NCERT Solutions for Exercise 11.2 Class 12 Maths Chapter 11- Three Dimensional Geometry

NCERT Solutions for Exercise 11.2 Class 12 Maths Chapter 11- Three Dimensional Geometry

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 23 Apr 2025, 11:55 PM IST

Understanding the position of lines with respect to each other is a crucial step when creating any object or modelling a scenario. Exercise 11.2 class 12 maths tells us about equation of lines in 3D space in their vector and cartasian form. We understand the crucial requirement for constructing a line. This exercise also covers the properties of a pair of lines including the distance and angle between them.

This Story also Contains

  1. Class 12 Maths Chapter 11 Exercise 11.2 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 11: Exercise 11.2
  3. NCERT Solutions Class 12 Maths Chapter 11: Exercise 11.2 - Additional Questions
  4. Topics covered in Chapter 11 Three Dimensional Geometry: Exercise 11.2
  5. Also see-
  6. NCERT Solutions Subject Wise
  7. Subject Wise NCERT Exemplar Solutions

NCERT Solutions for Exercise 11.2 Class 12 Maths Chapter 11 Three Dimensional Geometry are prepared by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2025-26. Exercise 11.2 Class 12 Maths chapter 11 of NCERT is crucial for students to understand the chapter. These solutions are designed as per the students demand covering comprehensive, step by step solutions of every problem.

Class 12 Maths Chapter 11 Exercise 11.2 Solutions: Download PDF

Practice 12 maths exercise 11.2 questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise solutions together using the link provided below.

Download PDF

NCERT Solutions Class 12 Maths Chapter 11: Exercise 11.2

Question 1: Show that the three lines with direction cosines

$\frac{12}{13}, \frac{-3}{13},\frac{-4}{13};\frac{4}{13},\frac{12}{13},\frac{3}{13};\frac{3}{13},\frac{-4}{13},\frac{12}{13}$ are mutually perpendicular.

Answer:

Given direction cosines of the three lines;

$L_{1}\ \left ( \frac{12}{13}, \frac{-3}{13},\frac{-4}{13} \right )$ $L_{2}\ \left ( \frac{4}{13}, \frac{12}{13},\frac{3}{13} \right )$ $L_{3}\ \left ( \frac{3}{13}, \frac{-4}{13},\frac{12}{13} \right )$

And we know that two lines with direction cosines $l_{1},m_{1},n_{1}$ and $l_{2},m_{2},n_{2}$ are perpendicular to each other, if $l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}=0$

Hence we will check each pair of lines:

Lines $L_{1}\ and\ L_{2}$ ;

$l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}= \left [ \frac{12}{13}\times\frac{4}{13} \right ]+\left [ \frac{-3}{13}\times\frac{12}{13} \right ]+\left [ \frac{-4}{13}\times \frac{3}{13} \right ]$

$= \left [ \frac{48}{169} \right ]-\left [ \frac{36}{169} \right ]-\left [ \frac{12}{169} \right ]= 0$

$\therefore$ the lines $L_{1}\ and\ L_{2}$ are perpendicular.

Lines $L_{2}\ and\ L_{3}$ ;

$l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}= \left [ \frac{4}{13}\times\frac{3}{13} \right ]+\left [ \frac{12}{13}\times\frac{-4}{13} \right ]+\left [ \frac{3}{13}\times \frac{12}{13} \right ]$

$= \left [ \frac{12}{169} \right ]-\left [ \frac{48}{169} \right ]+\left [ \frac{36}{169} \right ]= 0$

$\therefore$ the lines $L_{2}\ and\ L_{3}$ are perpendicular.

Lines $L_{3}\ and\ L_{1}$ ;

$l_{1}l_{2}+m_{1}m_{2}+n_{1}n_{2}= \left [ \frac{3}{13}\times\frac{12}{13} \right ]+\left [ \frac{-4}{13}\times\frac{-3}{13} \right ]+\left [ \frac{12}{13}\times \frac{-4}{13} \right ]$

$= \left [ \frac{36}{169} \right ]+\left [ \frac{12}{169} \right ]-\left [ \frac{48}{169} \right ]= 0$

$\therefore$ the lines $L_{3}\ and\ L_{1}$ are perpendicular.

Thus, we have all lines are mutually perpendicular to each other.

Question 2: Show that the line through the points (1, – 1, 2), (3, 4, – 2) is perpendicular to the line through the points (0, 3, 2) and (3, 5, 6).

Answer:

We have given points where the line is passing through it;

Consider the line joining the points (1, – 1, 2) and (3, 4, – 2) is AB and line joining the points (0, 3, 2) and (3, 5, 6).is CD.

So, we will find the direction ratios of the lines AB and CD;

Direction ratios of AB are $a_{1},b_{1}, c_{1}$

$(3-1),\ (4-(-1)),\ and\ (-2-2)$ or $2,\ 5,\ and\ -4$

Direction ratios of CD are $a_{2},b_{2}, c_{2}$

$(3-0),\ (5-3)),\ and\ (6-2)$ or $3,\ 2,\ and\ 4$ .

Now, lines AB and CD will be perpendicular to each other if $a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} =0$

$a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} =\left ( 2\times3 \right ) +\left ( 5\times2 \right )+ \left ( -4\times 4 \right )$

$= 6+10-16 = 0$

Therefore, AB and CD are perpendicular to each other.

Question 3: Show that the line through the points (4, 7, 8), (2, 3, 4) is parallel to the line through the points (– 1, – 2, 1), (1, 2, 5).

Answer:

We have given points where the line is passing through it;

Consider the line joining the points (4, 7, 8) and (2, 3, 4) is AB and line joining the points (– 1, – 2, 1) and (1, 2, 5)..is CD.

So, we will find the direction ratios of the lines AB and CD;

Direction ratios of AB are $a_{1},b_{1}, c_{1}$

$(2-4),\ (3-7),\ and\ (4-8)$ or $-2,\ -4,\ and\ -4$

Direction ratios of CD are $a_{2},b_{2}, c_{2}$

$(1-(-1)),\ (2-(-2)),\ and\ (5-1)$ or $2,\ 4,\ and\ 4$ .

Now, lines AB and CD will be parallel to each other if $\frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}$

Therefore we have now;

$\frac{a_{1}}{a_{2}} = \frac{-2}{2}=-1$ $\frac{b_{1}}{b_{2}} = \frac{-4}{4}=-1$ $\frac{c_{1}}{c_{2}} = \frac{-4}{4}=-1$

$\therefore \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}$

Hence we can say that AB is parallel to CD.

Question 4: Find the equation of the line which passes through the point (1, 2, 3) and is parallel to the vector $3\widehat{i}+2\widehat{j}-2\widehat{k}$ .

Answer:

It is given that the line is passing through A (1, 2, 3) and is parallel to the vector $\vec{b}=3\widehat{i}+2\widehat{j}-2\widehat{k}$

We can easily find the equation of the line which passes through the point A and is parallel to the vector $\vec{b}$ by the known relation;

$\vec{r} = \vec{a} +\lambda\vec{b}$ , where $\lambda$ is a constant.

So, we have now,

$\\\mathrm{\Rightarrow \vec{r} = \widehat{i}+2\widehat{j}+3\widehat{k} + \lambda(3\widehat{i}+2\widehat{j}-2\widehat{k})}$

Thus the required equation of the line.

Answer:

Given that the line is passing through the point with position vector $2\widehat{i}-\widehat{j}+4\widehat{k}$ and is in the direction of the line $\widehat{i}+2\widehat{j}-\widehat{k}$ .

And we know the equation of the line which passes through the point with the position vector $\vec{a}$ and parallel to the vector $\vec{b}$ is given by the equation,

$\vec{r} = \vec{a} +\lambda\vec{b}$

$\Rightarrow \vec{r} =2\widehat{i}-\widehat{j}+4\widehat{k} + \lambda(\widehat{i}+2\widehat{j}-\widehat{k})$

So, this is the required equation of the line in the vector form.

$\vec{r} =x\widehat{i}+y\widehat{j}+z\widehat{k} = (\lambda+2)\widehat{i}+(2\lambda-1)\widehat{j}+(-\lambda+4)\widehat{k}$

Eliminating $\lambda$ , from the above equation we obtain the equation in the Cartesian form :

$\frac{x-2}{1}= \frac{y+1}{2} =\frac{z-4}{-1}$

Hence this is the required equation of the line in Cartesian form.

Question 6: Find the cartesian equation of the line which passes through the point (– 2, 4, – 5) and parallel to the line given by $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$ .

Answer:

Given a line which passes through the point (– 2, 4, – 5) and is parallel to the line given by the $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$ ;

The direction ratios of the line, $\frac{x+3}{3}=\frac{y-4}{5}=\frac{z+8}{6}$ are 3,5 and 6 .

So, the required line is parallel to the above line.

Therefore we can take direction ratios of the required line as 3k , 5k , and 6k , where k is a non-zero constant.

And we know that the equation of line passing through the point $(x_{1},y_{1},z_{1})$ and with direction ratios a, b, c is written by: $\frac{x-x_{1}}{a} = \frac{y-y_{1}}{b} = \frac{z-z_{1}}{c}$ .

Therefore we have the equation of the required line:

$\frac{x+2}{3k} = \frac{y-4}{5k} = \frac{z+5}{6k}$

or $\frac{x+2}{3} = \frac{y-4}{5} = \frac{z+5}{6} = k$

The required line equation.

Question 7: The cartesian equation of a line is $\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{7}$ . Write its vector form .

Answer:

Given the Cartesian equation of the line;

$\frac{x-5}{3}=\frac{y+4}{7}=\frac{z-6}{7}$

Here the given line is passing through the point $(5,-4,6)$ .

So, we can write the position vector of this point as;

$\vec{a} = 5\widehat{i}-4\widehat{j}+6\widehat{k}$

And the direction ratios of the line are 3 , 7 , and 2.

This implies that the given line is in the direction of the vector, $\vec{b} = 3\widehat{i}+7\widehat{j}+2\widehat{k}$ .

Now, we can easily find the required equation of line:

As we know that the line passing through the position vector $\vec{a}$ and in the direction of the vector $\vec{b}$ is given by the relation,

$\vec{r} = \vec{a} + \lambda \vec{b},\ \lambda \epsilon R$

So, we get the equation.

$\vec{r} = 5\widehat{i}-4\widehat{j}+6\widehat{k} + \lambda(3\widehat{i}+7\widehat{j}+2\widehat{k}),\ \lambda \epsilon R$

This is the required equation of the line in the vector form.

Question 8: Find the angle between the following pairs of lines:

(i) $\overrightarrow{r}=2\widehat{i}-5\widehat{j}+\widehat{k}+\lambda (3\widehat{i}+2\widehat{j}+6\widehat{k})$ and $\overrightarrow{r}=7\widehat{i}-6\widehat{k}+\mu (\widehat{i}+2\widehat{j}+2\widehat{k})$

Answer:

To find the angle A between the pair of lines $\vec{b_{1}}\ and\ \vec{b_{2}}$ we have the formula;

$\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |$

We have two lines :

$\overrightarrow{r}=2\widehat{i}-5\widehat{j}+\widehat{k}+\lambda (3\widehat{i}+2\widehat{j}+6\widehat{k})$ and

$\overrightarrow{r}=7\widehat{i}-6\widehat{k}+\mu (\widehat{i}+2\widehat{j}+2\widehat{k})$

The given lines are parallel to the vectors $\vec{b_{1}}\ and\ \vec{b_{2}}$ ;

where $\vec{b_{1}}= 3\widehat{i}+2\widehat{j}+6\widehat{k}$ and $\vec{b_{2}}= \widehat{i}+2\widehat{j}+2\widehat{k}$ respectively,

Then we have

$\vec{b_{1}}.\vec{b_{2}} =(3\widehat{i}+2\widehat{j}+6\widehat{k}).(\widehat{i}+2\widehat{j}+2\widehat{k})$

$=3+4+12 = 19$

and $|\vec{b_{1}}| = \sqrt{3^2+2^2+6^2} = 7$

$|\vec{b_{2}}| = \sqrt{1^2+2^2+2^2} = 3$

Therefore we have;

$\cos A = \left | \frac{19}{7\times3} \right | = \frac{19}{21}$

or $A = \cos^{-1} \left ( \frac{19}{21} \right )$

Question 8: Find the angle between the following pairs of lines:

(ii) $\overrightarrow{r}= 3\widehat{i}+\widehat{j}-2\widehat{k}+\lambda (\widehat{i}-\widehat{j}-2\widehat{k})$ and $\overrightarrow{r}= 2\widehat{i}-\widehat{j}-56\widehat{k}+\mu (3\widehat{i}-5\widehat{j}-4\widehat{k})$

Answer:

To find the angle A between the pair of lines $\vec{b_{1}}\ and\ \vec{b_{2}}$ we have the formula;

$\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |$

We have two lines :

Question 9: Find the angle between the following pair of lines:

(i) $\frac{x-2}{2}= \frac{y-1}{5}= \frac{z+3}{-3}$ and $\frac{x+2}{-1}= \frac{y-4}{8}= \frac{z-5}{4}$

Answer:

Given lines are;

$\frac{x-2}{2}= \frac{y-1}{5}= \frac{z+3}{-3}$ and $\frac{x+2}{-1}= \frac{y-4}{8}= \frac{z-5}{4}$

So, we two vectors $\vec{b_{1}}\ and\ \vec{b_{2}}$ which are parallel to the pair of above lines respectively.

$\vec{b_{1}}\ =2\widehat{i}+5\widehat{j}-3\widehat{k}$ and $\vec{b_{2}}\ =-\widehat{i}+8\widehat{j}+4\widehat{k}$

To find the angle A between the pair of lines $\vec{b_{1}}\ and\ \vec{b_{2}}$ we have the formula;

$\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |$

Then we have

$\vec{b_{1}}.\vec{b_{2}} =(2\widehat{i}+5\widehat{j}-3\widehat{k}).(-\widehat{i}+8\widehat{j}+4\widehat{k})$

$=-2+40-12 = 26$

and $|\vec{b_{1}}| = \sqrt{2^2+5^2+(-3)^2} = \sqrt{38}$

$|\vec{b_{2}}| = \sqrt{(-1)^2+(8)^2+(4)^2} = \sqrt{81} = 9$

Therefore we have;

$\cos A = \left | \frac{26}{\sqrt{38} \times9} \right | = \frac{26}{9\sqrt{38}}$

or $A = \cos^{-1} \left ( \frac{26}{9\sqrt{38}} \right )$

Question 9: Find the angle between the following pair of lines:

(ii) $\frac{x}{2}= \frac{y}{2}=\frac{z}{1}$ and $\frac{x -5}{4}= \frac{y-2}{1}=\frac{z-3}{8}$

Answer:

Given lines are;

$\frac{x}{2}= \frac{y}{2}=\frac{z}{1}$ and $\frac{x -5}{4}= \frac{y-2}{1}=\frac{z-3}{8}$

So, we two vectors $\vec{b_{1}}\ and\ \vec{b_{2}}$ which are parallel to the pair of above lines respectively.

$\vec{b_{1}}\ =2\widehat{i}+2\widehat{j}+\widehat{k}$ and $\vec{b_{2}}\ =4\widehat{i}+\widehat{j}+8\widehat{k}$

To find the angle A between the pair of lines $\vec{b_{1}}\ and\ \vec{b_{2}}$ we have the formula;

$\cos A = \left | \frac{\vec{b_{1}}.\vec{b_{2}}}{|\vec{b_{1}}||\vec{b_{2}}|} \right |$

Then we have

$\vec{b_{1}}.\vec{b_{2}} =(2\widehat{i}+2\widehat{j}+\widehat{k}).(4\widehat{i}+\widehat{j}+8\widehat{k})$

$=8+2+8 = 18$

and $|\vec{b_{1}}| = \sqrt{2^2+2^2+1^2} = \sqrt{9} = 3$

$|\vec{b_{2}}| = \sqrt{(4)^2+(1)^2+(8)^2} = \sqrt{81} = 9$

Therefore we have;

$\cos A = \left | \frac{18}{ 3\times9} \right | = \frac{2}{3}$

or $A = \cos^{-1} \left ( \frac{2}{3} \right )$

Question 10: Find the values of p so that the lines $\frac{1-x}{3}=\frac{7y-14}{2p}= \frac{z-3}{2}$ and $\frac{7-7x}{3p}=\frac{y-5}{1}= \frac{6-z}{5}$ are at right angles.

Answer:

First we have to write the given equation of lines in the standard form;

$\frac{x-1}{-3}=\frac{y-2}{\frac{2p}{7}}= \frac{z-3}{2}$ and $\frac{x-1}{\frac{-3p}{7}}=\frac{y-5}{1}= \frac{z-6}{-5}$

Then we have the direction ratios of the above lines as;

$-3,\ \frac{2p}{7},\ 2$ and $\frac{-3p}{7},\ 1,\ -5$ respectively..

Two lines with direction ratios $a_{1},b_{1},c_{1}$ and $a_{2},b_{2},c_{2}$ are perpendicular to each other if, $a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}= 0$

$\therefore (-3).\left ( \frac{-3p}{7} \right )+(\frac{2p}{7}).(1) + 2.(-5) = 0$

$\Rightarrow \frac{9p}{7}+ \frac{2p}{7} =10$

$\Rightarrow 11p =70$

$\Rightarrow p =\frac{70}{11}$

Thus, the value of p is $\frac{70}{11}$ .

Question 11: Show that the lines $\frac{x-5}{7}=\frac{y+2}{-3}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$ are perpendicular to each other.

Answer:

First, we have to write the given equation of lines in the standard form;

$\frac{x-5}{7}=\frac{y+2}{-5}=\frac{z}{1}$ and $\frac{x}{1}=\frac{y}{2}=\frac{z}{3}$

Then we have the direction ratios of the above lines as;

$7,\ -5,\ 1$ and $1,\ 2,\ 3$ respectively..

Two lines with direction ratios $a_{1},b_{1},c_{1}$ and $a_{2},b_{2},c_{2}$ are perpendicular to each other if, $a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}= 0$

$\therefore 7(1) + (-5)(2)+1(3) = 7-10+3 = 0$

Therefore the two lines are perpendicular to each other.

Question 12: Find the shortest distance between the lines

$\overrightarrow{r}=(\widehat{i}+2\widehat{j}+\widehat{k})+\lambda (\widehat{i}-\widehat{j}+\widehat{k})$ and $\overrightarrow{r}=(2\widehat{i}-\widehat{j}-\widehat{k})+\mu (2\widehat{i}+\widehat{j}+2\widehat{k})$

Answer:

So given equation of lines;

$\overrightarrow{r}=(\widehat{i}+2\widehat{j}+\widehat{k})+\lambda (\widehat{i}-\widehat{j}+\widehat{k})$ and $\overrightarrow{r}=(2\widehat{i}-\widehat{j}-\widehat{k})+\mu (2\widehat{i}+\widehat{j}+2\widehat{k})$ in the vector form.

Now, we can find the shortest distance between the lines $\vec{r} = \vec{a_{1}}+\lambda\vec{b_{1}}$ and $\vec{r} = \vec{a_{2}}+\mu \vec{b_{2}}$ , is given by the formula,

$d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |$

Now comparing the values from the equation, we obtain

$\vec{a_{1}} = \widehat{i}+2\widehat{j}+\widehat{k}$ $\vec{b_{1}} = \widehat{i}-\widehat{j}+\widehat{k}$

$\vec{a_{2}} = 2\widehat{i}-\widehat{j}-\widehat{k}$ $\vec{b_{2}} = 2\widehat{i}+\widehat{j}+2\widehat{k}$

$\vec{a_{2}} -\vec{a_{1}} =\left ( 2\widehat{i}-\widehat{j}-\widehat{k} \right ) - \left ( \widehat{i}+2\widehat{j}+\widehat{k} \right ) = \widehat{i}-3\widehat{j}-2\widehat{k}$

Then calculating

$\vec{b_{1}}\times \vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 1 & -1 &1 \\ 2& 1 &2 \end{vmatrix}$

$\vec{b_{1}}\times \vec{b_{2}} = (-2-1)\widehat{i} - (2-2) \widehat{j} +(1+2) \widehat{k} = -3\widehat{i}+3\widehat{k}$

$\Rightarrow \left | \vec{b_{1}}\times \vec{b_{2}} \right | = \sqrt{(-3)^2+(3)^2} = \sqrt{9+9} =\sqrt{18} =3\sqrt2$

So, substituting the values now in the formula above we get;

$d =\left | \frac{\left ( -3\widehat{i}+3\widehat{k} \right ).(\widehat{i}-3\widehat{j}-2\widehat{k})}{3\sqrt2} \right |$

$\Rightarrow d = \left | \frac{-3.1+3(-2)}{3\sqrt2} \right |$

$d = \left | \frac{-9}{3\sqrt2} \right | = \frac{3}{\sqrt2} = \frac{3\sqrt2}{2}$

Therefore, the shortest distance between the two lines is $\frac{3\sqrt2}{2}$ units.

Question 13: Find the shortest distance between the lines

$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$

Answer:

We have given two lines:

$\frac{x+1}{7}=\frac{y+1}{-6}=\frac{z+1}{1}$ and $\frac{x-3}{1}=\frac{y-5}{-2}=\frac{z-7}{1}$

Calculating the shortest distance between the two lines,

$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$

by the formula

$d = \frac{\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1} &b_{1} &c_{1} \\ a_{2}&b_{2} &c_{2} \end{vmatrix}}{\sqrt{(b_{1}c_{2}-b_{2}c_{1})^2+(c_{1}a_{2}-c_{2}a_{1})^2+(a_{1}b_{2}-a_{2}b_{1})^2}}$

Now, comparing the given equations, we obtain

$x_{1} = -1,\ y_{1} =-1,\ z_{1} =-1$

$a_{1} = 7,\ b_{1} =-6,\ c_{1} =1$

$x_{2} = 3,\ y_{2} =5,\ z_{2} =7$

$a_{2} = 1,\ b_{2} =-2,\ c_{2} =1$

Then calculating determinant

$\begin{vmatrix} x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ a_{1} &b_{1} &c_{1} \\ a_{2}&b_{2} &c_{2} \end{vmatrix} = \begin{vmatrix} 4 &6 &8 \\ 7& -6& 1\\ 1& -2& 1 \end{vmatrix}$

$= 4(-6+2)-6(7-1)+8(-14+6)$

$= -16-36-64$

$=-116$

Now calculating the denominator,

$\sqrt{(b_{1}c_{2}-b_{2}c_{1})^2+(c_{1}a_{2}-c_{2}a_{1})^2+(a_{1}b_{2}-a_{2}b_{1})^2} = \sqrt{(-6+2)^2+(1+7)^2+(-14+6)^2}$ $= \sqrt{16+36+64}$

$= \sqrt{116} = 2\sqrt{29}$

So, we will substitute all the values in the formula above to obtain,

$d = \frac{-116}{2\sqrt{29}} = \frac{-58}{\sqrt{29}} = \frac{-2\times29}{\sqrt{29}} = -2\sqrt{29}$

Since distance is always non-negative, the distance between the given lines is

$2\sqrt{29}$ units.

Question 14: Find the shortest distance between the lines whose vector equations are $\overrightarrow{r}=(\widehat{i}+2\widehat{j}+3\widehat{k})+ \lambda (\widehat{i}-3\widehat{j}+2\widehat{k})$ and

$\overrightarrow{r}=(4\widehat{i}+5\widehat{j}+6\widehat{k})+ \mu (2\widehat{i}+3\widehat{j}+\widehat{k})$

Answer:

Given two equations of line

$\overrightarrow{r}=(\widehat{i}+2\widehat{j}+3\widehat{k})+ \lambda (\widehat{i}-3\widehat{j}+2\widehat{k})$ $\overrightarrow{r}=(4\widehat{i}+5\widehat{j}+6\widehat{k})+ \mu (2\widehat{i}+3\widehat{j}+\widehat{k})$ in the vector form.

So, we will apply the distance formula for knowing the distance between two lines $\vec{r} =\vec{a_{1}}+\lambda{b_{1}}$ and $\vec{r} =\vec{a_{2}}+\lambda{b_{2}}$

$d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |$

After comparing the given equations, we obtain

$\vec{a_{1}} = \widehat{i}+2\widehat{j}+3\widehat{k}$ $\vec{b_{1}} = \widehat{i}-3\widehat{j}+2\widehat{k}$

$\vec{a_{2}} = 4\widehat{i}+5\widehat{j}+6\widehat{k}$ $\vec{b_{2}} = 2\widehat{i}+3\widehat{j}+\widehat{k}$

$\vec{a_{2}}-\vec{a_{1}} = (4\widehat{i}+5\widehat{j}+6\widehat{k}) - (\widehat{i}+2\widehat{j}+3\widehat{k})$

$= 3\widehat{i}+3\widehat{j}+3\widehat{k}$

Then calculating the determinant value numerator.

$\vec{b_{1}}\times\vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ 1& -3 &2 \\ 2& 3& 1 \end{vmatrix}$

$= (-3-6)\widehat{i}-(1-4)\widehat{j}+(3+6)\widehat{k} = -9\widehat{i}+3\widehat{j}+9\widehat{k}$

That implies, $\left | \vec{b_{1}}\times\vec{b_{2}} \right | = \sqrt{(-9)^2+(3)^2+(9)^2}$

$= \sqrt{81+9+81} = \sqrt{171} =3\sqrt{19}$

$\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )=(-9\widehat{i}+3\widehat{j}+9\widehat{k})(3\widehat{i}+3\widehat{j}+3\widehat{k})$

$= (-9\times3)+(3\times3)+(9\times3) = 9$

Now, after substituting the value in the above formula we get,

$d= \left | \frac{9}{3\sqrt{19}} \right | = \frac{3}{\sqrt{19}}$

Therefore, $\frac{3}{\sqrt{19}}$ is the shortest distance between the two given lines.

Question 15: Find the shortest distance between the lines whose vector equations are

$\overrightarrow{r}=(1-t)\widehat{i}+(t-2)\widehat{j}+(3-2t)\widehat{k}$ and $\overrightarrow{r}=(s+1)\widehat{i}+(2s-1)\widehat{j}-(2s+1)\widehat{k}$

Answer:

Given two equations of the line

$\overrightarrow{r}=(1-t)\widehat{i}+(t-2)\widehat{j}+(3-2t)\widehat{k}$ $\overrightarrow{r}=(s+1)\widehat{i}+(2s-1)\widehat{j}-(2s+1)\widehat{k}$ in the vector form.

So, we will apply the distance formula for knowing the distance between two lines $\vec{r} =\vec{a_{1}}+\lambda{b_{1}}$ and $\vec{r} =\vec{a_{2}}+\lambda{b_{2}}$

$d= \left | \frac{\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )}{\left | \vec{b_{1}}\times \vec{b_{2}} \right |} \right |$

After comparing the given equations, we obtain

$\vec{a_{1}} = \widehat{i}-2\widehat{j}+3\widehat{k}$ $\vec{b_{1}} = -\widehat{i}+\widehat{j}-2\widehat{k}$

$\vec{a_{2}} = \widehat{i}-\widehat{j}-\widehat{k}$ $\vec{b_{2}} = \widehat{i}+2\widehat{j}-2\widehat{k}$

$\vec{a_{2}}-\vec{a_{1}} = (\widehat{i}-\widehat{j}-\widehat{k}) - (\widehat{i}-2\widehat{j}+3\widehat{k}) = \widehat{j}-4\widehat{k}$

Then calculating the determinant value numerator.

$\vec{b_{1}}\times\vec{b_{2}} = \begin{vmatrix} \widehat{i} &\widehat{j} &\widehat{k} \\ -1& 1 &-2 \\ 1& 2& -2 \end{vmatrix}$

$= (-2+4)\widehat{i}-(2+2)\widehat{j}+(-2-1)\widehat{k} = 2\widehat{i}-4\widehat{j}-3\widehat{k}$

That implies,

$\left | \vec{b_{1}}\times\vec{b_{2}} \right | = \sqrt{(2)^2+(-4)^2+(-3)^2}$

$= \sqrt{4+16+9} = \sqrt{29}$

$\left ( \vec{b_{1}}\times\vec{b_{2}} \right ).\left ( \vec{a_{2}}-\vec{a_{1}} \right )=(2\widehat{i}-4\widehat{j}-3\widehat{k})(\widehat{j}-4\widehat{k}) = -4+12 = 8$

Now, after substituting the value in the above formula we get,

$d= \left | \frac{8}{\sqrt{29}} \right | = \frac{8}{\sqrt{29}}$

Therefore, $\frac{8}{\sqrt{29}}$ units are the shortest distance between the two given lines.

NCERT Solutions Class 12 Maths Chapter 11: Exercise 11.2 - Additional Questions

Question 1: Find the vector and the cartesian equations of the lines that passes through the origin and (5, – 2, 3).

Answer:

Given that the line is passing through the $(0,0,0)$ and $(5,-2,3)$

Thus the required line passes through the origin.

$\therefore$ its position vector is given by,

$\vec{a} = \vec{0}$

So, the direction ratios of the line through $(0,0,0)$ and $(5,-2,3)$ are,

$(5-0) = 5, (-2-0) = -2, (3-0) = 3$

The line is parallel to the vector given by the equation, $\vec{b} = 5\widehat{i}-2\widehat{j}+3\widehat{k}$

Therefore the equation of the line passing through the point with position vector $\vec{a}$ and parallel to $\vec{b}$ is given by;

$\vec{r} = \vec{a}+\lambda\vec{b},\ where\ \lambda \epsilon R$

$\Rightarrow\vec{r} = 0+\lambda (5\widehat{i}-2\widehat{j}+3\widehat{k})$

$\Rightarrow\vec{r} = \lambda (5\widehat{i}-2\widehat{j}+3\widehat{k})$

Now, the equation of the line through the point $(x_{1},y_{1},z_{1})$ and the direction ratios a, b, c is given by;

$\frac{x-x_{1}}{a} = \frac{y-y_{1}}{b} =\frac{z-z_{1}}{c}$

Therefore the equation of the required line in the Cartesian form will be;

$\frac{x-0}{5} = \frac{y-0}{-2} =\frac{z-0}{3}$

OR $\frac{x}{5} = \frac{y}{-2} =\frac{z}{3}$

Question 2: Find the vector and the cartesian equations of the line that passes through the points (3, – 2, – 5), (3, – 2, 6).

Answer:

Let the line passing through the points $A(3,-2,-5)$ and $B(3,-2,6)$ is AB;

Then as AB passes through through A so, we can write its position vector as;

$\vec{a} =3\widehat{i}-2\widehat{j}-5\widehat{k}$

Then direction ratios of PQ are given by,

$(3-3)= 0,\ (-2+2) = 0,\ (6+5)=11$

Therefore the equation of the vector in the direction of AB is given by,

$\vec{b} =0\widehat{i}-0\widehat{j}+11\widehat{k} = 11\widehat{k}$

We have then the equation of line AB in vector form is given by,

$\vec{r} =\vec{a}+\lambda\vec{b},\ where\ \lambda \epsilon R$

$\Rightarrow \vec{r} = (3\widehat{i}-2\widehat{j}-5\widehat{k}) + 11\lambda\widehat{k}$

So, the equation of AB in Cartesian form is;

$\frac{x-x_{1}}{a} =\frac{y-y_{1}}{b} =\frac{z-z_{1}}{c}$

or $\frac{x-3}{0} =\frac{y+2}{0} =\frac{z+5}{11}$

Topics covered in Chapter 11 Three Dimensional Geometry: Exercise 11.2

Ex 11.2 class 12 covers the equation of straight line in 3D space. It also tells us about the parameters between two lines such as angle and distance between them.

Equation of a line through a given point and parallel to a given vector

  • Vector Form: $\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_0+\lambda \overrightarrow{\mathbf{b}}$
  • Cartesian Form: $\frac{x-x_0}{a}=\frac{y-y_0}{b}=\frac{z-z_0}{c}$

Shortest Distance between two skew lines

When two lines are neither parallel nor intersecting at a point they are referred to as Skew Lines.

If $\vec{r}=\vec{a}+\lambda \vec{b}$ and $\vec{r}=\overrightarrow{a_1}+\mu \vec{b}$ are skew lines then the shortest distance between them is given by

$\left|\frac{\left(\vec{b} \times \overrightarrow{b_1}\right) \cdot\left(\vec{a}-\overrightarrow{a_1}\right)}{\left|\vec{b} \times \overrightarrow{b_1}\right|}\right|$

Shortest Distance between parallel lines

If $\vec{r}=\overrightarrow{p_1}+\lambda \vec{\nu}$ and $\vec{r}=\overrightarrow{p_2}+\mu \vec{\nu}$ are parallel lines then the shortest distance between them is given by

$\frac{\left|\left(\overrightarrow{p_2}-\overrightarrow{p_1}\right) \times \vec{\nu}\right|}{|\vec{\nu}|}$

Also Read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Frequently Asked Questions (FAQs)

Q: What is the first question of exercise 11.2 Class 12 Maths about?
A:

The question is to show three lines with given direction cosines are perpendicular

Q: Write down the condition for lines with direction cosines l1, m1, n1 and l2, m2 and n2 to be perpendicular?
A:

l1l2+m1m2+n1n2=0

Q: How many questions are solved in the NCERT solutions for Class 12 Maths chapter 11 exercise 11.2?
A:

17 questions are solved in the exercise 11.2 Class 12 Maths

Q: Which questions depict the concept of the angle between lines?
A:

Question 10 to 13 of Class 12th Maths chapter 11 exercise 11.2

Q: Give the topic covered in questions 14 to 17?
A:

Questions 14 to 17 covers the concepts of the shortest distance between two lines.

Q: What is the topic discussed after exercise 11.2?
A:

The topic plane is discussed after exercise 11.2

Q: What are the main topics covered in Class 12 Maths exercise 11.2?
A:

The main topics covered are equations of lines in three dimensions, angles between lines and least distance between lines.

Q: How many exercises are discussed in chapter three dimensional geometry?
A:

4 exercises including the miscellaneous. 

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

15 Sep'25 - 10 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.

I hope it will clear your query!!