NCERT Solutions Class 12 Maths Chapter 4 Exercise 4.1 - Determinants

NCERT Solutions Class 12 Maths Chapter 4 Exercise 4.1 - Determinants

Komal MiglaniUpdated on 09 May 2025, 11:48 AM IST

Suppose your friend told you that the following $ 2 \times 2$ matrix is given:$\left[\begin{array}{ll} 2 & 3 \\ 4 & 5\end{array}\right] $ and asked you to find its determinant. How would you approach this problem? This is where the concept of determinants comes in. Determinants provide a systematic way to find a scalar value from a square matrix, which is crucial in solving systems of equations, finding the area, and understanding matrix properties. The first exercise of this chapter of the NCERT book is based on the basics of determinants and calculating determinants of different orders of square matrices. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.1 introduces us to the basic idea of determinants and how to evaluate them. This article on the NCERT Solutions for Exercise 4.1 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

LiveCBSE Admit Card 2026 LIVE: Class 10 and 12 theory exam hall tickets soon, exams from February 17Feb 2, 2026 | 6:27 PM IST

Students must follow the general exam day instructions listed in the Class 10th date sheet 2025–2026:

  1. At least thirty minutes before the reporting time, arrive at the examination location.
  2. For every exam day, bring your Class 10 admit card or hall pass.
  3. During the exam, refrain from any malpractice.
  4. Pens, pencils, erasers, and rulers are examples of necessary stationery.
  5. Electronic devices and gadgets are not permitted inside the examination centre, so leave them at home.
Read More

Class 12 Maths Chapter 4 Exercise 4.1 Solutions: Download PDF

Download PDF

Determinants Exercise:4.1

Question:1 Evaluate the following determinant- $\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix}$

Answer:

The determinant is evaluated as follows

$\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$

Question:2(i) Evaluate the following determinant- $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta &\cos \theta \end{vmatrix}$

Answer:

The given two by two determinant is calculated as follows

$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos \theta (\cos \theta) - (-\sin \theta)\sin \theta = \cos^2 \theta + \sin^2 \theta = 1$

Question:2(ii) Evaluate the following determinant- $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$

Answer:

We have determinant $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$

$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$

$= (x+1)(x^2-x+1-x+1) = (x+1)(x^2-2x+2)$

$=x^3-2x^2+2x +x^2-2x+2$

$= x^3-x^2+2$

Question:3 If $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ , then show that $| 2 A |=4|A|$

Answer:

Given determinant $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then we have to show that $| 2 A |=4|A|$,

So, $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then, $2A =2 \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix} = \begin{bmatrix} 2 & 4\\ 8 &4 \end{bmatrix}$

Hence we have $\left | 2A \right | = \begin{vmatrix} 2 &4 \\ 8& 4 \end{vmatrix} = 2(4) - 4(8) = -24$

So, L.H.S. = |2A| = -24

then calculating R.H.S. $4\left | A \right |$

We have,

$\left | A \right | = \begin{vmatrix} 1 &2 \\ 4& 2 \end{vmatrix} = 1(2) - 2(4) = -6$

hence R.H.S becomes $4\left | A \right | = 4\times(-6) = -24$

Therefore L.H.S. =R.H.S.

Hence proved.

Question:4 If $A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$ then show that $|3A|=27|A|$

Answer:

Given Matrix$A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$

Calculating $3A =3\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix} = \begin{bmatrix} 3 &0 &3 \\ 0& 3& 6\\ 0& 0 &12 \end{bmatrix}$

So, $\left | 3A \right | = 3(3(12) - 6(0) ) - 0(0(12)-0(6)) + 3(0-0) = 3(36) = 108$

calculating $27|A|$,

$|A| = \begin{vmatrix} 1 & 0 &1 \\ 0 & 1 & 2\\ 0& 0 &4 \end{vmatrix} = 1\begin{vmatrix} 1 &2 \\ 0 & 4 \end{vmatrix} - 0\begin{vmatrix} 0 &2 \\ 0& 4 \end{vmatrix} + 1\begin{vmatrix} 0 &1 \\ 0& 0 \end{vmatrix} = 4 -0 + 0 = 4$

So, $27|A| = 27(4) = 108$

Therefore $|3A|=27|A|$.

Hence proved.

Question:5(i) Evaluate the determinants.

$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$

Answer:

Given the determinant $\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$;

now, calculating its determinant value,

$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix} = 3\begin{vmatrix} 0 &-1 \\ -5& 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} +(-2)\begin{vmatrix} 0 &0 \\ 3& -5 \end{vmatrix}$

$= 3(0-5)+1(0+3) -2(0-0) = -15+3-0 = -12$.

Question:5(ii) Evaluate the determinants.

$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$

Answer:

Given determinant $\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$;

Now calculating the determinant value;

$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix} = 3\begin{vmatrix} 1 &-2 \\ 3&1 \end{vmatrix} -(-4)\begin{vmatrix} 1 &-2 \\ 2& 1 \end{vmatrix}+5\begin{vmatrix} 1 & 1\\ 2& 3 \end{vmatrix}$

$= 3(1+6) +4(1+4) +5(3-2) = 21+20+5 = 46$.

Question:5(iii) Evaluate the determinants.

$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$

Answer:

Given determinant $\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$;

Now calculating the determinant value;

$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix} = 0\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} -1\begin{vmatrix} -1 &-3 \\ -2& 0 \end{vmatrix}+2\begin{vmatrix} -1 &0 \\ -2& 3 \end{vmatrix}$

$= 0 - 1(0-6)+2(-3-0) = 6 -6 =0$

Question:5(iv) Evaluate the determinants.

$\begin{vmatrix}2 &-1 &2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$

Answer:

Given determinant: $\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$,

We now calculate determinant value:

$\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix} =2\begin{vmatrix} 2 &-1 \\ -5 & 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3 & 0 \end{vmatrix}+(-2)\begin{vmatrix} 0 &2 \\ 3&-5 \end{vmatrix}$

$=2(0-5)+1(0+3)-2(0-6) = -10+3+12 = 5$

Question:6 If $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ , then find $|A|$.

Answer:

Given the matrix $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ then,

Finding the determinant value of A;

$|A| = 1\begin{vmatrix} 1 &-3 \\ 4& -9 \end{vmatrix} -1\begin{vmatrix} 2 &-3 \\ 5& -9 \end{vmatrix}-2\begin{vmatrix} 2 &1 \\ 5& 4 \end{vmatrix}$

$= 1(-9+12)-1(-18+15)-2(8-5) =3+3-6 =0$

Question:7(i) Find values of x, if

$\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$

Answer:

Given that $\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$

First, we solve the determinant value of L.H.S. and equate it to the determinant value of R.H.S.,

$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = 2(1) - 4(5) = 2 - 20 = -18$ and $\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} = 2x(x) - 4(6) = 2x^2 - 24$

So, we have then,

$-18= 2x^2-24$ or $3= x^2$ or $x= \pm \sqrt{3}$

Question:7(ii) Find values of x, if

$\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$

Answer:

Given $\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$;

So, we here equate both sides after calculating each side's determinant values.

L.H.S. determinant value;

$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2(5) - 3(4) = 10 - 12 = -2$

Similarly R.H.S. determinant value;

$\begin{vmatrix}x &3 \\2x &5 \end{vmatrix} = 5(x) - 3(2x) = 5x - 6x =-x$

So, we have then;

$-2 = -x$ or $x =2$.

Question:8 If $\begin{vmatrix}x &2 \\18 &x \end{vmatrix}=\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix}$ , then $x$ is equal to

(A) $6$ (B) $\pm 6$ (C) $-6$ (D) $0$

Answer:

Solving the L.H.S. determinant ;

$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = x(x) - 2(18) = x^2 - 36$

and solving R.H.S determinant;

$\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix} = 36-36 = 0$

So equating both sides;

$x^2 - 36 =0$ or $x^2 = 36$ or $x = \pm 6$

Hence answer is (B).


Also read,

Topics covered in Chapter 4, Determinants: Exercise 4.1

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.1.

1. Definition:

We know that multiplication and addition are basic operations in matrices. In determinants, we evaluate a scalar value from a square matrix using specific rules. For example, for a $2 \times 2$ matrix

$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right], \quad \text { the determinant is given by } a d-b c $

2. Determinant of a $\mathbf{2 \times 2}$ Matrix: Let the matrix $A$ be defined as:

$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

To evaluate the determinant of a $2 \times 2$ matrix, use the formula:

$ \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21} $

3. Determinant of a $\mathbf{3 \times 3}$ Matrix:

For $3 \times 3$ matrices, the determinant is calculated using expansion by minors.

$ \left|\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right|=a(e i-f h)-b(d i-f g)+c(d h-e g) $

Also, read,

NCERT Solutions of Class 12 Subject Wise

Given below are some useful links for subject-wise NCERT solutions of class 12.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Frequently Asked Questions (FAQs)

Q: what is determinant ?
A:

The determinant is a scalar value of a square matrix which characterize some properties of the matrix.

Q: If square matrix A is order of 2 then | 2A | = ?
A:

|2A| = 2^2 = 4 | A |

Q: How many exercises are there in Class 12 Maths chapter 4 ?
A:

There are 6 exercises and one miscellaneous exercise given in the NCERT textbook Class 12 Maths chapter 4.

Q: Does CBSE provides NCERT solutions for Class 12 Maths chapter 4?
A:

No, CBSE doesn't provide NCERT solutions, you can get NCERT solutions for chapter 4 Class 12 Maths.

Q: What is the determinant of a singular matrix ?
A:

The determinant of a singular matrix is always zero.

Q: What is non-singular matrix?
A:

A matrix that is not singular is called a non-singular matrix. The determinant of a non-singular matrix is non-zero.  

Q: What is syllabus for CBSE Class 12 Maths ?
Q: how many chapters are there in NCERT Class 12 Maths syllabus?
A:

There are 13 chapters in the NCERT Class 12 Maths book.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.