Suppose your friend told you that the following $ 2 \times 2$ matrix is given:$\left[\begin{array}{ll} 2 & 3 \\ 4 & 5\end{array}\right] $ and asked you to find its determinant. How would you approach this problem? This is where the concept of determinants comes in. Determinants provide a systematic way to find a scalar value from a square matrix, which is crucial in solving systems of equations, finding the area, and understanding matrix properties. The first exercise of this chapter of the NCERT book is based on the basics of determinants and calculating determinants of different orders of square matrices. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.1 introduces us to the basic idea of determinants and how to evaluate them. This article on the NCERT Solutions for Exercise 4.1 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Students must follow the general exam day instructions listed in the Class 10th date sheet 2025–2026:
Question:1 Evaluate the following determinant- $\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix}$
Answer:
The determinant is evaluated as follows
$\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$
Question:2(i) Evaluate the following determinant- $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta &\cos \theta \end{vmatrix}$
Answer:
The given two by two determinant is calculated as follows
$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos \theta (\cos \theta) - (-\sin \theta)\sin \theta = \cos^2 \theta + \sin^2 \theta = 1$
Question:2(ii) Evaluate the following determinant- $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$
Answer:
We have determinant $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$
$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$
$= (x+1)(x^2-x+1-x+1) = (x+1)(x^2-2x+2)$
$=x^3-2x^2+2x +x^2-2x+2$
$= x^3-x^2+2$
Question:3 If $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ , then show that $| 2 A |=4|A|$
Answer:
Given determinant $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then we have to show that $| 2 A |=4|A|$,
So, $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then, $2A =2 \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix} = \begin{bmatrix} 2 & 4\\ 8 &4 \end{bmatrix}$
Hence we have $\left | 2A \right | = \begin{vmatrix} 2 &4 \\ 8& 4 \end{vmatrix} = 2(4) - 4(8) = -24$
So, L.H.S. = |2A| = -24
then calculating R.H.S. $4\left | A \right |$
We have,
$\left | A \right | = \begin{vmatrix} 1 &2 \\ 4& 2 \end{vmatrix} = 1(2) - 2(4) = -6$
hence R.H.S becomes $4\left | A \right | = 4\times(-6) = -24$
Therefore L.H.S. =R.H.S.
Hence proved.
Question:4 If $A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$ then show that $|3A|=27|A|$
Answer:
Given Matrix$A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$
Calculating $3A =3\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix} = \begin{bmatrix} 3 &0 &3 \\ 0& 3& 6\\ 0& 0 &12 \end{bmatrix}$
So, $\left | 3A \right | = 3(3(12) - 6(0) ) - 0(0(12)-0(6)) + 3(0-0) = 3(36) = 108$
calculating $27|A|$,
$|A| = \begin{vmatrix} 1 & 0 &1 \\ 0 & 1 & 2\\ 0& 0 &4 \end{vmatrix} = 1\begin{vmatrix} 1 &2 \\ 0 & 4 \end{vmatrix} - 0\begin{vmatrix} 0 &2 \\ 0& 4 \end{vmatrix} + 1\begin{vmatrix} 0 &1 \\ 0& 0 \end{vmatrix} = 4 -0 + 0 = 4$
So, $27|A| = 27(4) = 108$
Therefore $|3A|=27|A|$.
Hence proved.
Question:5(i) Evaluate the determinants.
$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$
Answer:
Given the determinant $\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$;
now, calculating its determinant value,
$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix} = 3\begin{vmatrix} 0 &-1 \\ -5& 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} +(-2)\begin{vmatrix} 0 &0 \\ 3& -5 \end{vmatrix}$
$= 3(0-5)+1(0+3) -2(0-0) = -15+3-0 = -12$.
Question:5(ii) Evaluate the determinants.
$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$
Answer:
Given determinant $\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$;
Now calculating the determinant value;
$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix} = 3\begin{vmatrix} 1 &-2 \\ 3&1 \end{vmatrix} -(-4)\begin{vmatrix} 1 &-2 \\ 2& 1 \end{vmatrix}+5\begin{vmatrix} 1 & 1\\ 2& 3 \end{vmatrix}$
$= 3(1+6) +4(1+4) +5(3-2) = 21+20+5 = 46$.
Question:5(iii) Evaluate the determinants.
$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$
Answer:
Given determinant $\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$;
Now calculating the determinant value;
$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix} = 0\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} -1\begin{vmatrix} -1 &-3 \\ -2& 0 \end{vmatrix}+2\begin{vmatrix} -1 &0 \\ -2& 3 \end{vmatrix}$
$= 0 - 1(0-6)+2(-3-0) = 6 -6 =0$
Question:5(iv) Evaluate the determinants.
$\begin{vmatrix}2 &-1 &2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$
Answer:
Given determinant: $\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$,
We now calculate determinant value:
$\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix} =2\begin{vmatrix} 2 &-1 \\ -5 & 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3 & 0 \end{vmatrix}+(-2)\begin{vmatrix} 0 &2 \\ 3&-5 \end{vmatrix}$
$=2(0-5)+1(0+3)-2(0-6) = -10+3+12 = 5$
Question:6 If $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ , then find $|A|$.
Answer:
Given the matrix $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ then,
Finding the determinant value of A;
$|A| = 1\begin{vmatrix} 1 &-3 \\ 4& -9 \end{vmatrix} -1\begin{vmatrix} 2 &-3 \\ 5& -9 \end{vmatrix}-2\begin{vmatrix} 2 &1 \\ 5& 4 \end{vmatrix}$
$= 1(-9+12)-1(-18+15)-2(8-5) =3+3-6 =0$
Question:7(i) Find values of x, if
$\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$
Answer:
Given that $\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$
First, we solve the determinant value of L.H.S. and equate it to the determinant value of R.H.S.,
$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = 2(1) - 4(5) = 2 - 20 = -18$ and $\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} = 2x(x) - 4(6) = 2x^2 - 24$
So, we have then,
$-18= 2x^2-24$ or $3= x^2$ or $x= \pm \sqrt{3}$
Question:7(ii) Find values of x, if
$\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$
Answer:
Given $\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$;
So, we here equate both sides after calculating each side's determinant values.
L.H.S. determinant value;
$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2(5) - 3(4) = 10 - 12 = -2$
Similarly R.H.S. determinant value;
$\begin{vmatrix}x &3 \\2x &5 \end{vmatrix} = 5(x) - 3(2x) = 5x - 6x =-x$
So, we have then;
$-2 = -x$ or $x =2$.
(A) $6$ (B) $\pm 6$ (C) $-6$ (D) $0$
Answer:
Solving the L.H.S. determinant ;
$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = x(x) - 2(18) = x^2 - 36$
and solving R.H.S determinant;
$\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix} = 36-36 = 0$
So equating both sides;
$x^2 - 36 =0$ or $x^2 = 36$ or $x = \pm 6$
Hence answer is (B).
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.1.
1. Definition:
We know that multiplication and addition are basic operations in matrices. In determinants, we evaluate a scalar value from a square matrix using specific rules. For example, for a $2 \times 2$ matrix
$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right], \quad \text { the determinant is given by } a d-b c $
2. Determinant of a $\mathbf{2 \times 2}$ Matrix: Let the matrix $A$ be defined as:
$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$
To evaluate the determinant of a $2 \times 2$ matrix, use the formula:
$ \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21} $
3. Determinant of a $\mathbf{3 \times 3}$ Matrix:
For $3 \times 3$ matrices, the determinant is calculated using expansion by minors.
$ \left|\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right|=a(e i-f h)-b(d i-f g)+c(d h-e g) $
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
The determinant is a scalar value of a square matrix which characterize some properties of the matrix.
|2A| = 2^2 = 4 | A |
There are 6 exercises and one miscellaneous exercise given in the NCERT textbook Class 12 Maths chapter 4.
No, CBSE doesn't provide NCERT solutions, you can get NCERT solutions for chapter 4 Class 12 Maths.
The determinant of a singular matrix is always zero.
A matrix that is not singular is called a non-singular matrix. The determinant of a non-singular matrix is non-zero.
Here you will get Syllabus for CBSE Class 12 Maths
There are 13 chapters in the NCERT Class 12 Maths book.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters