}}=\frac{8}{1},\frac{c_{1}}{c_{2}} = \frac{1}{1}

Clearly, the given planes are NOT parallel as \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} .

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 4(0)+8(1)+1(1) =0+8+1 = 9 \neq 0 .

Clearly, the given planes are NOT perpendicular.

Then finding the angle between them,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |

= \cos^{-1}\left | \frac{9}{\sqrt{4^2+8^2+1^2}.\sqrt{0^2+1^2+1^2}} \right |

= \cos^{-1}\left | \frac{9}{\sqrt{81}.\sqrt{2}} \right |

= \cos^{-1}\left ( \frac{9}{9\sqrt{2}} \right ) = \cos^{-1}\left ( \frac{1}{\sqrt{2}} \right )

= 45^{\circ}

Question:14 In the following cases, find the distance of each of the given points from the corresponding given plane

POINT
PLANE
a. (0, 0, 0)
3x – 4y + 12 z = 3
b. (3, – 2, 1)
2x – y + 2z + 3 = 0
c. (2, 3, – 5)
x + 2y – 2z = 9
d. (– 6, 0, 0)
2x – 3y + 6z – 2 = 0


Answer:

We know that the distance between a point P (x_{1},y_{1},z_{1}) and a plane Ax+By+Cz =D is given by,

d =\left | \frac{Ax_{1}+By_{1}+Cz_{1}-D}{\sqrt{A^2+B^2+C^2}} \right | .......................(1)

So, calculating for each case;

(a) Point (0,0,0) and Plane 3x-4y+12z = 3

Therefore, d =\left | \frac{3(0)-4(0)+12(0)-3}{\sqrt{3^2+(-4)^2+12^2}} \right | = \frac{3}{\sqrt{169}} = \frac{3}{13}

(b) Point (3,-2,1) and Plane 2x-y+2z +3= 0

Therefore, d =\left | \frac{2(3)-(-2)+2(1)+3}{\sqrt{2^2+(-1)^2+2^2}} \right | = \frac{13}{3}

(c) Point (2,3,-5) and Plane x+2y-2z =9

Therefore, d =\left | \frac{2+2(3)-2(-5)-9}{\sqrt{1^2+2^2+(-2)^2}} \right | = \frac{9}{3} = 3

(d) Point (-6,0,0) and Plane 2x-3y+6z -2= 0

Therefore, d =\left | \frac{2(-6)-3(0)+6(0)-2}{\sqrt{2^2+(-3)^2+6^2}} \right | = \frac{-14}{\sqrt{49}} = \frac{14}{7} =2


NCERT solutions for class 12 maths chapter 11 three dimensional geometry-Miscellaneous Exercise

Question:1 Show that the line joining the origin to the point (2, 1, 1) is perpendicular to the line determined by the points (3, 5, – 1), (4, 3, – 1).

Answer:

We can assume the line joining the origin, be OA where O(0,0,0) and the point A(2,1,1) and PQ be the line joining the points P(3,5,-1) and Q(4,3,-1) .

Then the direction ratios of the line OA will be (2-0),(1-0),\ and\ (1-0) = 2,1,1 and that of line PQ will be

(4-3),(3-5),\ and\ (-1+1) = 1,-2,0

So to check whether line OA is perpendicular to line PQ then,

Applying the relation we know,

a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 2(1)+1(-2)+1(0) = 2-2+0 = 0

Therefore OA is perpendicular to line PQ.

Question:2 If l 1 , m 1 , n 1 and l 2 , m 2 , n 2 are the direction cosines of two mutually perpendicular lines, show that the direction cosines of the line perpendicular to both of these are m_{1}n_{2}-m_{2}n_{1}, n_{1}l_{2}-n_{2}l_{1},l_{1}m_{2}-l_{2}m_{1} .

Answer:

Given that l_1,m_1,n_1\ and\ l_2,m_2,n_2 are the direction cosines of two mutually perpendicular lines.

Therefore, we have the relation:

l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2} = 0 .........................(1)

l_{1}^2+m_{1}^2+n_{1}^2 =1\ and\ l_{2}^2+m_{2}^2+n_{2}^2 =1 .............(2)

Now, let us assume l,m,n be the new direction cosines of the lines which are perpendicular to the line with direction cosines. l_1,m_1,n_1\ and\ l_2,m_2,n_2

Therefore we have, ll_{1}+mm_{1}+nn_{1} = 0 \and\ ll_{2}+mm_{2}+nn_{2} = 0

Or, \frac{l}{m_{1}n_{2}-m_{2}n_{1}} = \frac{m}{n_{1}l_{2}-n_{2}l_{1}} = \frac{n}{l_{1}m_{2}-l_{2}m_{1}}

\Rightarrow \frac{l^2}{(m_{1}n_{2}-m_{2}n_{1})^2} = \frac{m^2}{(n_{1}l_{2}-n_{2}l_{1})^2} = \frac{n^2}{(l_{1}m_{2}-l_{2}m_{1})^2}

\Rightarrow \frac{l^2+m^2+n^2}{(m_{1}n_{2}-m_{2}n_{1})^2 +(n_{1}l_{2}-n_{2}l_{1})^2+(l_{1}m_{2}-l_{2}m_{1})^2} ......(3)

So, l,m,n are the direction cosines of the line.

where, l^2+m^2+n^2 =1 ........................(4)

Then we know that,

\Rightarrow (l_{1}^2+m_{1}^2+n_{1}^2)(l_{2}^2+m_{2}^2+n_{2}^2) - (l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2})^2

= (m_{1}n_{2}-m_{2}n_{1})^2 + (n_{1}l_{2}-n_{2}l_{1})^2+(l_{1}m_{2}-l_{2}m_{1})^2

So, from the equation (1) and (2) we have,

(1)(1) -(0) =(m_{1}n_{2}-m_{2}n_{1})^2 + (n_{1}l_{2}-n_{2}l_{1})^2+(l_{1}m_{2}-l_{2}m_{1})^2

Therefore, (m_{1}n_{2}-m_{2}n_{1})^2 + (n_{1}l_{2}-n_{2}l_{1})^2+(l_{1}m_{2}-l_{2}m_{1})^2 =1 ..(5)

Now, we will substitute the values from the equation (4) and (5) in equation (3), to get

\frac{l^2}{(m_{1}n_{2}-m_{2}n_{1})^2} = \frac{m^2}{(n_{1}l_{2}-n_{2}l_{1})^2} = \frac{n^2}{(l_{1}m_{2}-l_{2}m_{1})^2} =1

Therefore we have the direction cosines of the required line as;

l =m_{1}n_{2} - m_{2}n_{1}

m =n_{1}l_{2} - n_{2}l_{1}

n =l_{1}m_{2} - l_{2}m_{1}

Question:3 Find the angle between the lines whose direction ratios are a, b, c and b – c, c – a, a – b.

Answer:

Given direction ratios a,b,c and b-c,\ c-a,\ a-b .

Thus the angle between the lines A is given by;

A = \left | \frac{a(b-c)+b(c-a)+c(a-b)}{\sqrt{a^2+b^2+c^2}.\sqrt{(b-c)^2+(c-a)^2+(a-b)^2}} \right |

\Rightarrow \cos A = 0

\Rightarrow A = \cos^{-1}(0) = 90^{\circ} a

Thus, the angle between the lines is 90^{\circ}

Question:4 Find the equation of a line parallel to x-axis and passing through the origin.

Answer:

Equation of a line parallel to the x-axis and passing through the origin (0,0,0) is itself x-axis .

So, let A be a point on the x-axis.

Therefore, the coordinates of A are given by (a,0,0) , where a\epsilon R .

Now, the direction ratios of OA are (a-0) =a,0 , 0

So, the equation of OA is given by,

\frac{x-0}{a} = \frac{y-0}{0} = \frac{z-0}{0}

or \Rightarrow \frac{x}{1} = \frac{y}{0} = \frac{z}{0} = a

Thus, the equation of the line parallel to the x-axis and passing through origin is

\frac{x}{1} = \frac{y}{0} = \frac{z}{0}

Question:5 If the coordinates of the points A, B, C, D be (1, 2, 3), (4, 5, 7), (– 4, 3, – 6) and (2, 9, 2) respectively, then find the angle between the lines AB and CD.

Answer:

Direction ratios of AB are (4-1),(5-2),(7-3) = 3,3,4

and Direction ratios of CD are (2-(-4)), (9-3), (2-(-6)) = 6,6,8

So, it can be noticed that, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} =\frac{c_{1}}{c_{2}} = \frac{1}{2}

Therefore, AB is parallel to CD.

Thus, we can easily say the angle between AB and CD which is either 0^{\circ}\ or\ 180^{\circ} .

Question:6 If the lines \frac{x-1}{-3}=\frac{y-2}{k}=\frac{z-3}{2} and \frac{x-1}{3k}=\frac{y-1}{1}=\frac{z-6}{-5} are perpendicular, find the value of k.

Answer:

Given both lines are perpendicular so we have the relation; a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

For the two lines whose direction ratios are known,

a_{1},b_{1},c_{1}\ and\ a_{2},b_{2},c_{2}

We have the direction ratios of the lines, \frac{x-1}{-3}=\frac{y-2}{k}=\frac{z-3}{2} and \frac{x-1}{3k}=\frac{y-1}{1}=\frac{z-6}{-5} are -3,2k,2 and 3k,1,-5 respectively.

Therefore applying the formula,

-3(3k)+2k(1)+2(-5) = 0

\Rightarrow -9k +2k -10 = 0

\Rightarrow7k=-10 or k= \frac{-10}{7}

\therefore For, k= \frac{-10}{7} the lines are perpendicular.

Question:7 Find the vector equation of the line passing through (1, 2, 3) and perpendicular to the plane \overrightarrow{r}.(\widehat{i}+2\widehat{j}-5\widehat{k})+9=0

Answer:

Given that the plane is passing through the point A (1,2,3) so, the position vector of the point A is \vec{r_{A}} = \widehat{i}+2\widehat{j}+3\widehat{k} and perpendicular to the plane \overrightarrow{r}.(\widehat{i}+2\widehat{j}-5\widehat{k})+9=0 whose direction ratios are 1,2,\ and\ -5 and the normal vector is \vec{n} = \widehat{i}+2\widehat{j}-5\widehat{k}

So, the equation of a line passing through a point and perpendicular to the given plane is given by,

\vec{l} = \vec{r} + \lambda\vec{n} , where \lambda \epsilon R

\Rightarrow \vec{l} = (\widehat{i}+2\widehat{j}+3\widehat{k}) + \lambda(\widehat{i}+2\widehat{j}-5\widehat{k})

Question:8 Find the equation of the plane passing through (a, b, c) and parallel to the plane \overrightarrow{r}.(\widehat{i}+\widehat{j}+\widehat{k})=2 .

Answer:

Given that the plane is passing through (a,b,c) and is parallel to the plane \overrightarrow{r}.(\widehat{i}+\widehat{j}+\widehat{k})=2

So, we have

The position vector of the point A(a,b,c) is, \vec{r_{A}} = a\widehat{i}+b\widehat{j}+c\widehat{k}

and any plane which is parallel to the plane, \overrightarrow{r}.(\widehat{i}+\widehat{j}+\widehat{k})=2 is of the form,

\overrightarrow{r}.(\widehat{i}+\widehat{j}+\widehat{k})=\lambda . .......................(1)

Therefore the equation we get,

( a\widehat{i}+b\widehat{j}+c\widehat{k}).(\widehat{i}+\widehat{j}+\widehat{k})=\lambda

Or, a+b+c = \lambda

So, now substituting the value of \lambda = a+b+c in equation (1), we get

\overrightarrow{r}.(\widehat{i}+\widehat{j}+\widehat{k})=a+b+c .................(2)

So, this is the required equation of the plane .

Now, substituting \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k} in equation (2), we get

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(\widehat{i}+\widehat{j}+\widehat{k})=a+b+c

Or, x+y+z = a+b+c

Question:9 Find the shortest distance between lines \overrightarrow{r}=6\widehat{i}+2\widehat{j}+2\widehat{k}+\lambda (\widehat{i}-2\widehat{j}-2\widehat{k}) and \overrightarrow{r}=-4\widehat{i}-\widehat{k}+\mu(3\widehat{i}-2\widehat{j}-2\widehat{k}) .

Answer:

Given lines are;

\overrightarrow{r}=6\widehat{i}+2\widehat{j}+2\widehat{k}+\lambda (\widehat{i}-2\widehat{j}-2\widehat{k}) and

\overrightarrow{r}=-4\widehat{i}-\widehat{k}+\mu(3\widehat{i}-2\widehat{j}-2\widehat{k})

So, we can find the shortest distance between two lines \vec{r} = \vec{a_{1}}+\lambda \vec{b_{1}} and \vec{r} = \vec{a_{1}}+\lambda \vec{b_{1}} by the formula,

d = \left | \frac{(\vec{b_{1}}\times\vec{b_{2}}).(\vec{a_{2}}-\vec{a_{1}})}{\left | \vec{b_{1}}\times\vec{b_{2}} \right |} \right | ...........................(1)

Now, we have from the comparisons of the given equations of lines.

\vec{a_{1}} = 6\widehat{i}+2\widehat{j}+2\widehat{k} \vec{b_{1}} = \widehat{i}-2\widehat{j}+2\widehat{k}

\vec{a_{2}} = -4\widehat{i}-\widehat{k} \vec{b_{2}} = 3\widehat{i}-2\widehat{j}-2\widehat{k}

So, \vec{a_{2}} -\vec{a_{1}} = (-4\widehat{i}-\widehat{k}) -(6\widehat{i}+2\widehat{j}+2\widehat{k}) = -10\widehat{i}-2\widehat{j}-3\widehat{k}

and \Rightarrow \vec{b_{1}}\times \vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 1 &-2 &2 \\ 3& -2 &-2 \end{vmatrix} = (4+4)\widehat{i}-(-2-6)\widehat{j}+(-2+6)\widehat{k}

=8\widehat{i}+8\widehat{j}+4\widehat{k}

\therefore \left | \vec{b_{1}}\times \vec{b_{2}} \right | = \sqrt{8^2+8^2+4^2} =12

(\vec{b_{1}}\times \vec{b_{2}}).(\vec{a_{2}}-\vec{a_{1}}) = (8\widehat{i}+8\widehat{j}+4\widehat{k}).(-10\widehat{i}-2\widehat{j}-3\widehat{k}) = -80-16-12 =-108 Now, substituting all values in equation (3) we get,

d = | \frac{-108}{12}| = 9

Hence the shortest distance between the two given lines is 9 units.

Question:10 Find the coordinates of the point where the line through (5, 1, 6) and (3, 4,1) crosses the YZ-plane.

Answer:

We know that the equation of the line that passes through the points (x_{1},y_{1},z_{1}) and (x_{2},y_{2},z_{2}) is given by the relation;

\frac{x-x_{1}}{x_{2}-x_{1}} = \frac{y-y_{1}}{y_{2}-y_{1}} = \frac{z-z_{1}}{z_{2}-z_{1}}

and the line passing through the points, \frac{x-5}{3-5} =\frac{y-1}{4-1} = \frac{z-6}{1-6}

\implies \frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5} = k\ (say)

\implies x=5-2k,\ y=3k+1,\ z=6-5k

And any point on the line is of the form (5-2k,3k+1,6-5k) .

So, the equation of the YZ plane is x=0

Since the line passes through YZ- plane,

we have then,

5-2k = 0

\Rightarrow k =\frac{5}{2}

or 3k+1 = 3(\frac{5}{2})+1 = \frac{17}{2} and 6-5k= 6-5(\frac{5}{2}) = \frac{-13}{2}

So, therefore the required point is \left ( 0,\frac{17}{2},\frac{-13}{2} \right )

Question : 11 Find the coordinates of the point where the line through (5, 1, 6) and (3, 4, 1) crosses the ZX-plane.

Answer:

We know that the equation of the line that passes through the points (x_{1},y_{1},z_{1}) and (x_{2},y_{2},z_{2}) is given by the relation;

\frac{x-x_{1}}{x_{2}-x_{1}} = \frac{y-y_{1}}{y_{2}-y_{1}} = \frac{z-z_{1}}{z_{2}-z_{1}}

and the line passing through the points, \frac{x-5}{3-5} =\frac{y-1}{4-1} = \frac{z-6}{1-6}

\implies \frac{x-5}{-2} = \frac{y-1}{3} = \frac{z-6}{-5} = k\ (say)

\implies x=5-2k,\ y=3k+1,\ z=6-5k

And any point on the line is of the form (5-2k,3k+1,6-5k) .

So, the equation of ZX plane is y=0

Since the line passes through YZ- plane,

we have then,

3k+1 = 0

\Rightarrow k =-\frac{1}{3}

or 5-2k = 5-2\left ( -\frac{1}{3} \right ) = \frac{17}{3} and 6-5k= 6-5(\frac{-1}{3}) = \frac{23}{3}

So, therefore the required point is \left ( \frac{17}{3},0,\frac{23}{3} \right )

Question:12 Find the coordinates of the point where the line through (3, – 4, – 5) and (2, – 3, 1) crosses the plane 2x + y + z = 7.

Answer:

We know that the equation of the line that passes through the points (x_{1},y_{1},z_{1}) and (x_{2},y_{2},z_{2}) is given by the relation;

\frac{x-x_{1}}{x_{2}-x_{1}} = \frac{y-y_{1}}{y_{2}-y_{1}} = \frac{z-z_{1}}{z_{2}-z_{1}}

and the line passing through the points, (3,-4,-5)\ and\ (2,-3,1) .

\implies \frac{x-3}{2-3} = \frac{y+4}{-3+4} = \frac{z+5}{1+5} = k\ (say)

\implies \frac{x-3}{-1} = \frac{y+4}{-1} = \frac{z+5}{6} = k\ (say)

\implies x=3-k,\ y=k-4,\ z=6k-5

And any point on the line is of the form. (3-k,k-4,6k-5)

This point lies on the plane, 2x+y+z = 7

\therefore 2(3-k)+(k-4)+(6k-5) = 7

\implies 5k-3=7

or k =2 .

Hence, the coordinates of the required point are (3-2,2-4,6(2)-5) or (1,-2,7) .

Question:13 Find the equation of the plane passing through the point (– 1, 3, 2) and perpendicular to each of the planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

Answer:

Given

two planes x + 2y + 3z = 5 and 3x + 3y + z = 0.

the normal vectors of these plane are

n_1=\hat i+2\hat j+ 3\hat k

n_2=3\hat i+3\hat j+ \hat k

Since the normal vector of the required plane is perpendicular to the normal vector of given planes, the required plane's normal vector will be :

\vec n = \vec n_1\times\vec n_2

\vec n = (\hat i+2\hat j +3\hat k )\times (3\hat i + 3\hat j +\hat k)

\vec n =\begin{vmatrix} \hat i &\hat j &\hat k \\ 1 &2 &3 \\ 3& 3& 1 \end{vmatrix}=\hat i(2-9)-\hat j(1-9)+\hat k (3-6)

\vec n =-7\hat i+8\hat j-3\hat k

Now, as we know

the equation of a plane in vector form is :

\vec r\cdot\vec n=d

\vec r\cdot(-7\hat i+8\hat j-3\hat k)=d

Now Since this plane passes through the point (-1,3,2)

(-\hat i+3\hat j+2\hat k)\cdot(-7\hat i+8\hat j-3\hat k)=d

7+24-6=d

d=25

Hence the equation of the plane is

\vec r\cdot(-7\hat i+8\hat j-3\hat k)=25

Question:14 If the points (1, 1, p) and (– 3, 0, 1) be equidistant from the plane \overrightarrow{r}.(3\widehat{i}+4\widehat{j}-12\widehat{k})+13 =0 then find the value of p.

Answer:

Given that the points A(1,1,p) and B(-3,0,1) are equidistant from the plane

\overrightarrow{r}.(3\widehat{i}+4\widehat{j}-12\widehat{k})+13 =0

So we can write the position vector through the point (1,1,p) is \vec{a_{1}} = \widehat{i}+\widehat{j}+p\widehat{k}

Similarly, the position vector through the point B(-3,0,1) is

\vec{a_{2}} = -4\widehat{i}+\widehat{k}

The equation of the given plane is \overrightarrow{r}.(3\widehat{i}+4\widehat{j}-12\widehat{k})+13 =0

and We know that the perpendicular distance between a point whose position vector is \vec{a} and the plane, \vec{n} = 3\widehat{i}+4\widehat{j}-12\widehat{k} and d =-13

Therefore, the distance between the point A(1,1,p) and the given plane is

D_{1} = \frac{\left | (\widehat{i}+\widehat{j}+p\widehat{k}).(3\widehat{i}+4\widehat{j}-12\widehat{k})+13 \right |}{3\widehat{i}+4\widehat{j}-12\widehat{k}}

D_{1} = \frac{\left | 3+4-12p+13 \right |}{\sqrt{3^2+4^2+(-12)^2}}

D_{1} = \frac{\left | 20-12p \right |}{13} nbsp; .........................(1)

Similarly, the distance between the point B(-1,0,1) , and the given plane is

D_{2} = \frac{\left | (-3\widehat{i}+\widehat{k}).(3\widehat{i}+4\widehat{j}-12\widehat{k})+13 \right |}{3\widehat{i}+4\widehat{j}-12\widehat{k}}

D_{2} = \frac{\left |-9-12+13 \right |}{\sqrt{3^2+4^2+(-12)^2}}

D_{2} = \frac{8}{13} .........................(2)

And it is given that the distance between the required plane and the points, A(1,1,p) and B(-3,0,1) is equal.

\therefore D_{1} =D_{2}

\implies \frac{\left | 20-12p \right |}{13} =\frac{8}{13}

therefore we have,

\implies 12p =12

or p =1 or p = \frac{7}{3}

Question:15 Find the equation of the plane passing through the line of intersection of the planes \overrightarrow{r}.\left ( \widehat{i}+\widehat{j}+\widehat{k} \right )=1 and \overrightarrow{r}.\left (2 \widehat{i}+3\widehat{j}-\widehat{k} \right )+4=0 and parallel to x-axis.

Answer:

So, the given planes are:

\overrightarrow{r}.\left ( \widehat{i}+\widehat{j}+\widehat{k} \right )=1 and \overrightarrow{r}.\left (2 \widehat{i}+3\widehat{j}-\widehat{k} \right )+4=0

The equation of any plane passing through the line of intersection of these planes is

[\overrightarrow{r}.\left ( \widehat{i}+\widehat{j}+\widehat{k} \right )-1] + \lambda \left [ \overrightarrow{r}.\left (2 \widehat{i}+3\widehat{j}-\widehat{k} \right )+4\right ] = 0

\vec{r}.[(2\lambda+1)\widehat{i}+(3\lambda+1)\widehat{j}+(1-\lambda)\widehat{k}]+(4\lambda+1) = 0 ..............(1)

Its direction ratios are (2\lambda+1) , (3\lambda+1), and (1-\lambda) = 0

The required plane is parallel to the x-axis.

Therefore, its normal is perpendicular to the x-axis.

The direction ratios of the x-axis are 1,0, and 0.

\therefore \1.(2\lambda+1) + 0(\3\lambda+1)+0(1-\lambda) = 0

\implies 2\lambda+1 = 0

\implies \lambda = -\frac{1}{2}

Substituting \lambda = -\frac{1}{2} in equation (1), we obtain

\implies \vec{r}.\left [ -\frac{1}{2}\widehat{j}+\frac{3}{2}\widehat{k} \right ]+(-3)= 0

\implies \vec{r}(\widehat{j}-3\widehat{k})+6= 0

So, the Cartesian equation is y -3z+6 = 0

Question:16 If O be the origin and the coordinates of P be (1, 2, – 3), then find the equation of the plane passing through P and perpendicular to OP.

Answer:

We have the coordinates of the points O(0,0,0) and P(1,2,-3) respectively.

Therefore, the direction ratios of OP are (1-0) = 1, (2-0)=2,\ and\ (-3-0)=-3

And we know that the equation of the plane passing through the point (x_{1},y_{1},z_{1}) is

a(x-x_{1})+b(y-y_{1})+c(z-z_{1})=0 where a,b,c are the direction ratios of normal.

Here, the direction ratios of normal are 1,2, and -3 and the point P is (1,2,-3) .

Thus, the equation of the required plane is

1(x-1)+2(y-2)-3(z+3) = 0

\implies x+2y -3z-14 = 0

Question:17 Find the equation of the plane which contains the line of intersection of the planes \overrightarrow{r}.(\widehat{i}+2\widehat{j}+3\widehat{k})-4=0,\overrightarrow{r}.\left ( 2\widehat{i}+\widehat{j}-\widehat{k} \right )+5=0 and which is perpendicular to the plane \overrightarrow{r}.(5\widehat{i}+3\widehat{j}-6\widehat{k})+8=0

Answer:

The equation of the plane passing through the line of intersection of the given plane in \overrightarrow{r}.(\widehat{i}+2\widehat{j}+3\widehat{k})-4=0,\overrightarrow{r}.\left ( 2\widehat{i}+\widehat{j}-\widehat{k} \right )+5=0

\left [ \vec{r}.(\widehat{i}+2\widehat{j}+3\widehat{k})-4 \right ]+\lambda\left [ \vec{r}.\left ( 2\widehat{i}+\widehat{j}-\widehat{k} \right )+5 \right ] = 0

\vec{r}.[(2\lambda+1)\widehat{i}+(\lambda+2)\widehat{j}+(3-\lambda)\widehat{k}]+(5\lambda-4)= 0 ,,,,,,,,,,,,,(1)

The plane in equation (1) is perpendicular to the plane, 1633928330199 Therefore 5(2\lambda+1)+3(\lambda+2) -6(3-\lambda) = 0

\implies 19\lambda -7 = 0

\implies \lambda = \frac{7}{19}

Substituting \lambda = \frac{7}{19} in equation (1), we obtain

\implies \vec{r}.\left [ \frac{33}{19}\widehat{i}+\frac{45}{19}\widehat{j}+\frac{50}{19}\widehat{k} \right ] -\frac{41}{19} = 0

\implies \vec{r}.(33\widehat{i}+45\widehat{j}+50\widehat{k}) -41 = 0 .......................(4)

So, this is the vector equation of the required plane.

The Cartesian equation of this plane can be obtained by substituting \implies \vec{r}= (x\widehat{i}+y\widehat{j}+z\widehat{k}) in equation (1).

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(33\widehat{i}+45\widehat{j}+50\widehat{k}) -41 = 0

Therefore we get the answer 33x+45y+50z -41 = 0

Question:18 Find the distance of the point (– 1, – 5, – 10) from the point of intersection of the line \overrightarrow{r}=2\widehat{i}-\widehat{j}+2\widehat{k}+ \lambda\left ( 3\widehat{i}+4\widehat{j}+2\widehat{k} \right ) and the plane \overrightarrow{r}.\left ( \widehat{i}-\widehat{j}+\widehat{k} \right )=5 .

Answer:

Given,

Equation of a line :

\overrightarrow{r}=2\widehat{i}-\widehat{j}+2\widehat{k}+ \lambda\left ( 3\widehat{i}+4\widehat{j}+2\widehat{k} \right )

Equation of the plane

\overrightarrow{r}.\left ( \widehat{i}-\widehat{j}+\widehat{k} \right )=5

Let's first find out the point of intersection of line and plane.

putting the value of \vec r into the equation of a plane from the equation from line

\left (2\widehat{i}-\widehat{j}+2\widehat{k}+ \lambda\left ( 3\widehat{i}+4\widehat{j}+2\widehat{k} \right ) \right )\cdot (\hat i-\hat j+\hat k)=5

(2+3\lambda)-(4\lambda -1)+(2+2\lambda)=5

\lambda+5=5

\lambda=0

Now, from the equation, any point p in line is

P=(2+3\lambda,4\lambda-1,2+2\lambda)

So the point of intersection is

P=(2+3*0,4*0-1,2+2*0)=(2,-1,2)

SO, Now,

The distance between the points (-1,-5,-10) and (2,-1,2) is

d=\sqrt{(2-(-1))^2+(-1-(-5))^2+(2-(-10))^2}=\sqrt{9+16+144}

d=\sqrt{169}=13

Hence the required distance is 13.

Question:19 Find the vector equation of the line passing through (1, 2, 3) and parallel to the planes \overrightarrow{r}.\left ( \widehat{i}-\widehat{j}+2\widehat{k} \right )=5 and \overrightarrow{r}.\left ( 3\widehat{i}+\widehat{j}+\widehat{k} \right )=6 .

Answer:

Given

A point through which line passes

\vec a=\hat i+2\hat j+3\hat k

two plane

\overrightarrow{r}.\left ( \widehat{i}-\widehat{j}+2\widehat{k} \right )=5 And

\overrightarrow{r}.\left ( 3\widehat{i}+\widehat{j}+\widehat{k} \right )=6

it can be seen that normals of the planes are

\vec n_1=\hat i-\hat j+2\hat k

\vec n_2=3\hat i+\hat j+\hat k
since the line is parallel to both planes, its parallel vector will be perpendicular to normals of both planes.

So, a vector perpendicular to both these normal vector is

\vec d=\vec n_1\times\vec n_2

\vec d=\begin{vmatrix} \hat i &\hat j & \hat k\\ 1 &-1 &2 \\ 3& 1 & 1 \end{vmatrix}=\hat i(-1-2)-\hat j(1-6)+\hat k(1+3)

\vec d=-3\hat i+5\hat j+4\hat k

Now a line which passes through \vec a and parallels to \vec d is

L=\vec a+\lambda\vec d

So the required line is

L=\vec a+\lambda\vec d

L=\hat i+2\hat j+3\hat k+\lambda(-3\hat i+5\hat j+4\hat k)

L=(1-3\lambda)\hat i+(2+5\lambda)\hat j+(3+4\lambda)\hat k

Questio n: 20 Find the vector equation of the line passing through the point (1, 2, – 4) and perpendicular to the two lines:

\frac{x-8}{3}=\frac{y+19}{-16}=\frac{z-10}{7} and \frac{x-15}{3}=\frac{y-29}{8}=\frac{z-5}{-5}

Answer:

Given

Two straight lines in 3D whose direction cosines (3,-16,7) and (3,8,-5)

Now the two vectors which are parallel to the two lines are

\vec a= 3\hat i-16\hat j+7\hat k and

\vec b= 3\hat i+8\hat j-5\hat k

As we know, a vector perpendicular to both vectors \vec a and \vec b is \vec a\times\vec b , so

\vec a\times\vec b=\begin{vmatrix} \hat i &\hat j &\hat k \\ 3& -16 &7 \\ 3&8 &-5 \end{vmatrix}=\hat i(80-56)-\hat j(-15-21)+\hat k(24+48)

\vec a\times\vec b=24\hat i+36\hat j+72\hat k

A vector parallel to this vector is

\vec d=2\hat i+3\hat j+6\hat k

Now as we know the vector equation of the line which passes through point p and parallel to vector d is

L=\vec p+\lambda \vec d

Here in our question, give point p = (1,2,-4) which means position vector of this point is

\vec p = \hat i +2\hat j-4\hat k

So, the required line is

L=\vec p+\lambda \vec d

L=\hat i+2\hat j-4\hat k +\lambda (2\hat i+3\hat j+6\hat k)

L=(2\lambda +1)\hat i+(2+3\lambda)\hat j+(6\lambda-4)\hat k

Question:21 Prove that if a plane has the intercepts a, b, c and is at a distance of p units from the origin, then \frac{1}{a^{2}}+\frac{1}{b^{2}}+\frac{1}{c^{2}}=\frac{1}{p^{2}} .

Answer:

The equation of plane having a, b and c intercepts with x, y and z-axis respectively is given by
\frac{x}{a}+\frac{y}{b}+\frac{z}{c}= 1
The distance p of the plane from the origin is given by
\\p = \left | \frac{\frac{0}{a}+\frac{0}{b}+\frac{0}{c}-1}{\sqrt{(\frac{1}{a})^2+(\frac{1}{b})^2(\frac{1}{c})^2}} \right |\\ \\ p = \left | \frac{-1}{\sqrt{(\frac{1}{a})^2+(\frac{1}{b})^2(\frac{1}{c})^2}} \right |\\ \\ \frac{1}{p^2}= \frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}
Hence proved

Question:22 Distance between the two planes: 2x + 3y + 4z = 4 and 4x + 6y + 8z = 12 is

(A) 2 units (B) 4 units (C) 8 units (D) \frac{2}{\sqrt{29}}unit

Answer:

Given equations are
2x+3y+4z= 4 \ \ \ \ \ \ \ \ \ -(i)
and
4x+6y+8z= 12\\ 2(2x+3y+4z)= 12\\ 2x+3y+4z = 6 \ \ \ \ \ \ \ \ \ \ -(ii)
Now, it is clear from equation (i) and (ii) that given planes are parallel
We know that the distance between two parallel planes ax+by +cz = d_1 \ and \ ax+by +cz = d_2 is given by
D= \left | \frac{d_2-d_1}{\sqrt{a^2+b^2+c^2}} \right |
Put the values in this equation
we will get,
D= \left | \frac{6-4}{\sqrt{2^2+3^2+4^2}} \right |
D= \left | \frac{2}{\sqrt{4+9+16}} \right |= \left | \frac{2}{\sqrt{29}} \right |
Therefore, the correct answer is (D)

Question:23 The planes: 2x – y + 4z = 5 and 5x – 2.5y + 10z = 6 are

(A) Perpendicular (B) Parallel (C) intersect y-axis (D) passes through \left ( 0,0,\frac{5}{4} \right )

Answer:

Given equations of planes are
2x-y+4z=5 \ \ \ \ \ \ \ \ \ -(i)
and
5x-2.5y+10z=6\\ 2.5(2x-y+4z)=6\\ 2x-y+4z= 2.4 \ \ \ \ \ \ \ \ \ -(ii)
Now, from equation (i) and (ii) it is clear that given planes are parallel to each other
\because \frac{a_1}{a_2}=\frac{b_1}{b_2}=\frac{c_1}{c_2}\Rightarrow \frac{2}{2}= \frac{-1}{-1}=\frac{4}{4}\Rightarrow 1=1=1
Therefore, the correct answer is (B)

If you are looking for exercises solutions for chapter 3d Geometry class 12 then they are listed below.

  • Three Dimensional Geometry Class 12 Exercise 11.1
  • Three Dimensional Geometry Class 12 Exercise 11.2
  • Three Dimensional Geometry Class 12 Exercise 11.3
  • Three Dimensional Geometry Class 12 Miscellaneous Exercise

More about NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

  • All the important topics are covered in the Class 12 Maths Chapter 11 NCERT solutions.

  • A total of 36 questions in 3 exercises are given in this NCERT Class 12 Maths solutions chapter

  • All these NCERT questions are solved and explained in the NCERT solutions for class 12 maths chapter 11 three dimensional geometry article to clear your doubts.

  • In this NCERT Solutions for Class 12 Maths Chapter 11 PDF Download, we deal with formulas like-

  • If l, m, n are the direction cosines of a line, thenl^2+m^2+n^2=1.

  • Q(x_{2}, y_{2}, z_{2})andP(x_{1}, y_{1}, z_{1})Direction cosines of a line joining two pointsPQ=\sqrt{(X_2-X_1)^2+(Y_2-Y_1)^2+(Z_2-Z_1)^2}are\frac{X_2-X_1}{PQ},\:\frac{Y_2-Y_1}{PQ},\:\frac{Z_2-Z_1}{PQ}, where

  • If l, m, n are the direction cosines and a, b, c are the direction of a line then-

  • \dpi{80} l=\frac{a}{\sqrt{a^2+b^2+c^2}} ; m=\frac{b}{\sqrt{a^2+b^2+c^2}}; n=\frac{c}{\sqrt{a^2+b^2+c^2}}

Also read,

  • NCERT Exemplar Class 12 Chemistry Solutions
  • NCERT Exemplar Class 12 Mathematics Solutions
  • NCERT Exemplar Class 12 Biology Solutions
  • NCERT Exemplar Class 12 Physics Solutions

NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry - Important Topics

11.1 Introduction

11.2 Direction Cosines and Direction Ratios of a Line

11.2.1 Relation between the direction cosines of a line

11.2.2 Direction cosines of a line passing through two points

11.3 Equation of a Line in Space

11.3.1Equation of a line through a given point and parallel to a given vector b

11.3.2 Equation of a line passing through two given points

11.4 Angle between Two Lines

11.5 Shortest Distance between Two Lines

11.5.1 Distance between two skew lines

11.5.2 Distance between parallel lines

11.6 Plane

11.6.1 Equation of a plane in normal form

11.6.2 Equation of a plane perpendicular to a given vector and passing through a given point

11.6.3 Equation of a plane passing through three noncollinear points

11.6.4 Intercept form of the equation of a plane

11.6.5 Plane passing through the intersection of two given planes

11.7 Coplanarity of Two Lines

11.8 Angle between Two Planes

11.9 Distance of a Point from a Plane

11.10 Angle between a Line and a Plane

NCERT solutions for class 12 maths - Chapter wise

Chapter 1

NCERT Solutions for Class 12 Maths Chapter 1 Relations and Functions

Chapter 2

NCERT solutions for class 12 maths chapter 2 Inverse Trigonometric Functions

Chapter 3

NCERT solutions for class 12 maths chapter 3 Matrices

Chapter 4

NCERT solutions for class 12 maths chapter 4 Determinants

Chapter 5

NCERT solutions for class 12 maths chapter 5 Continuity and Differentiability

Chapter 6

NCERT solutions for class 12 maths chapter 6 Application of Derivatives

Chapter 7

NCERT solutions for class 12 maths chapter 7 Integrals

Chapter 8

NCERT solutions for class 12 maths chapter 8 Application of Integrals

Chapter 9

NCERT solutions for class 12 maths chapter 9 Differential Equations

Chapter 10

NCERT solutions for class 12 maths chapter 10 Vector Algebra

Chapter 11

NCERT solutions for class 12 maths chapter 11 Three Dimensional Geometry

Chapter 12

NCERT solutions for class 12 maths chapter 12 Linear Programming

Chapter 13

NCERT solutions for class 12 maths chapter 13 Probability

Key Features of NCERT Solutions for Class 12 Maths Chapter - 11 Three Dimensional Geometry

Chapter 11 of Class 12 Maths is titled "Three Dimensional Geometry." NCERT Solutions for this chapter provide step-by-step solutions to all the exercises and problems included in the textbook. Some of the key features of NCERT Solutions for Class 12 Maths Chapter 11 are:

  1. Comprehensive Coverage: The solutions cover all the important topics and concepts discussed in the chapter, including the coordinate axes and coordinate planes in three dimensions, distance between two points, section formula, direction cosines and direction ratios of a line, angle between two lines, equation of a line and a plane, and the distance of a point from a plane.

  2. Simple and Clear Explanation: The solutions are written in a simple and clear language that makes it easy for students to understand even the most complex concepts.

  3. Step-by-step Approach: The solutions are provided in a step-by-step manner, making it easy for students to follow and learn.

NCERT solutions for class 12 subject wise

  • NCERT solutions for class 12 mathematics

  • NCERT solutions class 12 chemistry

  • NCERT solutions for class 12 physics

  • NCERT solutions for class 12 biology

NCERT Solutions class wise:

  • NCERT solutions for class 12

  • NCERT solutions for class 11

  • NCERT solutions for class 10

  • NCERT solutions for class 9

Benefits of NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

  • Class 12 Maths Chapter 11 NCERT solutions are very easy for you to understand the concepts as they are explained in a step-by-step manner.

  • NCERT Class 12 Maths solutions chapter 11 will give you some new insight into the concepts.

  • Scoring good marks in the exam is now a reality with the help of these solutions of NCERT for class 12 maths chapter 11 three dimensional geometry as these questions are answered by the experts who know how best to answer the questions in the board exam.

  • You should solve the miscellaneous exercise also, to develop a grip on the concepts. Here, you will get solutions for miscellaneous exercise too.

  • NCERT Solutions for Class 12 Maths Chapter 11 PDF Download will also be made available soon.

Also Check NCERT Books and NCERT Syllabus here:

  • NCERT Books Class 12 Maths
  • NCERT Syllabus Class 12 Maths
  • NCERT Books Class 12
  • NCERT Syllabus Class 12
Solutions

Frequently Asked Question (FAQs) - NCERT Solutions for Class 12 Maths Chapter 11 Three Dimensional Geometry

Question: How class 12 math chapter 11 miscellaneous exercises are useful?

Answer:

The ncert solutions class 12 maths chapter 11 miscellaneous is useful for students in several ways. These exercises include additional problems that are not part of the main textbook exercises but are relevant to the chapter's concepts.

Firstly, NCERT solutions for class 12 maths chapter 11 miscellaneous exercise help students to gain a deeper understanding of the concepts covered in Chapter 11. 

Secondly, these ch 11 miscellaneous class 12 exercises help students to test their problem-solving abilities and improve their skills. 

Thirdly, solving the miscellaneous exercise problems for 3d class 12 ncert solutions can help students to prepare for their exams.

Question: What are the important topics covered in the chapter of ncert solutions class 12 maths chapter 11?

Answer:

 Class 12 chapter 11 maths Maths covers the following important topics:

  • Introduction (11.1)

  • Direction cosines and direction ratios of a line (11.2)

  • Equation of a line in space (11.3)

  • Angle between two lines (11.4)

  • Shortest distance between two lines (11.5)

  • Plane (11.6)

  • Coplanarity of two lines (11.7)

  • Angle between two planes (11.8)

  • Distance of a point from a plane (11.9)

  • Angle between a line and a plane (11.10)

Question: How the NCERT solutions are helpful in the CBSE board exam?

Answer:

Only knowing the answer is not enough to score good marks in the exam. One should know how best to answer in order to get good marks. NCERT solutions are provided by the experts who know how best to write answer in the board exam in order to get good marks.

Question: Would it be accurate to say that three dimensional geometry class 12 ncert solutions is the most helpful study material for students during revision?

Answer:

Undoubtedly, NCERT Solutions for Class 12 Maths Chapter 11 stand out as the top study material aiding students in effortlessly revising complex concepts. The solutions present a well-reasoned explanation to facilitate student learning. The team of experts at Careers360 has carefully crafted step-by-step solutions that encourage students to employ an analytical thinking approach. Moreover, these solutions can be cross-referenced to gain insights into alternative methods to solve textbook problems.

Question: What is the weightage of the chapter three-dimensional geometry for the CBSE board exam?

Answer:

The concepts of vector algebra and Three Dimensional Geometry can be used interchangeably. if two chapters are combined, vector algebra & three-dimensional geometry has a 17% weightage in the 12th board maths final exam. after getting command of these concepts it becomes easy for students to score well in the exam therefore NCERT Notes, NCERT syllabus, and NCERT textbooks are recommended.

Latest Articles

TOSS Result 2023 for SSC & Inter - Telangana Open School Socie...

TOSS Result 2023 - Telangana Open School Society releases the ...

20 hours ago
Read More
Maharashtra HSC Result 2023 - Check Maharashtra board 12th res...

Maharashtra HSC Result 2023 - Maharashtra Board will announce ...

22 hours ago
Read More
CBSE 12th Result 2023 - CBSE Class 12th Result at cbseresults....

CBSE Class 12 Result 2023 - Central Board of Secondary Educati...

23 hours ago
Read More
IEO Result 2022-23 (Released)- Check SOF IEO result at sofworl...

IEO Result 2022-23 - Know where to check SOF IEO result 2022-2...

23 hours ago
Read More
NSO Result 2022-23 - Check SOF NSO Result for Level 1 & 2 Here

NSO Result 2022-23 - Science Olympiad Foundation has released ...

23 hours ago
Read More
IMO Results 2022-23 (Released) - Check SOF IMO Level 1 & 2 Res...

IMO Results 2022-23 - Science Olympiad Foundation has released...

23 hours ago
Read More
TN 12th Result 2023 - Check Tamil Nadu Class 12 Result for Sci...

TN 12th Result 2023 - Directorate of Government Examinations r...

1 day ago
Read More
TN 11th Result 2023 - Plus One Tamil Nadu Result @tnresults.ni...

TN 11th Result 2023 Tamilnadu - DGE will release the Tamil Nad...

1 day ago
Read More
CGBSE 12th Result 2023 - Chhattisgarh Board Class 12th Result ...

CGBSE 12th Result 2023 - Chhattisgarh Board will release the C...

1 day ago
Read More
UK Board 12th Result 2023 - Uttarakhand Board Class 12th Resul...

UK Board 12th Result 2023- Uttarakhand Board of School Educati...

1 day ago
Read More
View All Latest Articles

Explore Popular Degree, Branches and Courses

Browse by Degrees

LLB (Bachelor of Legislative Law) Courses, Admissions, Eligibility, Syllabus, Career
B.Tech (Bachelor of Technology) Course, Eligibility, Subjects, Exams, Admission, Careers, Scope
MBBS (Bachelor of Medicine and a Bachelor of Surgery) Courses, Admissions, Eligibility, Syllabus
ICWA (Institute of Cost and Works Accountants) Course, Admissions, Eligibility, Syllabus
BBA (Bachelor of Business Administration) - Full Form, Course Eligibility, Syllabus, Subject, Scope, Career

Browse by Branches/Majors

B.Sc Nursing (Bachelor of Science in Nursing) Courses, Admissions, Eligibility, Syllabus
B.Tech in Computer Science: Course, Eligibility, Syllabus, Exams, Fees, Careers Options
B. Tech in Biotechnology - Course, Admission, Eligibility, Top Colleges, Fees, Career Scope
B.Sc Psychology Course, Admissions, Eligibility, Syllabus, Fees, Career
Diploma in Computer Engineering Course, Admissions, Eligibility, Syllabus, Fees, Career

Browse by Courses

Computer Science Engineering
Artificial Intelligence
Information Technology
Mechanical Engineering
Civil Engineering
View All Courses