Continuity is like watching your favourite TV show without any commercial breaks, where differentiability is when there are no abrupt cuts or edits, just smooth and seamless transitions. Logarithmic differentiation is a very powerful method for differentiating such complex functions which involve products or exponents. Exercise 5.5 of the chapter Continuity and Differentiability mainly focuses on logarithmic differentiation. This method can easily simplify various complex and tricky expressions, so that differentiating becomes much easier for students. That is why understanding this concept is very crucial for students in their calculus journey. This article on NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability offers clear and step-by-step solutions for the exercise problems, which will enable the students to grasp the concepts, logic, and methods of logarithmic differentiation easily. For syllabus, notes, and PDF, refer to this link: NCERT.
After receiving their CBSE Class 12th admit card 2026, students can review the helpful advice listed below:
Question:1 Differentiate the functions w.r.t. x. $\cos x . \cos 2x .\cos 3x$
Given function is
$y=\cos x . \cos 2x .\cos 3x$
Now, take log on both sides
$\log y=\log (\cos x . \cos 2x .\cos 3x)\\ \log y = \log \cos x + \log \cos 2x + \log \cos 3x$
Now, differentiation w.r.t. x
$\log y = \log (\cos x \cdot \cos 2x \cdot \cos 3x)$
$\frac{d(\log y)}{dx} = \frac{d(\log \cos x)}{dx} + \frac{d(\log \cos 2x)}{dx} + \frac{d(\log \cos 3x)}{dx}$
$\frac{1}{y} \cdot \frac{dy}{dx} = \left(-\sin x\right) \cdot \frac{1}{\cos x} + \left(-2\sin 2x\right) \cdot \frac{1}{\cos 2x} + \left(-3\sin 3x\right) \cdot \frac{1}{\cos 3x}$
$\frac{1}{y} \cdot \frac{dy}{dx} = -\left(\tan x + \tan 2x + \tan 3x\right) \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$
$\frac{dy}{dx} = -y\left(\tan x + \tan 2x + \tan 3x\right)$
$\frac{dy}{dx} = -\cos x \cos 2x \cos 3x \left(\tan x + \tan 2x + \tan 3x\right)$
Therefore, the answer is $-\cos x\cos 2x\cos 3x(\tan x+\tan 2x+\tan 3x)$
Question:2. Differentiate the functions w.r.t. x.
$\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Given function is
$y=\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Take log on both the sides
$\log y = \frac{1}{2} \log\left( \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} \right)$
$\log y = \frac{1}{2} \left( \log(x - 1) + \log(x - 2) - \log(x - 3) - \log(x - 4) - \log(x - 5) \right)$
Now, differentiation w.r.t. x is
$\frac{d(\log y)}{dx} = \frac{1}{2} (\frac{d(\log(x-1))}{dx}+\frac{d(\log(x-2))}{dx}-\frac{d(\log(x-3))}{dx}-\frac{d(\log(x-4))}{dx}-\\$$\frac{d(\log(x-5))}{dx})$
$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$
$\frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$
$\frac{dy}{dx} = \frac{1}{2} \sqrt{ \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} } \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$
Therefore, the answer is $\frac{1}{2}\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$
Question:3 Differentiate the functions w.r.t. x. $(\log x ) ^{\cos x}$
Given function is
$y=(\log x ) ^{\cos x}$
take log on both the sides
$\log y=\cos x\log (\log x )$
Now, differentiation w.r.t x is
$\frac{d(\log y)}{dx} = \frac{d(\cos x \log(\log x))}{dx}$
$\frac{1}{y} \cdot \frac{dy}{dx} = (-\sin x)(\log(\log x)) + \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x}$
$\frac{dy}{dx} = y \left( \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x} - \sin x \log(\log x) \right)$
$\frac{dy}{dx} = (\log x)^{\cos x} \left( \frac{\cos x}{x \log x} - \sin x \log(\log x) \right)$
Therefore, the answer is $(\log x)^{\cos x}( \frac{\cos x}{x\log x}-\sin x\log(\log x) )$
Question:4 Differentiate the functions w.r.t. x. $x ^x - 2 ^{ \sin x }$
Given function is
$y = x ^x - 2 ^{ \sin x }$
Let's take $t = x^x$
take log on both the sides
$\log t=x\log x\\$
Now, differentiation w.r.t x is
$\log t = x \log x$
$\frac{d(\log t)}{dt} \cdot \frac{dt}{dx} = \frac{d(x \log x)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$
$\frac{1}{t} \cdot \frac{dt}{dx} = \log x + 1$
$\frac{dt}{dx} = t(\log x + 1)$
$\frac{dt}{dx} = x^x(\log x + 1) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because t = x^x)$
Similarly, take $k = 2^{\sin x}$
Now, take log on both sides and differentiate w.r.t. x
$\log k = \sin x \log 2$
$\frac{d(\log k)}{dk} \cdot \frac{dk}{dx} = \frac{d(\sin x \log 2)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$
$\frac{1}{k} \cdot \frac{dk}{dx} = \cos x \log 2$
$\frac{dk}{dx} = k(\cos x \log 2)$
$\frac{dk}{dx} = 2^{\sin x}(\cos x \log 2) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because k = 2^{\sin x})$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}-\frac{dk}{dx}\\ \frac{dy}{dx} = x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$
Therefore, the answer is $x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$
Question:5 Differentiate the functions w.r.t. x. $( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Given function is
$y=( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Take log on both sides
$\log y=\log [( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4]\\ \log y = 2\log(x+3)+3\log(x+4)+4\log(x+5)$
Now, differentiate w.r.t. x we get,
$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} + 3 \cdot \frac{1}{x+4} + 4 \cdot \frac{1}{x+5}$
$\frac{dy}{dx} = y\left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$
$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$
$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right)$
$\frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3(9x^2 + 70x + 133)$
Therefore, the answer is $(x + 3) (x + 4)^2 (x + 5)^3 (9x^2 + 70x + 133)$
Question:6 Differentiate the functions w.r.t. x. $( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Given function is
$y = ( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Let's take $t = ( x+ \frac{1}{x} ) ^ x$
Now, take log on both sides
$\log t =x \log ( x+ \frac{1}{x} )$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \log \left( x + \frac{1}{x} \right) + x\left(1 - \frac{1}{x^2} \right) \cdot \frac{1}{\left( x + \frac{1}{x} \right)}$
$= \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right)$
$\frac{dt}{dx} = t \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$
$\frac{dt}{dx} = \left( x + \frac{1}{x} \right)^x \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$
Similarly, take $k = x^{1+\frac{1}{x}}$
Now, take log on both sides
$\log k = ({1+\frac{1}{x}})\log x$
Now, differentiate w.r.t. x
We get,
$\frac{1}{k} \cdot \frac{dk}{dx} = \frac{1}{x} \left( 1 + \frac{1}{x} \right) + \left(-\frac{1}{x^2} \right) \log x$
$= \frac{x^2 + 1}{x^2} + \left( -\frac{1}{x^2} \right) \log x$
$\frac{dk}{dx} = k \left( \frac{x^2 + 1 - \log x}{x^2} \right)$
$\frac{dk}{dx} = x^{x + \frac{1}{x}} \left( \frac{x^2 + 1 - \log x}{x^2} \right)$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = \left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Therefore, the answer is $\left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Question:7 Differentiate the functions w.r.t. x. $(\log x )^x + x ^{\log x }$
Given function is
$y = (\log x )^x + x ^{\log x }$
Let's take $t = (\log x)^x$
Now, take log on both the sides
$\log t = x \log(\log x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\log x) + x \cdot \frac{1}{x} \cdot \frac{1}{\log x} = \log (\log x) + \frac{1}{\log x}$
$\frac{dt}{dx} = t \cdot \left( \log (\log x) + \frac{1}{\log x} \right)$
$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^x \cdot \frac{1}{\log x}$
$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^{x-1}$
Similarly, take $k = x^{\log x}$
Now, take log on both sides
$\log k = \log x \log x = (\log x)^2$
Now, differentiate w.r.t. x
We get,
$\frac{1}{k}\frac{dk}{dx} =2 (\log x).\frac{1}{x} \\ \frac{dt}{dx}= k.\left ( 2 (\log x).\frac{1}{x} \right )\\ \frac{dt}{dx} = x^{\log x}.\left (2 (\log x).\frac{1}{x} \right ) = 2x^{\log x-1}.\log x$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Therefore, the answer is $(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Question:8 Differentiate the functions w.r.t. x. $(\sin x )^x + \sin ^{-1} \sqrt x$
Given function is
$(\sin x )^x + \sin ^{-1} \sqrt x$
Lets take $t = (\sin x)^x$
Now, take log on both the sides
$\log t = x \log(\sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\sin x) + x \cdot \cos x \cdot \frac{1}{\sin x} = \log (\sin x) + x \cdot \cot x \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$
$\frac{dt}{dx} = t \cdot (\log (\sin x) + x \cdot \cot x)$
$\frac{dt}{dx} = (\sin x)^x \cdot (\log (\sin x) + x \cdot \cot x)$
Similarly, take $k = \sin^{-1}\sqrt x$
Now, differentiate w.r.t. x
We get,
$\frac{dk}{dt} = \frac{1}{\sqrt{1-(\sqrt x)^2}}.\frac{1}{2\sqrt x}= \frac{1}{2\sqrt{x-x^2}}\\ \frac{dk}{dt}=\frac{1}{2\sqrt{x-x^2}}\\$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Therefore, the answer is $(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Question:9 Differentiate the functions w.r.t. x $x ^ {\sin x } + ( \sin x )^{\cos x}$
Given function is
$y = x ^ { \sin x } + ( \sin x )^ {\cos x}$
Now, take $t = x^{\sin x}$
Now, take log on both sides
$\log t = \sin x \log x$
Now, differentiate it w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x + \frac{1}{x} \cdot \sin x$
$\frac{dt}{dx} = t \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$
$\frac{dt}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$
Similarly, take $k = (\sin x)^{\cos x}$
Now, take log on both the sides
$\log k = \cos x \log (\sin x)$
Now, differentiate it w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (-\sin x)(\log (\sin x)) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x = -\sin x \log(\sin x) + \cot x \cdot \cos x$
$\frac{dk}{dx} = k\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
$\frac{dk}{dx} = (\sin x)^{\cos x}\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
Now,
$\frac{dy}{dx} = x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Therefore, the answer is $x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Question:10 Differentiate the functions w.r.t. x. $x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Given function is
$x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Take $t = x^{x\cos x}$
Take log on both the sides
$\log t =x\cos x \log x$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x - x \cdot \sin x \cdot \log x + \frac{1}{x} \cdot x \cdot \cos x$
$\frac{dt}{dx} = t \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$
$\frac{dt}{dx} = x^{x \cos x} \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$
Similarly,
take $k = \frac{x^2+1}{x^2-1}$
Now. differentiate it w.r.t. x
we get,
$\frac{dk}{dx} = \frac{2x(x^2-1)-2x(x^2+1)}{(x^2-1)^2} = \frac{2x^3-2x-2x^3-2x}{(x^2-1)^2} = \frac{-4x}{(x^2-1)^2}$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = x^{x\cos x}\left ( \log x(\cos x-x\sin x)+ \cos x \right )-\frac{4x}{(x^2-1)^2}$
Therefore, the answer is $x^{x\cos x}\left ( \cos x(\log x+1)-x\sin x\log x\right )-\frac{4x}{(x^2-1)^2}$
Question:11 Differentiate the functions w.r.t. x. $( x \cos x )^ x + ( x \sin x )^{1/ x}$
Given function is
$f(x)=( x \cos x )^ x + ( x \sin x )^{1/ x}$
Let's take $t = (x\cos x)^x$
Now, take log on both sides
$\log t =x\log (x\cos x) = x(\log x+\log \cos x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = (\log x + \log \cos x) + x \left( \frac{1}{x} + \frac{1}{\cos x} \cdot (-\sin x) \right)$
$\frac{dt}{dx} = t \left( \log x + \log \cos x + 1 - x \tan x \right) \ \ \ \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$
$\frac{dt}{dx} = (x \cos x)^x \left( \log x + \log \cos x + 1 - x \tan x \right)$
$\frac{dt}{dx} = (x \cos x)^x \left( 1 - x \tan x + \log(x \cos x) \right)$
Similarly, take $k = (x\sin x)^{\frac{1}{x}}$
Now, take log on both the sides
$\log k = \frac{1}{x}(\log x+\log \sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = \left(\frac{-1}{x^2}\right)(\log x + \log \sin x) + \frac{1}{x} \left(\frac{1}{x} + \frac{1}{\sin x} \cdot \cos x\right)$
$\frac{dk}{dx} = \frac{k}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right) \ \ \ \ \ \ \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$
$\frac{dk}{dx} = \frac{(x \sin x)^{\frac{1}{x}}}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right)$
$\frac{dk}{dx} = (x \sin x)^{\frac{1}{x}} \cdot \frac{x \cot x + 1 - \log(x \sin x)}{x^2}$
Now,
$\frac{dy}{dx}= \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx}= (x\cos x)^x(+1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Therefore, the answer is $(x\cos x)^x(1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Question:12 Find dy/dx of the functions given in Exercises 12 to 15
Given function is
$f(x)=x ^ y + y ^ x = 1$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot (\log x) + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot (\log x) + \frac{y}{x}$
$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$
$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$
Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)= \frac{dt}{dx}+\frac{dk}{dx}= 0$
$ (x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) + (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right) = 0 $
$ \frac{dy}{dx} \left( x^y \log x + x y^{x - 1} \right) = -\left( y x^{y - 1} + y^x \log y \right) $
$ \frac{dy}{dx} = \frac{ -\left( y x^{y - 1} + y^x \log y \right) }{ x^y \log x + x y^{x - 1} } $
Therefore, the answer is $\frac{ -(yx^{y-1}+y^x(\log y))}{(x^y(\log x)+xy^{x-1})}$
Question:13 Find dy/dx of the functions given in Exercises 12 to 15.
Given function is
$f(x)\Rightarrow x ^ y = y ^ x$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot \log x + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot \log x + \frac{y}{x}$
$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$
$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$
Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)\Rightarrow \frac{dt}{dx}= \frac{dk}{dx}$
$(x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) = (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( x^y \log x - x y^{x - 1} \right) = y^x \log y - y x^{y - 1}$
$\frac{dy}{dx} = \frac{y^x \log y - y x^{y - 1}}{x^y \log x - x y^{x - 1}} = \frac{x}{y} \left( \frac{y - x \log y}{x - y \log x} \right)$
Therefore, the answer is $\frac{x}{y}\left ( \frac{y-x\log y}{x-y\log x}\right )$
Question:14 Find dy/dx of the functions given in Exercises 12 to 15. $( \cos x )^y = ( \cos y )^x$
Given function is
$f(x)\Rightarrow (\cos x) ^ y = (\cos y) ^ x$
Now, take log on both the sides
$y\log \cos x = x \log \cos y$
Now, differentiate w.r.t x
$\frac{dy}{dx}(\log \cos x)-y\tan x = \log \cos y-x\tan y\frac{dy}{dx}$
By taking similar terms on the same side
We get,
$\left( \frac{dy}{dx} (\log \cos x) - y \tan x \right) = \left( \log \cos y - x \tan y \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( \log \cos x + x \tan y \right) = \log \cos y + y \tan x$
$\frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$
Therefore, the answer is $\frac{y\tan x+\log \cos y}{x\tan y+\log \cos x}$
Question:15 Find dy/dx of the functions given in Exercises 12 to 15. $xy = e ^{x-y}$
Given function is
$f(x)\Rightarrow xy = e ^{x-y}$
Now, take log on both the sides
$\log x + \log y = (x - y)(1) \qquad (\because \log e = 1)$
$\log x + \log y = x - y$
Now, differentiate w.r.t x
$\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}$
By taking similar terms on same side
We get,
$(\frac{1}{y}+1)\frac{dy}{dx}=1-\frac{1}{x}\\ \frac{y+1}{y}.\frac{dy}{dx}= \frac{x-1}{x}\\ \frac{dy}{dx}= \frac{y}{x}.\frac{x-1}{y+1}$
Therefore, the answer is $\frac{y}{x}.\frac{x-1}{y+1}$
Question:16 Find the derivative of the function given by $f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$ and hence find
f ' (1)
Given function is
$y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$
Take log on both sides
$\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)$
NOW, differentiate w.r.t. x
$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}$
$\frac{dy}{dx} = y \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$
$\frac{dy}{dx} = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$
Therefore, $f^{'}(x)= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )$
Now, the value of $f^{'}(1)$ is
$f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+ \frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\ f^{'}(1)=16.\frac{15}{2} = 120$
Question:17 (1) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(i) by using product rule
Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, we need to differentiate using the product rule
$f^{'}(x)=\frac{d((x^2 - 5x + 8))}{dx}. (x^3 + 7x + 9)+(x^2 - 5x + 8).\frac{d( (x^3 + 7x + 9))}{dx}\\$
$= (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$
$= 2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56$
$= 5x^4 - 20x^3 + 45x^2 - 52x + 11$
Therefore, the answer is $5x^4 -20x^3+45x^2-52x+11$
Question:17 (2) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(ii) by expanding the product to obtain a single polynomial.
Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Multiply both to obtain a single higher degree polynomial
$f(x) = x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)$
$= x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72$
$= x^5-5x^4+15x^3-26x^2+11x+72$
Now, differentiate w.r.t. x
we get,
$f^{'}(x)=5x^4-20x^3+45x^2-52x+11$
Therefore, the answer is $5x^4-20x^3+45x^2-52x+11$
Given function is
$y=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, take log on both the sides
$\log y = \log (x^2-5x+8)+\log (x^3+7x+9)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot (2x - 5) + \frac{1}{x^3 + 7x + 9} \cdot (3x^2 + 7)$
$\frac{dy}{dx} = y \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$
$\frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9) \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$
$\frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)$
$\frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 56x + 11$
Therefore, the answer is $5x^4-20x^3+45x^2-56x+11$
And yes they all give the same answer
It is given that u, v and w are the functions of x
Let $y = u.v.w$
Now, we differentiate using product rule w.r.t x
First, take $y = u.(vw)$
Now,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{d(v.w)}{dx}.u$ -(i)
Now, again by the product rule
$\frac{d(v.w)}{dx}= \frac{dv}{dx}.w + \frac{dw}{dx}.v$
Put this in equation (i)
we get,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)$
Hence, by product rule we proved it
Now, by taking the log
Again take $y = u.v.w$
Now, take log on both sides
$\log y = \log u + \log v + \log w$
Now, differentiate w.r.t. x
we get,
$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx}$
$\frac{dy}{dx} = y \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$
$\frac{dy}{dx} = (u v w) \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$
$\frac{dy}{dx} = \frac{du}{dx} \cdot (v w) + \frac{dv}{dx} \cdot (u w) + \frac{dw}{dx} \cdot (u v)$
Hence, we proved it by taking the log
Also Read,
The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.5 are:
$\log(\frac{a}{b})=\log a- \log b$
$\log(a^n)=n\log a$
Also, read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
No, logarithmic differentiation and differentiation of logarithmic function are different concepts.
Logarithmic differentiation is useful for differentiating the function raised to the power of some variable or function.
The weightage of Vector Algebra is 7 marks in the CBSE Class 12 Maths board exam. For good score follow NCERT book. To solve more problems NCERT exemplar and previous year papers can be used.
Click on the link to get CBSE Class 12 Syllabus.
Click on the link to get application process for CBSE Class 12
Total of 3 hours will be given to you to complete the CBSE Class 12 Maths paper.
The differentiation of e^(2x) is 2 e^(2x).
d(1/x)/dx = -1/x^2
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters