NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability

NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 23 Apr 2025, 11:12 PM IST

Continuity is like watching your favourite TV show without any commercial breaks, where differentiability is when there are no abrupt cuts or edits, just smooth and seamless transitions. Logarithmic differentiation is a very powerful method for differentiating such complex functions which involve products or exponents. Exercise 5.5 of the chapter Continuity and Differentiability mainly focuses on logarithmic differentiation. This method can easily simplify various complex and tricky expressions, so that differentiating becomes much easier for students. That is why understanding this concept is very crucial for students in their calculus journey. This article on NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability offers clear and step-by-step solutions for the exercise problems, which will enable the students to grasp the concepts, logic, and methods of logarithmic differentiation easily. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 5 Exercise 5.5 Solutions: Download PDF

Download PDF

Continuity and Differentiability Exercise: 5.5

Question:1 Differentiate the functions w.r.t. x. $\cos x . \cos 2x .\cos 3x$

Answer:

Given function is
$y=\cos x . \cos 2x .\cos 3x$
Now, take log on both sides
$\log y=\log (\cos x . \cos 2x .\cos 3x)\\ \log y = \log \cos x + \log \cos 2x + \log \cos 3x$
Now, differentiation w.r.t. x

$\log y = \log (\cos x \cdot \cos 2x \cdot \cos 3x)$

$\frac{d(\log y)}{dx} = \frac{d(\log \cos x)}{dx} + \frac{d(\log \cos 2x)}{dx} + \frac{d(\log \cos 3x)}{dx}$

$\frac{1}{y} \cdot \frac{dy}{dx} = \left(-\sin x\right) \cdot \frac{1}{\cos x} + \left(-2\sin 2x\right) \cdot \frac{1}{\cos 2x} + \left(-3\sin 3x\right) \cdot \frac{1}{\cos 3x}$

$\frac{1}{y} \cdot \frac{dy}{dx} = -\left(\tan x + \tan 2x + \tan 3x\right) \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$

$\frac{dy}{dx} = -y\left(\tan x + \tan 2x + \tan 3x\right)$

$\frac{dy}{dx} = -\cos x \cos 2x \cos 3x \left(\tan x + \tan 2x + \tan 3x\right)$

Therefore, the answer is $-\cos x\cos 2x\cos 3x(\tan x+\tan 2x+\tan 3x)$

Question:2. Differentiate the functions w.r.t. x.

$\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$

Answer:

Given function is
$y=\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Take log on both the sides

$\log y = \frac{1}{2} \log\left( \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} \right)$

$\log y = \frac{1}{2} \left( \log(x - 1) + \log(x - 2) - \log(x - 3) - \log(x - 4) - \log(x - 5) \right)$
Now, differentiation w.r.t. x is
$\frac{d(\log y)}{dx} = \frac{1}{2} (\frac{d(\log(x-1))}{dx}+\frac{d(\log(x-2))}{dx}-\frac{d(\log(x-3))}{dx}-\frac{d(\log(x-4))}{dx}-\\$$\frac{d(\log(x-5))}{dx})$

$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$

$\frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$

$\frac{dy}{dx} = \frac{1}{2} \sqrt{ \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} } \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$

Therefore, the answer is $\frac{1}{2}\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$

Question:3 Differentiate the functions w.r.t. x. $(\log x ) ^{\cos x}$

Answer:

Given function is
$y=(\log x ) ^{\cos x}$
take log on both the sides
$\log y=\cos x\log (\log x )$
Now, differentiation w.r.t x is

$\frac{d(\log y)}{dx} = \frac{d(\cos x \log(\log x))}{dx}$

$\frac{1}{y} \cdot \frac{dy}{dx} = (-\sin x)(\log(\log x)) + \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x}$

$\frac{dy}{dx} = y \left( \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x} - \sin x \log(\log x) \right)$

$\frac{dy}{dx} = (\log x)^{\cos x} \left( \frac{\cos x}{x \log x} - \sin x \log(\log x) \right)$

Therefore, the answer is $(\log x)^{\cos x}( \frac{\cos x}{x\log x}-\sin x\log(\log x) )$

Question:4 Differentiate the functions w.r.t. x. $x ^x - 2 ^{ \sin x }$

Answer:

Given function is
$y = x ^x - 2 ^{ \sin x }$
Let's take $t = x^x$
take log on both the sides
$\log t=x\log x\\$
Now, differentiation w.r.t x is

$\log t = x \log x$

$\frac{d(\log t)}{dt} \cdot \frac{dt}{dx} = \frac{d(x \log x)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$

$\frac{1}{t} \cdot \frac{dt}{dx} = \log x + 1$

$\frac{dt}{dx} = t(\log x + 1)$

$\frac{dt}{dx} = x^x(\log x + 1) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because t = x^x)$

Similarly, take $k = 2^{\sin x}$
Now, take log on both sides and differentiate w.r.t. x

$\log k = \sin x \log 2$

$\frac{d(\log k)}{dk} \cdot \frac{dk}{dx} = \frac{d(\sin x \log 2)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$

$\frac{1}{k} \cdot \frac{dk}{dx} = \cos x \log 2$

$\frac{dk}{dx} = k(\cos x \log 2)$

$\frac{dk}{dx} = 2^{\sin x}(\cos x \log 2) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because k = 2^{\sin x})$

Now,
$\frac{dy}{dx} = \frac{dt}{dx}-\frac{dk}{dx}\\ \frac{dy}{dx} = x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$

Therefore, the answer is $x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$

Question:5 Differentiate the functions w.r.t. x. $( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$

Answer:

Given function is
$y=( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Take log on both sides
$\log y=\log [( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4]\\ \log y = 2\log(x+3)+3\log(x+4)+4\log(x+5)$
Now, differentiate w.r.t. x we get,

$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} + 3 \cdot \frac{1}{x+4} + 4 \cdot \frac{1}{x+5}$

$\frac{dy}{dx} = y\left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$

$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$

$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right)$

$\frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3(9x^2 + 70x + 133)$

Therefore, the answer is $(x + 3) (x + 4)^2 (x + 5)^3 (9x^2 + 70x + 133)$

Question:6 Differentiate the functions w.r.t. x. $( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$

Answer:

Given function is
$y = ( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Let's take $t = ( x+ \frac{1}{x} ) ^ x$
Now, take log on both sides
$\log t =x \log ( x+ \frac{1}{x} )$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \log \left( x + \frac{1}{x} \right) + x\left(1 - \frac{1}{x^2} \right) \cdot \frac{1}{\left( x + \frac{1}{x} \right)}$

$= \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right)$

$\frac{dt}{dx} = t \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$

$\frac{dt}{dx} = \left( x + \frac{1}{x} \right)^x \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$

Similarly, take $k = x^{1+\frac{1}{x}}$
Now, take log on both sides
$\log k = ({1+\frac{1}{x}})\log x$
Now, differentiate w.r.t. x
We get,

$\frac{1}{k} \cdot \frac{dk}{dx} = \frac{1}{x} \left( 1 + \frac{1}{x} \right) + \left(-\frac{1}{x^2} \right) \log x$

$= \frac{x^2 + 1}{x^2} + \left( -\frac{1}{x^2} \right) \log x$

$\frac{dk}{dx} = k \left( \frac{x^2 + 1 - \log x}{x^2} \right)$

$\frac{dk}{dx} = x^{x + \frac{1}{x}} \left( \frac{x^2 + 1 - \log x}{x^2} \right)$

Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = \left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$

Therefore, the answer is $\left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$

Question:7 Differentiate the functions w.r.t. x. $(\log x )^x + x ^{\log x }$

Answer:

Given function is
$y = (\log x )^x + x ^{\log x }$
Let's take $t = (\log x)^x$
Now, take log on both the sides
$\log t = x \log(\log x)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\log x) + x \cdot \frac{1}{x} \cdot \frac{1}{\log x} = \log (\log x) + \frac{1}{\log x}$

$\frac{dt}{dx} = t \cdot \left( \log (\log x) + \frac{1}{\log x} \right)$

$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^x \cdot \frac{1}{\log x}$

$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^{x-1}$

Similarly, take $k = x^{\log x}$
Now, take log on both sides
$\log k = \log x \log x = (\log x)^2$
Now, differentiate w.r.t. x
We get,
$\frac{1}{k}\frac{dk}{dx} =2 (\log x).\frac{1}{x} \\ \frac{dt}{dx}= k.\left ( 2 (\log x).\frac{1}{x} \right )\\ \frac{dt}{dx} = x^{\log x}.\left (2 (\log x).\frac{1}{x} \right ) = 2x^{\log x-1}.\log x$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Therefore, the answer is $(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$

Question:8 Differentiate the functions w.r.t. x. $(\sin x )^x + \sin ^{-1} \sqrt x$

Answer:

Given function is
$(\sin x )^x + \sin ^{-1} \sqrt x$
Lets take $t = (\sin x)^x$
Now, take log on both the sides
$\log t = x \log(\sin x)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\sin x) + x \cdot \cos x \cdot \frac{1}{\sin x} = \log (\sin x) + x \cdot \cot x \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$

$\frac{dt}{dx} = t \cdot (\log (\sin x) + x \cdot \cot x)$

$\frac{dt}{dx} = (\sin x)^x \cdot (\log (\sin x) + x \cdot \cot x)$

Similarly, take $k = \sin^{-1}\sqrt x$
Now, differentiate w.r.t. x
We get,
$\frac{dk}{dt} = \frac{1}{\sqrt{1-(\sqrt x)^2}}.\frac{1}{2\sqrt x}= \frac{1}{2\sqrt{x-x^2}}\\ \frac{dk}{dt}=\frac{1}{2\sqrt{x-x^2}}\\$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Therefore, the answer is $(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$

Question:9 Differentiate the functions w.r.t. x $x ^ {\sin x } + ( \sin x )^{\cos x}$

Answer:

Given function is
$y = x ^ { \sin x } + ( \sin x )^ {\cos x}$
Now, take $t = x^{\sin x}$
Now, take log on both sides
$\log t = \sin x \log x$
Now, differentiate it w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x + \frac{1}{x} \cdot \sin x$

$\frac{dt}{dx} = t \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$

$\frac{dt}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$

Similarly, take $k = (\sin x)^{\cos x}$
Now, take log on both the sides
$\log k = \cos x \log (\sin x)$
Now, differentiate it w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (-\sin x)(\log (\sin x)) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x = -\sin x \log(\sin x) + \cot x \cdot \cos x$
$\frac{dk}{dx} = k\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
$\frac{dk}{dx} = (\sin x)^{\cos x}\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
Now,
$\frac{dy}{dx} = x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Therefore, the answer is $x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$

Question:10 Differentiate the functions w.r.t. x. $x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$

Answer:

Given function is
$x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Take $t = x^{x\cos x}$
Take log on both the sides
$\log t =x\cos x \log x$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x - x \cdot \sin x \cdot \log x + \frac{1}{x} \cdot x \cdot \cos x$

$\frac{dt}{dx} = t \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$

$\frac{dt}{dx} = x^{x \cos x} \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$

Similarly,
take $k = \frac{x^2+1}{x^2-1}$
Now. differentiate it w.r.t. x
we get,
$\frac{dk}{dx} = \frac{2x(x^2-1)-2x(x^2+1)}{(x^2-1)^2} = \frac{2x^3-2x-2x^3-2x}{(x^2-1)^2} = \frac{-4x}{(x^2-1)^2}$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = x^{x\cos x}\left ( \log x(\cos x-x\sin x)+ \cos x \right )-\frac{4x}{(x^2-1)^2}$
Therefore, the answer is $x^{x\cos x}\left ( \cos x(\log x+1)-x\sin x\log x\right )-\frac{4x}{(x^2-1)^2}$

Question:11 Differentiate the functions w.r.t. x. $( x \cos x )^ x + ( x \sin x )^{1/ x}$

Answer:

Given function is
$f(x)=( x \cos x )^ x + ( x \sin x )^{1/ x}$
Let's take $t = (x\cos x)^x$
Now, take log on both sides
$\log t =x\log (x\cos x) = x(\log x+\log \cos x)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = (\log x + \log \cos x) + x \left( \frac{1}{x} + \frac{1}{\cos x} \cdot (-\sin x) \right)$

$\frac{dt}{dx} = t \left( \log x + \log \cos x + 1 - x \tan x \right) \ \ \ \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$

$\frac{dt}{dx} = (x \cos x)^x \left( \log x + \log \cos x + 1 - x \tan x \right)$

$\frac{dt}{dx} = (x \cos x)^x \left( 1 - x \tan x + \log(x \cos x) \right)$

Similarly, take $k = (x\sin x)^{\frac{1}{x}}$
Now, take log on both the sides
$\log k = \frac{1}{x}(\log x+\log \sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = \left(\frac{-1}{x^2}\right)(\log x + \log \sin x) + \frac{1}{x} \left(\frac{1}{x} + \frac{1}{\sin x} \cdot \cos x\right)$
$\frac{dk}{dx} = \frac{k}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right) \ \ \ \ \ \ \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$
$\frac{dk}{dx} = \frac{(x \sin x)^{\frac{1}{x}}}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right)$
$\frac{dk}{dx} = (x \sin x)^{\frac{1}{x}} \cdot \frac{x \cot x + 1 - \log(x \sin x)}{x^2}$
Now,
$\frac{dy}{dx}= \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx}= (x\cos x)^x(+1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Therefore, the answer is $(x\cos x)^x(1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$

Question:12 Find dy/dx of the functions given in Exercises 12 to 15

$x ^ y + y ^ x = 1$.

