Continuity is like watching your favourite TV show without any commercial breaks, where differentiability is when there are no abrupt cuts or edits, just smooth and seamless transitions. Logarithmic differentiation is a very powerful method for differentiating such complex functions which involve products or exponents. Exercise 5.5 of the chapter Continuity and Differentiability mainly focuses on logarithmic differentiation. This method can easily simplify various complex and tricky expressions, so that differentiating becomes much easier for students. That is why understanding this concept is very crucial for students in their calculus journey. This article on NCERT Solutions for Exercise 5.5 Class 12 Maths Chapter 5 - Continuity and Differentiability offers clear and step-by-step solutions for the exercise problems, which will enable the students to grasp the concepts, logic, and methods of logarithmic differentiation easily. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Differentiate the functions w.r.t. x. $\cos x . \cos 2x .\cos 3x$
Given function is
$y=\cos x . \cos 2x .\cos 3x$
Now, take log on both sides
$\log y=\log (\cos x . \cos 2x .\cos 3x)\\ \log y = \log \cos x + \log \cos 2x + \log \cos 3x$
Now, differentiation w.r.t. x
$\log y = \log (\cos x \cdot \cos 2x \cdot \cos 3x)$
$\frac{d(\log y)}{dx} = \frac{d(\log \cos x)}{dx} + \frac{d(\log \cos 2x)}{dx} + \frac{d(\log \cos 3x)}{dx}$
$\frac{1}{y} \cdot \frac{dy}{dx} = \left(-\sin x\right) \cdot \frac{1}{\cos x} + \left(-2\sin 2x\right) \cdot \frac{1}{\cos 2x} + \left(-3\sin 3x\right) \cdot \frac{1}{\cos 3x}$
$\frac{1}{y} \cdot \frac{dy}{dx} = -\left(\tan x + \tan 2x + \tan 3x\right) \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$
$\frac{dy}{dx} = -y\left(\tan x + \tan 2x + \tan 3x\right)$
$\frac{dy}{dx} = -\cos x \cos 2x \cos 3x \left(\tan x + \tan 2x + \tan 3x\right)$
Therefore, the answer is $-\cos x\cos 2x\cos 3x(\tan x+\tan 2x+\tan 3x)$
Question:2. Differentiate the functions w.r.t. x.
$\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Given function is
$y=\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}$
Take log on both the sides
$\log y = \frac{1}{2} \log\left( \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} \right)$
$\log y = \frac{1}{2} \left( \log(x - 1) + \log(x - 2) - \log(x - 3) - \log(x - 4) - \log(x - 5) \right)$
Now, differentiation w.r.t. x is
$\frac{d(\log y)}{dx} = \frac{1}{2} (\frac{d(\log(x-1))}{dx}+\frac{d(\log(x-2))}{dx}-\frac{d(\log(x-3))}{dx}-\frac{d(\log(x-4))}{dx}-\\$$\frac{d(\log(x-5))}{dx})$
$\frac{1}{y}\frac{dy}{dx} = \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$
$\frac{dy}{dx} = y \cdot \frac{1}{2} \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$
$\frac{dy}{dx} = \frac{1}{2} \sqrt{ \frac{(x - 1)(x - 2)}{(x - 3)(x - 4)(x - 5)} } \left( \frac{1}{x - 1} + \frac{1}{x - 2} - \frac{1}{x - 3} - \frac{1}{x - 4} - \frac{1}{x - 5} \right)$
Therefore, the answer is $\frac{1}{2}\sqrt {\frac{(x-1) ( x-2)}{(x-3 )(x-4 ) (x-5)}}(\frac{1}{x-1}+\frac{1}{x-2}-\frac{1}{x-3}-\frac{1}{x-4}-\frac{1}{x-5})$
Question:3 Differentiate the functions w.r.t. x. $(\log x ) ^{\cos x}$
Given function is
$y=(\log x ) ^{\cos x}$
take log on both the sides
$\log y=\cos x\log (\log x )$
Now, differentiation w.r.t x is
$\frac{d(\log y)}{dx} = \frac{d(\cos x \log(\log x))}{dx}$
$\frac{1}{y} \cdot \frac{dy}{dx} = (-\sin x)(\log(\log x)) + \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x}$
$\frac{dy}{dx} = y \left( \cos x \cdot \frac{1}{\log x} \cdot \frac{1}{x} - \sin x \log(\log x) \right)$
$\frac{dy}{dx} = (\log x)^{\cos x} \left( \frac{\cos x}{x \log x} - \sin x \log(\log x) \right)$
Therefore, the answer is $(\log x)^{\cos x}( \frac{\cos x}{x\log x}-\sin x\log(\log x) )$
Question:4 Differentiate the functions w.r.t. x. $x ^x - 2 ^{ \sin x }$
Given function is
$y = x ^x - 2 ^{ \sin x }$
Let's take $t = x^x$
take log on both the sides
$\log t=x\log x\\$
Now, differentiation w.r.t x is
$\log t = x \log x$
$\frac{d(\log t)}{dt} \cdot \frac{dt}{dx} = \frac{d(x \log x)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$
$\frac{1}{t} \cdot \frac{dt}{dx} = \log x + 1$
$\frac{dt}{dx} = t(\log x + 1)$
$\frac{dt}{dx} = x^x(\log x + 1) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because t = x^x)$
Similarly, take $k = 2^{\sin x}$
Now, take log on both sides and differentiate w.r.t. x
$\log k = \sin x \log 2$
$\frac{d(\log k)}{dk} \cdot \frac{dk}{dx} = \frac{d(\sin x \log 2)}{dx} \ \ \ \ \ \ \ (\text{by chain rule})$
$\frac{1}{k} \cdot \frac{dk}{dx} = \cos x \log 2$
$\frac{dk}{dx} = k(\cos x \log 2)$
$\frac{dk}{dx} = 2^{\sin x}(\cos x \log 2) \ \ \ \ \ \ \ \ \ \ \ \ \ (\because k = 2^{\sin x})$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}-\frac{dk}{dx}\\ \frac{dy}{dx} = x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$
Therefore, the answer is $x^x(\log x+1 )- 2^{\sin x}(\cos x\log 2)$
Question:5 Differentiate the functions w.r.t. x. $( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Given function is
$y=( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4$
Take log on both sides
$\log y=\log [( x+3 )^ 2 . ( x +4 )^ 3 . ( x+5 )^4]\\ \log y = 2\log(x+3)+3\log(x+4)+4\log(x+5)$
Now, differentiate w.r.t. x we get,
$\frac{1}{y} \cdot \frac{dy}{dx} = 2 \cdot \frac{1}{x+3} + 3 \cdot \frac{1}{x+4} + 4 \cdot \frac{1}{x+5}$
$\frac{dy}{dx} = y\left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$
$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2}{x+3} + \frac{3}{x+4} + \frac{4}{x+5} \right)$
$\frac{dy}{dx} = (x+3)^2 (x+4)^3 (x+5)^4 \left( \frac{2(x+4)(x+5) + 3(x+3)(x+5) + 4(x+3)(x+4)}{(x+3)(x+4)(x+5)} \right)$
$\frac{dy}{dx} = (x+3)(x+4)^2(x+5)^3(9x^2 + 70x + 133)$
Therefore, the answer is $(x + 3) (x + 4)^2 (x + 5)^3 (9x^2 + 70x + 133)$
Question:6 Differentiate the functions w.r.t. x. $( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Given function is
$y = ( x+ \frac{1}{x} ) ^ x + x ^{ 1 + \frac{1}{x} }$
Let's take $t = ( x+ \frac{1}{x} ) ^ x$
Now, take log on both sides
$\log t =x \log ( x+ \frac{1}{x} )$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \log \left( x + \frac{1}{x} \right) + x\left(1 - \frac{1}{x^2} \right) \cdot \frac{1}{\left( x + \frac{1}{x} \right)}$
$= \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right)$
$\frac{dt}{dx} = t \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$
$\frac{dt}{dx} = \left( x + \frac{1}{x} \right)^x \left( \frac{x^2 - 1}{x^2 + 1} + \log \left( x + \frac{1}{x} \right) \right)$
Similarly, take $k = x^{1+\frac{1}{x}}$
Now, take log on both sides
$\log k = ({1+\frac{1}{x}})\log x$
Now, differentiate w.r.t. x
We get,
$\frac{1}{k} \cdot \frac{dk}{dx} = \frac{1}{x} \left( 1 + \frac{1}{x} \right) + \left(-\frac{1}{x^2} \right) \log x$
$= \frac{x^2 + 1}{x^2} + \left( -\frac{1}{x^2} \right) \log x$
$\frac{dk}{dx} = k \left( \frac{x^2 + 1 - \log x}{x^2} \right)$
$\frac{dk}{dx} = x^{x + \frac{1}{x}} \left( \frac{x^2 + 1 - \log x}{x^2} \right)$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = \left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Therefore, the answer is $\left ( x+\frac{1}{x} \right )^x (\left (\frac{x^2-1}{x^2+1} \right )+\log \left ( x+\frac{1}{x} \right ))+x^{x+\frac{1}{x}}\left (\frac{x^2+1-\log x}{x^2} \right )$
Question:7 Differentiate the functions w.r.t. x. $(\log x )^x + x ^{\log x }$
Given function is
$y = (\log x )^x + x ^{\log x }$
Let's take $t = (\log x)^x$
Now, take log on both the sides
$\log t = x \log(\log x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\log x) + x \cdot \frac{1}{x} \cdot \frac{1}{\log x} = \log (\log x) + \frac{1}{\log x}$
$\frac{dt}{dx} = t \cdot \left( \log (\log x) + \frac{1}{\log x} \right)$
$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^x \cdot \frac{1}{\log x}$
$\frac{dt}{dx} = (\log x)^x \cdot \log (\log x) + (\log x)^{x-1}$
Similarly, take $k = x^{\log x}$
Now, take log on both sides
$\log k = \log x \log x = (\log x)^2$
Now, differentiate w.r.t. x
We get,
$\frac{1}{k}\frac{dk}{dx} =2 (\log x).\frac{1}{x} \\ \frac{dt}{dx}= k.\left ( 2 (\log x).\frac{1}{x} \right )\\ \frac{dt}{dx} = x^{\log x}.\left (2 (\log x).\frac{1}{x} \right ) = 2x^{\log x-1}.\log x$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Therefore, the answer is $(\log x)^x(\log (\log x))+ (\log x )^{x-1}+ 2x^{\log x-1}.\log x$
Question:8 Differentiate the functions w.r.t. x. $(\sin x )^x + \sin ^{-1} \sqrt x$
Given function is
$(\sin x )^x + \sin ^{-1} \sqrt x$
Lets take $t = (\sin x)^x$
Now, take log on both the sides
$\log t = x \log(\sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \log (\sin x) + x \cdot \cos x \cdot \frac{1}{\sin x} = \log (\sin x) + x \cdot \cot x \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$
$\frac{dt}{dx} = t \cdot (\log (\sin x) + x \cdot \cot x)$
$\frac{dt}{dx} = (\sin x)^x \cdot (\log (\sin x) + x \cdot \cot x)$
Similarly, take $k = \sin^{-1}\sqrt x$
Now, differentiate w.r.t. x
We get,
$\frac{dk}{dt} = \frac{1}{\sqrt{1-(\sqrt x)^2}}.\frac{1}{2\sqrt x}= \frac{1}{2\sqrt{x-x^2}}\\ \frac{dk}{dt}=\frac{1}{2\sqrt{x-x^2}}\\$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} =(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Therefore, the answer is $(\sin x)^x(\log (\sin x)+x\cot x)+\frac{1}{2\sqrt{x-x^2}}$
Question:9 Differentiate the functions w.r.t. x $x ^ {\sin x } + ( \sin x )^{\cos x}$
Given function is
$y = x ^ { \sin x } + ( \sin x )^ {\cos x}$
Now, take $t = x^{\sin x}$
Now, take log on both sides
$\log t = \sin x \log x$
Now, differentiate it w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x + \frac{1}{x} \cdot \sin x$
$\frac{dt}{dx} = t \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$
$\frac{dt}{dx} = x^{\sin x} \left( \cos x \cdot \log x + \frac{1}{x} \cdot \sin x \right)$
Similarly, take $k = (\sin x)^{\cos x}$
Now, take log on both the sides
$\log k = \cos x \log (\sin x)$
Now, differentiate it w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (-\sin x)(\log (\sin x)) + \cos x \cdot \frac{1}{\sin x} \cdot \cos x = -\sin x \log(\sin x) + \cot x \cdot \cos x$
$\frac{dk}{dx} = k\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
$\frac{dk}{dx} = (\sin x)^{\cos x}\left( -\sin x \log(\sin x) + \cot x \cdot \cos x \right)$
Now,
$\frac{dy}{dx} = x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Therefore, the answer is $x^{\sin x}\left ( \cos x \log x+\frac{1}{x}.\sin x \right )+ (\sin x)^{\cos x}\left ( -\sin x\log(\sin x)+\cot x.\cos x \right )$
Question:10 Differentiate the functions w.r.t. x. $x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Given function is
$x ^ {x \cos x} + \frac{x^2 + 1 }{x^2 -1 }$
Take $t = x^{x\cos x}$
Take log on both the sides
$\log t =x\cos x \log x$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \cos x \cdot \log x - x \cdot \sin x \cdot \log x + \frac{1}{x} \cdot x \cdot \cos x$
$\frac{dt}{dx} = t \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$
$\frac{dt}{dx} = x^{x \cos x} \cdot \left( \log x (\cos x - x \sin x) + \cos x \right)$
Similarly,
take $k = \frac{x^2+1}{x^2-1}$
Now. differentiate it w.r.t. x
we get,
$\frac{dk}{dx} = \frac{2x(x^2-1)-2x(x^2+1)}{(x^2-1)^2} = \frac{2x^3-2x-2x^3-2x}{(x^2-1)^2} = \frac{-4x}{(x^2-1)^2}$
Now,
$\frac{dy}{dx} = \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx} = x^{x\cos x}\left ( \log x(\cos x-x\sin x)+ \cos x \right )-\frac{4x}{(x^2-1)^2}$
Therefore, the answer is $x^{x\cos x}\left ( \cos x(\log x+1)-x\sin x\log x\right )-\frac{4x}{(x^2-1)^2}$
Question:11 Differentiate the functions w.r.t. x. $( x \cos x )^ x + ( x \sin x )^{1/ x}$
Given function is
$f(x)=( x \cos x )^ x + ( x \sin x )^{1/ x}$
Let's take $t = (x\cos x)^x$
Now, take log on both sides
$\log t =x\log (x\cos x) = x(\log x+\log \cos x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = (\log x + \log \cos x) + x \left( \frac{1}{x} + \frac{1}{\cos x} \cdot (-\sin x) \right)$
$\frac{dt}{dx} = t \left( \log x + \log \cos x + 1 - x \tan x \right) \ \ \ \ \ \ (\because \frac{\sin x}{\cos x} = \tan x)$
$\frac{dt}{dx} = (x \cos x)^x \left( \log x + \log \cos x + 1 - x \tan x \right)$
$\frac{dt}{dx} = (x \cos x)^x \left( 1 - x \tan x + \log(x \cos x) \right)$
Similarly, take $k = (x\sin x)^{\frac{1}{x}}$
Now, take log on both the sides
$\log k = \frac{1}{x}(\log x+\log \sin x)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = \left(\frac{-1}{x^2}\right)(\log x + \log \sin x) + \frac{1}{x} \left(\frac{1}{x} + \frac{1}{\sin x} \cdot \cos x\right)$
$\frac{dk}{dx} = \frac{k}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right) \ \ \ \ \ \ \ \ \ (\because \frac{\cos x}{\sin x} = \cot x)$
$\frac{dk}{dx} = \frac{(x \sin x)^{\frac{1}{x}}}{x^2} \left(-\log x - \log \sin x + \frac{1}{x^2} + \frac{\cot x}{x} \right)$
$\frac{dk}{dx} = (x \sin x)^{\frac{1}{x}} \cdot \frac{x \cot x + 1 - \log(x \sin x)}{x^2}$
Now,
$\frac{dy}{dx}= \frac{dt}{dx}+\frac{dk}{dx}$
$\frac{dy}{dx}= (x\cos x)^x(+1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Therefore, the answer is $(x\cos x)^x(1-x\tan x+\log (x\cos x))+(x\sin x)^{\frac{1}{x}}\frac{(x\cot x+1-(\log x\sin x))}{x^2}$
Question:12 Find dy/dx of the functions given in Exercises 12 to 15
Given function is
$f(x)=x ^ y + y ^ x = 1$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot (\log x) + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot (\log x) + \frac{y}{x}$
$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$
$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot (\log x) + \frac{y}{x} \right)$
Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)= \frac{dt}{dx}+\frac{dk}{dx}= 0$
$ (x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) + (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right) = 0 $
$ \frac{dy}{dx} \left( x^y \log x + x y^{x - 1} \right) = -\left( y x^{y - 1} + y^x \log y \right) $
$ \frac{dy}{dx} = \frac{ -\left( y x^{y - 1} + y^x \log y \right) }{ x^y \log x + x y^{x - 1} } $
Therefore, the answer is $\frac{ -(yx^{y-1}+y^x(\log y))}{(x^y(\log x)+xy^{x-1})}$
Question:13 Find dy/dx of the functions given in Exercises 12 to 15.
Given function is
$f(x)\Rightarrow x ^ y = y ^ x$
Now, take $t = x^y$
take log on both sides
$\log t = y\log x$
Now, differentiate w.r.t x
we get,
$\frac{1}{t} \cdot \frac{dt}{dx} = \frac{dy}{dx} \cdot \log x + y \cdot \frac{1}{x} = \frac{dy}{dx} \cdot \log x + \frac{y}{x}$
$\frac{dt}{dx} = t \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$
$\frac{dt}{dx} = x^y \left( \frac{dy}{dx} \cdot \log x + \frac{y}{x} \right)$
Similarly, take $k = y^x$
Now, take log on both sides
$\log k = x\log y$
Now, differentiate w.r.t. x
we get,
$\frac{1}{k}\frac{dk}{dx} = (\log y)+x\frac{1}{y}\frac{dy}{dx}=\log y+\frac{x}{y}\frac{dy}{dx}\\ \frac{dk}{dx}= k(\log y+\frac{x}{y}\frac{dy}{dx})\\ \frac{dk}{dx}= (y^x)(\log y+\frac{x}{y}\frac{dy}{dx})$
Now,
$f^{'}(x)\Rightarrow \frac{dt}{dx}= \frac{dk}{dx}$
$(x^y)\left( \frac{dy}{dx} \log x + \frac{y}{x} \right) = (y^x)\left( \log y + \frac{x}{y} \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( x^y \log x - x y^{x - 1} \right) = y^x \log y - y x^{y - 1}$
$\frac{dy}{dx} = \frac{y^x \log y - y x^{y - 1}}{x^y \log x - x y^{x - 1}} = \frac{x}{y} \left( \frac{y - x \log y}{x - y \log x} \right)$
Therefore, the answer is $\frac{x}{y}\left ( \frac{y-x\log y}{x-y\log x}\right )$
Question:14 Find dy/dx of the functions given in Exercises 12 to 15. $( \cos x )^y = ( \cos y )^x$
Given function is
$f(x)\Rightarrow (\cos x) ^ y = (\cos y) ^ x$
Now, take log on both the sides
$y\log \cos x = x \log \cos y$
Now, differentiate w.r.t x
$\frac{dy}{dx}(\log \cos x)-y\tan x = \log \cos y-x\tan y\frac{dy}{dx}$
By taking similar terms on the same side
We get,
$\left( \frac{dy}{dx} (\log \cos x) - y \tan x \right) = \left( \log \cos y - x \tan y \frac{dy}{dx} \right)$
$\frac{dy}{dx} \left( \log \cos x + x \tan y \right) = \log \cos y + y \tan x$
$\frac{dy}{dx} = \frac{y \tan x + \log \cos y}{x \tan y + \log \cos x}$
Therefore, the answer is $\frac{y\tan x+\log \cos y}{x\tan y+\log \cos x}$
Question:15 Find dy/dx of the functions given in Exercises 12 to 15. $xy = e ^{x-y}$
Given function is
$f(x)\Rightarrow xy = e ^{x-y}$
Now, take log on both the sides
$\log x + \log y = (x - y)(1) \qquad (\because \log e = 1)$
$\log x + \log y = x - y$
Now, differentiate w.r.t x
$\frac{1}{x}+\frac{1}{y}\frac{dy}{dx}=1-\frac{dy}{dx}$
By taking similar terms on same side
We get,
$(\frac{1}{y}+1)\frac{dy}{dx}=1-\frac{1}{x}\\ \frac{y+1}{y}.\frac{dy}{dx}= \frac{x-1}{x}\\ \frac{dy}{dx}= \frac{y}{x}.\frac{x-1}{y+1}$
Therefore, the answer is $\frac{y}{x}.\frac{x-1}{y+1}$
Question:16 Find the derivative of the function given by $f (x) = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$ and hence find
f ' (1)
Given function is
$y = (1 + x) (1 + x^2) (1 + x^4) (1 + x^8)$
Take log on both sides
$\log y =\log (1 + x) + \log (1 + x^2) +\log (1 + x^4) +\log (1 + x^8)$
NOW, differentiate w.r.t. x
$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8}$
$\frac{dy}{dx} = y \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$
$\frac{dy}{dx} = (1 + x)(1 + x^2)(1 + x^4)(1 + x^8) \cdot \left( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right)$
Therefore, $f^{'}(x)= (1 + x) (1 + x^2) (1 + x^4) (1 + x^8).\left ( \frac{1}{1+x}+ \frac{2x}{1+x^2}+ \frac{4x^3}{1+x^4}+ \frac{8x^7}{1+x^8} \right )$
Now, the value of $f^{'}(1)$ is
$f^{'}(1)= (1 + 1) (1 + 1^2) (1 + 1^4) (1 + 1^8).\left ( \frac{1}{1+1}+ \frac{2(1)}{1+1^2}+ \frac{4(1)^3}{1+1^4}+ \frac{8(1)^7}{1+1^8} \right )\\ f^{'}(1)=16.\frac{15}{2} = 120$
Question:17 (1) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(i) by using product rule
Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, we need to differentiate using the product rule
$f^{'}(x)=\frac{d((x^2 - 5x + 8))}{dx}. (x^3 + 7x + 9)+(x^2 - 5x + 8).\frac{d( (x^3 + 7x + 9))}{dx}\\$
$= (2x - 5)(x^3 + 7x + 9) + (x^2 - 5x + 8)(3x^2 + 7)$
$= 2x^4 + 14x^2 + 18x - 5x^3 - 35x - 45 + 3x^4 - 15x^3 + 24x^2 + 7x^2 - 35x + 56$
$= 5x^4 - 20x^3 + 45x^2 - 52x + 11$
Therefore, the answer is $5x^4 -20x^3+45x^2-52x+11$
Question:17 (2) Differentiate $(x^2 - 5x + 8) (x^3 + 7x + 9)$ in three ways mentioned below:
(ii) by expanding the product to obtain a single polynomial.
Given function is
$f(x)=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Multiply both to obtain a single higher degree polynomial
$f(x) = x^2(x^3+7x+9)-5x(x^3+7x+9)+8(x^3+7x+9)$
$= x^5+7x^3+9x^2-5x^4-35x^2-45x+8x^3+56x+72$
$= x^5-5x^4+15x^3-26x^2+11x+72$
Now, differentiate w.r.t. x
we get,
$f^{'}(x)=5x^4-20x^3+45x^2-52x+11$
Therefore, the answer is $5x^4-20x^3+45x^2-52x+11$
Given function is
$y=(x^2 - 5x + 8) (x^3 + 7x + 9)$
Now, take log on both the sides
$\log y = \log (x^2-5x+8)+\log (x^3+7x+9)$
Now, differentiate w.r.t. x
we get,
$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{x^2 - 5x + 8} \cdot (2x - 5) + \frac{1}{x^3 + 7x + 9} \cdot (3x^2 + 7)$
$\frac{dy}{dx} = y \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$
$\frac{dy}{dx} = (x^2 - 5x + 8)(x^3 + 7x + 9) \cdot \left( \frac{(2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)}{(x^2 - 5x + 8)(x^3 + 7x + 9)} \right)$
$\frac{dy}{dx} = (2x - 5)(x^3 + 7x + 9) + (3x^2 + 7)(x^2 - 5x + 8)$
$\frac{dy}{dx} = 5x^4 - 20x^3 + 45x^2 - 56x + 11$
Therefore, the answer is $5x^4-20x^3+45x^2-56x+11$
And yes they all give the same answer
It is given that u, v and w are the functions of x
Let $y = u.v.w$
Now, we differentiate using product rule w.r.t x
First, take $y = u.(vw)$
Now,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{d(v.w)}{dx}.u$ -(i)
Now, again by the product rule
$\frac{d(v.w)}{dx}= \frac{dv}{dx}.w + \frac{dw}{dx}.v$
Put this in equation (i)
we get,
$\frac{dy}{dx}= \frac{du}{dx}.(v.w) + \frac{dv}{dx}.(u.w) + \frac{dw}{dx}.(u.v)$
Hence, by product rule we proved it
Now, by taking the log
Again take $y = u.v.w$
Now, take log on both sides
$\log y = \log u + \log v + \log w$
Now, differentiate w.r.t. x
we get,
$\frac{1}{y} \cdot \frac{dy}{dx} = \frac{1}{u} \cdot \frac{du}{dx} + \frac{1}{v} \cdot \frac{dv}{dx} + \frac{1}{w} \cdot \frac{dw}{dx}$
$\frac{dy}{dx} = y \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$
$\frac{dy}{dx} = (u v w) \cdot \left( \frac{v w \cdot \frac{du}{dx} + u w \cdot \frac{dv}{dx} + u v \cdot \frac{dw}{dx}}{u v w} \right)$
$\frac{dy}{dx} = \frac{du}{dx} \cdot (v w) + \frac{dv}{dx} \cdot (u w) + \frac{dw}{dx} \cdot (u v)$
Hence, we proved it by taking the log
Also Read,
The main topics covered in Chapter 5 of continuity and differentiability, exercises 5.5 are:
$\log(\frac{a}{b})=\log a- \log b$
$\log(a^n)=n\log a$
Also, read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
No, logarithmic differentiation and differentiation of logarithmic function are different concepts.
Logarithmic differentiation is useful for differentiating the function raised to the power of some variable or function.
The weightage of Vector Algebra is 7 marks in the CBSE Class 12 Maths board exam. For good score follow NCERT book. To solve more problems NCERT exemplar and previous year papers can be used.
Click on the link to get CBSE Class 12 Syllabus.
Click on the link to get application process for CBSE Class 12
Total of 3 hours will be given to you to complete the CBSE Class 12 Maths paper.
The differentiation of e^(2x) is 2 e^(2x).
d(1/x)/dx = -1/x^2
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters