Inverse Trigonometric Functions Class 12th Notes - Free NCERT Class 12 Maths Chapter 2 Notes - Download PDF
  • NCERT
  • Inverse Trigonometric Functions Class 12th Notes - Free NCERT Class 12 Maths Chapter 2 Notes - Download PDF

Inverse Trigonometric Functions Class 12th Notes - Free NCERT Class 12 Maths Chapter 2 Notes - Download PDF

Komal MiglaniUpdated on 26 Jul 2025, 08:37 AM IST

In the language of trigonometry, inverse functions let angles speak for themselves. Trigonometry tells you where you’re going; inverse trigonometric functions tell you where you started. Imagine you have moved to a new town and need to visit the nearest bank urgently. You know the distance, but you don't know the angles which you should turn to reach there quickly. This is where inverse trigonometric functions are very helpful. In the Inverse Trigonometric Functions Class 12th notes PDF, students will learn about the domain and range of all trigonometric functions, along with their graphs. The main purpose of these NCERT notes of Inverse Trigonometry class 12 PDF is to provide students with an efficient study material from which they can revise the entire chapter.

This Story also Contains

  1. NCERT Notes for Class 12 Chapter 2 Inverse Trigonometric Functions: Free PDF Download
  2. NCERT Notes for Class 12 Chapter 2 Inverse Trigonometric Functions
  3. Domain & Range of Inverse Trigonometric Functions
  4. Graphs Of Inverse Trigonometric Functions
  5. Important Trigonometric Functions Formula
  6. Inverse Trigonometric Functions: Previous Year Question and Answer
  7. NCERT Class 12 Notes Chapter Wise
Inverse Trigonometric Functions Class 12th Notes - Free NCERT Class 12 Maths Chapter 2 Notes - Download PDF
Inverse Trigonometric Functions Class 12th Notes

Inverse trigonometric functions are the detectives of mathematics, finding the angles hidden behind sine, cosine, and tangent. Like trigonometric functions, these are also used in geometry, navigation, science, and engineering. Students should complete the inverse trigonometric functions class 12 questions and answers from the textbook to strengthen all the basic concepts. These Inverse Trigonometric Functions Class 12 Handwritten Notes are prepared by experienced Careers360 teachers, keeping the needs of students in mind. These NCERT Maths notes for class 12 will also clarify some important questions of students related to this chapter. For your syllabus, solutions, and chapter-wise PDFs, head over to this link: NCERT.

Also, read,

NCERT Notes for Class 12 Chapter 2 Inverse Trigonometric Functions: Free PDF Download

Students who wish to access the NCERT Notes for class 12, chapter 2 can click on the link below to download the entire solution in PDF.

Download PDF

NCERT Notes for Class 12 Chapter 2 Inverse Trigonometric Functions

The inverse of any function exists if the function 'f' is one-one and onto. The inverse of function 'f' is denoted by f -1. The trigonometric functions are neither one-one nor onto over their domain and natural ranges.
So, the domains and ranges of trigonometric functions are restricted to ensure the existence of their inverse. The inverse trigonometric functions, denoted by sin -1 x or (arc sin x), cos -1x, etc., denote the angles whose sine, cosine, etc, is equal to x.

Note: Do not confuse inverse function $f^{-1}$ with $\frac{1}{f}$ . The inverse trigonometric functions like $\sin^{-1}x$ is not the same as $\frac{1}{\sin x}$.

Domain & Range of Inverse Trigonometric Functions

$
\begin{array}{|l|l|l|l|}
\hline \text { S.No } &{f}(\mathrm{x}) & \text { Domain } & \text { Range } \\
\hline(1) & \sin ^{-1} \mathrm{x} & |\mathrm{x}| \leq 1 & {\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]} \\
(2) & \cos ^{-1} \mathrm{x} & |\mathrm{x}| \leq 1 & {[0, \pi]} \\
(3) & \tan ^{-1} \mathrm{x} & \mathrm{x} \in \mathrm{R} & \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\
(4) & \sec ^{-1} \mathrm{x} & |\mathrm{x}| \geq 1 & {[0, \pi] -\left\{\frac{\pi}{2}\right\} \text { or, }\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]} \\
(5) & \operatorname{cosec}^{-1} \mathrm{x} & |\mathrm{x}| \geq 1 & {\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}} \\
(6) & \cot ^{-1} \mathrm{x} & \mathrm{x} \in \mathrm{R} & (0, \pi) \\
\hline
\end{array}
$

Graphs Of Inverse Trigonometric Functions

(i) Graphs of sin x and sin-1 x

$\begin{aligned} &\mathrm{f}:\left[\frac{-\pi}{2}, \frac{\pi}{2}\right] \rightarrow[-1,1]\\ &\mathrm{f}(\mathrm{x})=\sin \mathrm{x} \end{aligned}$fireshot-capture-212-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

$\begin{aligned} &\mathrm{f}^{-1}:[-1,1] \rightarrow[-\frac{\pi}2, \frac{\pi}2]\\ &\mathrm{f}^{-1}(\mathrm{x})=\sin ^{-1}(\mathrm{x}) \end{aligned}$
fireshot-capture-213-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

The domain of the inverse sine function is $[-1,1]$ and the range is $[-\frac{\pi}2, \frac{\pi}2]$.

(ii) Graphs of cos x and cos-1 x

$\begin{aligned} &f:[0, \pi] \rightarrow[-1,1] \\ &f(x)=\cos x \end{aligned}$
fireshot-capture-214-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

$\begin{aligned} &\mathrm{f}^{-1}:[-1,1] \rightarrow[0, \pi] \\ &\mathrm{f}^{-1}(\mathrm{x})=\cos ^{-1} \mathrm{x} \end{aligned}$
fireshot-capture-215-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

The domain of the inverse cosine function is $[-1,1]$, and the range is $[0,\pi]$.

(iii) Graphs of cosec x and cosec-1 x

$\begin{aligned} &f:[-\frac{\pi}2,0) \cup(0, \frac{\pi}2] \rightarrow(-\infty,-1] \cup[1, \infty) \\ &f(x)=\operatorname{cosec} x \end{aligned}$
fireshot-capture-216-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

$\begin{aligned} &\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty) \rightarrow[-\frac{\pi}2,0) \cup(0, \frac{\pi}2] \\ &\mathrm{f}^{-1}(\mathrm{x})=\operatorname{cosec}^{-1} \mathrm{x} \end{aligned}$fireshot-capture-217-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

The domain of the inverse cosec function is $(-\infty,-1] \cup[1, \infty)$ and the range is $\left[-\frac{\pi}{2}, 0\right) \cup\left(0, \frac{\pi}{2}\right]$.

(iv) Graphs of sec x and sec-1 x

$\begin{aligned} &\mathrm{f}:[0,\frac{\pi}2) \cup(\frac{\pi}2, \pi] \rightarrow(-\infty,-1] \cup[1, \infty) \\ &\mathrm{f}(\mathrm{x})=\sec \mathrm{x}
\end{aligned}$
fireshot-capture-218-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

$\begin{aligned} &\mathrm{f}^{-1}:(-\infty,-1] \cup[1, \infty) \rightarrow[0, \frac{\pi}2) \cup(\frac{\pi}2, \pi] \\ &\mathrm{f}^{-1}(\mathrm{x})=\sec ^{-1} \mathrm{x} \end{aligned}$

fireshot-capture-219-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

The domain of the inverse secant function is $(-\infty,-1] \cup[1, \infty)$ and the range is $\left[0, \frac{\pi}{2}\right) \cup\left(\frac{\pi}{2}, \pi\right]$.

(v) Graphs of tan x and tan-1 x

$\begin{aligned} &\mathrm{f}:(-\frac{\pi}2, \frac{\pi}2) \rightarrow \mathrm{R} \\ &\mathrm{f}(\mathrm{x})=\tan \mathrm{x} \end{aligned}$
fireshot-capture-220-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

$\begin{aligned} &\mathrm{f}^{-1}: \mathrm{R} \rightarrow(-\frac{\pi}2, \frac{\pi}2) \\ &\mathrm{f}^{-1}(\mathrm{x})=\tan ^{-1} \mathrm{x} \end{aligned}$
fireshot-capture-221-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

The domain of the inverse tangent function is $(-\infty, \infty)$ and the range is $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

(vi) Graphs of cot x and cot-1 x

$\begin{aligned} &\mathrm{f}:(0, \pi) \rightarrow \mathrm{R} \\ &\mathrm{f}(\mathrm{x})=\cot \mathrm{x} \end{aligned}$
fireshot-capture-222-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

$\begin{aligned} &\mathrm{f}^{-1}: \mathrm{R} \rightarrow(0, \pi) \\ &\mathrm{f}^{-1}(\mathrm{x})=\cot ^{-1} \mathrm{x} \end{aligned}$
fireshot-capture-223-12-maths-ncert-chapter-2pdf-google-drive-drivegooglecom

The domain of the inverse cotangent function is $(-\infty, \infty)$ and the range is $(0, \pi)$.

Note

  • All the inverse trigonometric functions represent an angle.
  • If $x\geq 0$, then all six inverse trigonometric functions viz sin-1 x, cos-1 x, tan-1 x, sec-1x, cosec-1x, and cot-1x represent an acute angle.
  • If x < 0, then sin-1x, tan-1x & cosec-1x represent an angle from $-\frac{\pi}2$ to 0.
  • If x < 0, then cos-1 x, cot-1 x & sec-1 x represent an obtuse angle.
  • (III)rd quadrant is never used in inverse trigonometric functions.

Important Trigonometric Functions Formula

There are some important formulas in the NCERT Class 12 Maths chapter 2, Inverse trigonometric functions, which will be useful while solving NCERT problems. These formulas are conditional and can be used for a certain range of values of x.

Formulae
$\begin{aligned} & \sin ^{-1} \frac{1}{x}=\operatorname{cosec}^{-1} x, x \geq 1 \text { or } x \leq-1 \\ & \cos ^{-1} \frac{1}{x}=\sec ^{-1} x, x \geq 1 \text { or } x \leq-1 \\ & \tan ^{-1} \frac{1}{x}=\cot ^{-1} x, x>0\end{aligned}$
$\begin{aligned} & \sin ^{-1}(-x)=-\sin ^{-1} x, x \in[-1,1] \\ & \tan ^{-1}(-x)=-\tan ^{-1} x, x \in \mathrm{R} \\ & \operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x,|x| \geq 1 \\ & \cos ^{-1}(-x)=\pi-\cos ^{-1} x, x \in[-1,1] \\ & \sec ^{-1}(-x)=\pi-\sec ^{-1} x,|x| \geq 1 \\ & \cot ^{-1}(-x)=\pi-\cot ^{-1} x, x \in \mathrm{R}\end{aligned}$
$\begin{aligned} & \sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}, x \in[-1,1] \\ & \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}, x \in \mathrm{R} \\ & \operatorname{cosec}^{-1} x+\sec ^{-1} x=\frac{\pi}{2},|x| \geq 1\end{aligned}$
$\begin{aligned} & \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1} \frac{x+y}{1-x y}, x y<1 \\ & \tan ^{-1} x-\tan ^{-1} y=\tan ^{-1} \frac{x-y}{1+x y}, x y>-1 \\ & 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^2},|x|<1\end{aligned}$
$\begin{aligned} & 2 \tan ^{-1} x=\sin ^{-1} \frac{2 x}{1+x^2},|x| \leq 1 \\ & 2 \tan ^{-1} x=\cos ^{-1} \frac{1-x^2}{1+x^2}, x \geq 0 \\ & 2 \tan ^{-1} x=\tan ^{-1} \frac{2 x}{1-x^2},-1<x<1\end{aligned}$

Inverse Trigonometric Functions: Previous Year Question and Answer

Question 1:
The value of $\sin ^{-1}\left ( \cos \frac{3\pi }{5} \right )$ is: [CBSE 2020]

Solution:
$\\ \sin ^{-1}\left ( \cos \frac{3\pi }{5} \right ) \\\\ = \sin ^{-1}\left ( \sin (\frac{\pi}{2} - \frac{3\pi }{5}) \right ) \\\\ = \sin ^{-1}\left ( \sin (\frac{5\pi- 6\pi}{10}) \right ) \\\\ = \sin ^{-1}\left ( \sin \frac{-\pi}{10} \right ) \\\\ =- \frac{\pi}{10}$

Hence, the correct answer is $-\frac{\pi}{10}$.

Question 2:
Evaluate : $\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)$ [CBSE 2025]

Solution:
The inverse sine function $\sin ^{-1} x$ has a principal value range of:
$
\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$
This means:

$
\sin ^{-1}(\sin \theta)=\theta, \text { only if } \theta \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] .
$

If $\theta$ is outside this interval, $\sin ^{-1}(\sin \theta)$ will be the principal value of the sine function within $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.
Now, $
\frac{3 \pi}{5}=\frac{3 \times 180^{\circ}}{5}=108^{\circ}
$
which is not in the principal range $\left[-90^{\circ}, 90^{\circ}\right]$.
Since $\sin (\pi-x)=\sin x$,
and $\pi-\frac{3 \pi}{5}=\frac{2 \pi}{5}$, and $\frac{2 \pi}{5}=\frac{2 \times 180^{\circ}}{5}=72^{\circ}$, which is in $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$,
we can write:

$
\sin \frac{3 \pi}{5}=\sin \left(\pi-\frac{3 \pi}{5}\right)=\sin \frac{2 \pi}{5} .
$
Therefore,

$
\sin ^{-1}\left(\sin \frac{3 \pi}{5}\right)=\sin ^{-1}\left(\sin \frac{2 \pi}{5}\right)=\frac{2 \pi}{5} .
$

Hence, the correct answer is ($\frac{2\pi}{5}$).

Question 3:
Prove that $\tan \left[2 \tan ^{-1}\left(\frac{1}{2}\right)-\cot ^{-1} 3\right]=\frac{9}{13}$
[CBSE 2020]

Solution:

To prove:

$\begin{aligned} & \tan \left[2 \tan ^{-1}\left(\frac{1}{2}\right)-\cot ^{-1} 3\right]=\frac{9}{13} \\ & \text { LHS }=\tan \left[2 \tan ^{-1} \frac{1}{2}-\cot ^{-1} 3\right] \\ & =\tan \left[\tan ^{-1}\left(\frac{2 \times \frac{1}{2}}{1-\left(\frac{1}{2}\right)^2}\right)-\cot ^{-1} 3\right] \\ & =\tan \left[\tan ^{-1}\left\{\frac{1}{1-\frac{1}{4}}\right\}-\tan ^{-1} \frac{1}{3}\right] \\ & =\tan \left[\tan ^{-1} \frac{4}{3}-\tan ^{-1} \frac{1}{3}\right] \\ & =\tan \left[\tan ^{-1}\left(\frac{\frac{4}{3}-\frac{1}{3}}{1+\frac{4}{9}}\right)\right] \\ & =\tan \left[\tan ^{-1}\left(\frac{\frac{4-1}{3}}{\frac{9+4}{9}}\right)\right] \\ & =\tan \left[\tan ^{-1}\left(\frac{1}{\frac{13}{9}}\right)\right] \\ & =\tan \left[\tan ^{-1}\left(\frac{9}{13}\right)\right] \\ & =\frac{9}{13}=R H S\end{aligned}$

Hence, the given statement is proved.

NCERT Class 12 Notes Chapter Wise

Access all NCERT Class 12 Maths Notes from one place using the links below.

NCERT Exemplar Solutions for Class 12 Subject-wise

These links will help students find the step-by-step NCERT exemplar solutions.

NCERT Solutions for Class 12 Subject-Wise

Students can also explore these well-made, subject-wise solutions.

NCERT Books and Syllabus

The following links can lead students to the latest CBSE syllabus and some important reference books for better conceptual clarity.

Frequently Asked Questions (FAQs)

Q: How do we solve equations involving inverse trigonometric functions?
A:

We can solve equations of Inverse Trigonometric functions by using the properties with algebraic manipulation.
We can also use various identities to simplify the equations.

Q: What is an inverse trigonometric function?
A:

An inverse trigonometric function reverses the effect of a trigonometric function. It gives the angle (value in radians or degrees) when the value of a trigonometric function is given.
In layman's terms, if trigonometric functions throw the party, inverse trigonometric functions help you figure out who sent the invitation (angle) in the first place.

Q: What are the common errors students make in inverse trigonometric functions?
A:

Some of the common errors students make during the inverse trigonometric functions problems are:

  • Misunderstanding the domain and range.

  • Not using the proper identity between trigonometric and inverse trigonometric functions.

  • Confusing the derivative's sign.

  • Not having the idea of the relevant graphs.

  • Lack of practice with questions in this chapter.

Q: What is the weightage of the chapter Inverse Trigonometric Functions for CBSE board exam ?
A:

This chapter carries around 4 to 5 marks in the Class 12 board exam. This chapter falls under the Trigonometry section in the JEE exam and is very important. Mainly, the question types from this chapter that come in the exam are of properties and identities or solving equations.

Q: Can we solve problems involving inverse trigonometric functions graphically?
A:

Yes, graphically representing the inverse trigonometric functions is helpful. The above notes present and explain graphs of all trigonometric functions efficiently.

Articles
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)