Answer:

Given function is
$f(x)=x ^ y + y ^ x = 1$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot (\log x) + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot (\log x) + \frac{y}{x}$

$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$

$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$

Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)= \frac{dt}{dx}+\frac{dk}{dx}= 0$

$ (x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) + (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right) = 0 $

$ \frac{dy}{dx} \left( x^y \log x + x y^{x - 1} \right) = -\left( y x^{y - 1} + y^x \log y \right) $

$ \frac{dy}{dx} = \frac{ -\left( y x^{y - 1} + y^x \log y \right) }{ x^y \log x + x y^{x - 1} } $

Therefore, the answer is $\frac{ -(yx^{y-1}+y^x(\log y))}{(x^y(\log x)+xy^{x-1})}$

Question:13 Find dy/dx of the functions given in Exercises 12 to 15.

$y^x = x ^y$

Answer:

Given function is
$f(x)\Rightarrow x ^ y = y ^ x$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,

$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot \log x + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot \log x + \frac{y}{x}$

$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$

$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$

Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)\Rightarrow \frac{dt}{dx}= \frac{dk}{dx}$

$(x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) = (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( x^y \log x - x y^{x - 1} \right) = y^x \log y - y x^{y - 1}$
$\frac{dy}{dx} = \frac{y^x \log y - y x^{y - 1}}{x^y \log x - x y^{x - 1}} = \frac{x}{y} \left( \frac{y - x \log y}{x - y \log x} \right)$

Therefore, the answer is $\frac{x}{y}\left ( \frac{y-x\log y}{x-y\log x}\right )$

Question:14 Find dy/dx of the functions given in Exercises 12 to 15. $( \cos x )^y = ( \cos y )^x$

Answer:

Given function is
$f(x)\Rightarrow (\cos x) ^ y = (\cos y) ^ x$
Now, take log on both the sides
$y\log \cos x = x \log \cos y$
Now, differentiate w.r.t x
$\frac{dy}{dx}(\log \cos x)-y\tan x = \log \cos y-x\tan y\frac{dy}{dx}$
By taking similar terms on the same side
We get,
$\left( \frac{dy}{dx} (\log \cos x) - y \tan x \right) = \left( \log \cos y - x \tan y \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( \log \cos x + x \tan y \right) = \log \cos y + y \tan x$
$\frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$

Therefore, the answer is $\frac{y\tan x+\log \cos y}{x\tan y+\log \cos x}$

Question:15 Find dy/dx of the functions given in Exercises 12 to 15. $xy = e ^{x-y}$

Answer:

Given function is
$f(x)\Rightarrow xy = e ^{x-y}$
Now, take log on both the sides

$\log x + \log y = (x - y)(1) \qquad (\because \log e = 1)$

$\log x + \log y = x - y$

Now, differentiate w.r.t x
$\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}$
By taking similar terms on same side
We get,
$(\frac{1}{y}+1)\frac{dy}{dx}=1-\frac{1}{x}\\ \frac{y+1}{y}.\frac{dy}{dx}= \frac{x-1}{x}\\ \frac{dy}{dx}= \frac{y}{x}.\frac{x-1}{y+1}$
Therefore, the answer is $\frac{y}{x}.\frac{x-1}{y+1}$

Question:16 Find the derivative of the function given by $f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$ and hence find

f ' (1)

Answer:

Given function is
$y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$
Take log on both sides
$\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)$
NOW, differentiate w.r.t. x

$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}$

$\frac{dy}{dx} = y \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$

$\frac{dy}{dx} = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$

Therefore, $f^{'}(x)= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )$
Now, the value of $f^{'}(1)$ is
$f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+ \frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\ f^{'}(1)=16.\frac{15}{2} = 120$

Question:17 (1) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(i) by using product rule

Answer:

Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, we need to differentiate using the product rule
$f^{'}(x)=\frac{d((x^2 - 5x + 8))}{dx}. (x^3 + 7x + 9)+(x^2 - 5x + 8).\frac{d( (x^3 + 7x + 9))}{dx}\\$

$= (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$

$= 2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56$

$= 5x^4 - 20x^3 + 45x^2 - 52x + 11$

Therefore, the answer is $5x^4 -20x^3+45x^2-52x+11$

Question:17 (2) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(ii) by expanding the product to obtain a single polynomial.

Answer:

Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Multiply both to obtain a single higher degree polynomial
$f(x) = x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)$
$= x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72$
$= x^5-5x^4+15x^3-26x^2+11x+72$
Now, differentiate w.r.t. x
we get,
$f^{'}(x)=5x^4-20x^3+45x^2-52x+11$
Therefore, the answer is $5x^4-20x^3+45x^2-52x+11$

Question:17 (3) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(iii) by logarithmic differentiation.
Do they all give the same answer?

Answer:

Given function is
$y=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, take log on both the sides
$\log y = \log (x^2-5x+8)+\log (x^3+7x+9)$
Now, differentiate w.r.t. x
we get,

$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot (2x - 5) + \frac{1}{x^3 + 7x + 9} \cdot (3x^2 + 7)$

$\frac{dy}{dx} = y \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$

$\frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9) \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$

$\frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)$

$\frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 56x + 11$

Therefore, the answer is $5x^4-20x^3+45x^2-56x+11$
And yes they all give the same answer

Question:18 If u, v and w are functions of x, then show that $\frac{d}{dx} ( u,v,w) = \frac{du}{dx} v. w +u . \frac{dv }{dx } v. w+ u . \frac{dv}{dx } . w+u.v \frac{dw}{dx}$ in two ways - first by repeated application of product rule, second by logarithmic differentiation.

Answer:

It is given that u, v and w are the functions of x
Let $y = u.v.w$
Now, we differentiate using product rule w.r.t x
First, take $y = u.(vw)$
Now,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{d(v.w)}{dx}.u$ -(i)
Now, again by the product rule
$\frac{d(v.w)}{dx}= \frac{dv}{dx}.w + \frac{dw}{dx}.v$
Put this in equation (i)
we get,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)$
Hence, by product rule we proved it

Now, by taking the log
Again take $y = u.v.w$
Now, take log on both sides
$\log y = \log u + \log v + \log w$
Now, differentiate w.r.t. x
we get,

$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx}$

$\frac{dy}{dx} = y \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$

$\frac{dy}{dx} = (u v w) \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$

$\frac{dy}{dx} = \frac{du}{dx} \cdot (v w) + \frac{dv}{dx} \cdot (u w) + \frac{dw}{dx} \cdot (u v)$

Hence, we proved it by taking the log


Also Read,

Topics covered in Chapter 5, Continuity and Differentiability: Exercise 5.5

The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.5 are:

  • Logarithmic differentiation: Logarithmic differentiation is a useful method for differentiating complex expressions involving products and exponents. You should always try to apply logarithms to make the expressions easier to differentiate.
  • Applications of logarithmic properties: Some useful logarithm properties are:
    $\log(ab)= \log a+\log b$

$\log(\frac{a}{b})=\log a- \log b$

$\log(a^n)=n\log a$

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Does logarithmic differentiation and differentiation of logarithmic function is same ?
A:

No,  logarithmic differentiation and differentiation of logarithmic function are different concepts.

Q: What is use of logarithmic differentiation ?
A:

Logarithmic differentiation is useful for differentiating the function raised to the power of some variable or function.

Q: What is weightage of Vector Algebra if the CBSE Class 12 Maths board exam ?
A:

The weightage of Vector Algebra is 7 marks in the CBSE Class 12 Maths board exam. For good score follow NCERT book. To solve more problems NCERT exemplar and previous year papers can be used.

Q: Can i get CBSE Class 12 Syllabus ?
A:

Click on the link to get CBSE Class 12 Syllabus.

Q: What is the application process for CBSE Class 12 ?
A:

Click on the link to get application process for CBSE Class 12

Q: What is the exam duration of CBSE Class 12 Maths ?
A:

Total of 3 hours will be given to you to complete the CBSE Class 12 Maths paper.

Q: What is the differentiation of e^(2x) ?
A:

The differentiation of e^(2x) is 2 e^(2x).

Q: Find the differentiation of 1/x ?
A:

d(1/x)/dx = -1/x^2

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

15 Sep'25 - 17 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !