NCERT Solutions Class 12 Maths Chapter 4 Exercise 4.1 - Determinants

NCERT Solutions Class 12 Maths Chapter 4 Exercise 4.1 - Determinants

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 09 May 2025, 11:48 AM IST

Suppose your friend told you that the following $ 2 \times 2$ matrix is given:$\left[\begin{array}{ll} 2 & 3 \\ 4 & 5\end{array}\right] $ and asked you to find its determinant. How would you approach this problem? This is where the concept of determinants comes in. Determinants provide a systematic way to find a scalar value from a square matrix, which is crucial in solving systems of equations, finding the area, and understanding matrix properties. The first exercise of this chapter of the NCERT book is based on the basics of determinants and calculating determinants of different orders of square matrices. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.1 introduces us to the basic idea of determinants and how to evaluate them. This article on the NCERT Solutions for Exercise 4.1 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 4 Exercise 4.1 Solutions: Download PDF

Download PDF

Determinants Exercise:4.1

Question:1 Evaluate the following determinant- $\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix}$

Answer:

The determinant is evaluated as follows

$\begin{vmatrix} 2 & 4\\ -5 & -1\end{vmatrix} = 2(-1) - 4(-5) = -2 + 20 = 18$

Question:2(i) Evaluate the following determinant- $\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta &\cos \theta \end{vmatrix}$

Answer:

The given two by two determinant is calculated as follows

$\begin{vmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{vmatrix} = \cos \theta (\cos \theta) - (-\sin \theta)\sin \theta = \cos^2 \theta + \sin^2 \theta = 1$

Question:2(ii) Evaluate the following determinant- $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$

Answer:

We have determinant $\begin{vmatrix}x^2-x+1 & x-1\\x+1 &x+1 \end{vmatrix}$

$\begin{vmatrix} x^2 - x + 1 & x - 1 \\ x + 1 & x + 1 \end{vmatrix} = (x^2 - x + 1)(x + 1) - (x - 1)(x + 1)$

$= (x+1)(x^2-x+1-x+1) = (x+1)(x^2-2x+2)$

$=x^3-2x^2+2x +x^2-2x+2$

$= x^3-x^2+2$

Question:3 If $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ , then show that $| 2 A |=4|A|$

Answer:

Given determinant $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then we have to show that $| 2 A |=4|A|$,

So, $A = \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix}$ then, $2A =2 \begin{bmatrix} 1 & 2\\ 4 &2 \end{bmatrix} = \begin{bmatrix} 2 & 4\\ 8 &4 \end{bmatrix}$

Hence we have $\left | 2A \right | = \begin{vmatrix} 2 &4 \\ 8& 4 \end{vmatrix} = 2(4) - 4(8) = -24$

So, L.H.S. = |2A| = -24

then calculating R.H.S. $4\left | A \right |$

We have,

$\left | A \right | = \begin{vmatrix} 1 &2 \\ 4& 2 \end{vmatrix} = 1(2) - 2(4) = -6$

hence R.H.S becomes $4\left | A \right | = 4\times(-6) = -24$

Therefore L.H.S. =R.H.S.

Hence proved.

Question:4 If $A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$ then show that $|3A|=27|A|$

Answer:

Given Matrix$A =\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix}$

Calculating $3A =3\begin{bmatrix} 1 &0 &1 \\ 0& 1& 2\\ 0& 0 &4 \end{bmatrix} = \begin{bmatrix} 3 &0 &3 \\ 0& 3& 6\\ 0& 0 &12 \end{bmatrix}$

So, $\left | 3A \right | = 3(3(12) - 6(0) ) - 0(0(12)-0(6)) + 3(0-0) = 3(36) = 108$

calculating $27|A|$,

$|A| = \begin{vmatrix} 1 & 0 &1 \\ 0 & 1 & 2\\ 0& 0 &4 \end{vmatrix} = 1\begin{vmatrix} 1 &2 \\ 0 & 4 \end{vmatrix} - 0\begin{vmatrix} 0 &2 \\ 0& 4 \end{vmatrix} + 1\begin{vmatrix} 0 &1 \\ 0& 0 \end{vmatrix} = 4 -0 + 0 = 4$

So, $27|A| = 27(4) = 108$

Therefore $|3A|=27|A|$.

Hence proved.

Question:5(i) Evaluate the determinants.

$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$

Answer:

Given the determinant $\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix}$;

now, calculating its determinant value,

$\begin{vmatrix}3 &-1 &-2 \\0 &0 &-1 \\3 &-5 & 0 \end{vmatrix} = 3\begin{vmatrix} 0 &-1 \\ -5& 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} +(-2)\begin{vmatrix} 0 &0 \\ 3& -5 \end{vmatrix}$

$= 3(0-5)+1(0+3) -2(0-0) = -15+3-0 = -12$.

Question:5(ii) Evaluate the determinants.

$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$

Answer:

Given determinant $\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix}$;

Now calculating the determinant value;

$\begin{vmatrix}3 &-4 &5 \\1 &1 &-2 \\2 &3 &1 \end{vmatrix} = 3\begin{vmatrix} 1 &-2 \\ 3&1 \end{vmatrix} -(-4)\begin{vmatrix} 1 &-2 \\ 2& 1 \end{vmatrix}+5\begin{vmatrix} 1 & 1\\ 2& 3 \end{vmatrix}$

$= 3(1+6) +4(1+4) +5(3-2) = 21+20+5 = 46$.

Question:5(iii) Evaluate the determinants.

$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$

Answer:

Given determinant $\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix}$;

Now calculating the determinant value;

$\begin{vmatrix}0 & 1 & 2\\-1 &0 &-3 \\ -2 &3 &0 \end{vmatrix} = 0\begin{vmatrix} 0 &-1 \\ 3& 0 \end{vmatrix} -1\begin{vmatrix} -1 &-3 \\ -2& 0 \end{vmatrix}+2\begin{vmatrix} -1 &0 \\ -2& 3 \end{vmatrix}$

$= 0 - 1(0-6)+2(-3-0) = 6 -6 =0$

Question:5(iv) Evaluate the determinants.

$\begin{vmatrix}2 &-1 &2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$

Answer:

Given determinant: $\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix}$,

We now calculate determinant value:

$\begin{vmatrix}2 &-1 &-2 \\0 &2 &-1 \\3 &-5 &0 \end{vmatrix} =2\begin{vmatrix} 2 &-1 \\ -5 & 0 \end{vmatrix} -(-1)\begin{vmatrix} 0 &-1 \\ 3 & 0 \end{vmatrix}+(-2)\begin{vmatrix} 0 &2 \\ 3&-5 \end{vmatrix}$

$=2(0-5)+1(0+3)-2(0-6) = -10+3+12 = 5$

Question:6 If $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ , then find $|A|$.

Answer:

Given the matrix $A=\begin{bmatrix}1 & 1 & -2\\ 2& 1 &-3 \\5 &4 &-9 \end{bmatrix}$ then,

Finding the determinant value of A;

$|A| = 1\begin{vmatrix} 1 &-3 \\ 4& -9 \end{vmatrix} -1\begin{vmatrix} 2 &-3 \\ 5& -9 \end{vmatrix}-2\begin{vmatrix} 2 &1 \\ 5& 4 \end{vmatrix}$

$= 1(-9+12)-1(-18+15)-2(8-5) =3+3-6 =0$

Question:7(i) Find values of x, if

$\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$

Answer:

Given that $\begin{vmatrix}2 &4 \\5 &1 \end{vmatrix} =\begin{vmatrix}2x &4 \\6 &x \end{vmatrix}$

First, we solve the determinant value of L.H.S. and equate it to the determinant value of R.H.S.,

$\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = 2(1) - 4(5) = 2 - 20 = -18$ and $\begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix} = 2x(x) - 4(6) = 2x^2 - 24$

So, we have then,

$-18= 2x^2-24$ or $3= x^2$ or $x= \pm \sqrt{3}$

Question:7(ii) Find values of x, if

$\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$

Answer:

Given $\begin{vmatrix}2 &3 \\ 4 &5 \end{vmatrix}=\begin{vmatrix}x &3 \\2x &5 \end{vmatrix}$;

So, we here equate both sides after calculating each side's determinant values.

L.H.S. determinant value;

$\begin{vmatrix} 2 & 3 \\ 4 & 5 \end{vmatrix} = 2(5) - 3(4) = 10 - 12 = -2$

Similarly R.H.S. determinant value;

$\begin{vmatrix}x &3 \\2x &5 \end{vmatrix} = 5(x) - 3(2x) = 5x - 6x =-x$

So, we have then;

$-2 = -x$ or $x =2$.

Question:8 If $\begin{vmatrix}x &2 \\18 &x \end{vmatrix}=\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix}$ , then $x$ is equal to

(A) $6$ (B) $\pm 6$ (C) $-6$ (D) $0$

Answer:

Solving the L.H.S. determinant ;

$\begin{vmatrix} x & 2 \\ 18 & x \end{vmatrix} = x(x) - 2(18) = x^2 - 36$

and solving R.H.S determinant;

$\begin{vmatrix} 6 &2 \\ 18 &6 \end{vmatrix} = 36-36 = 0$

So equating both sides;

$x^2 - 36 =0$ or $x^2 = 36$ or $x = \pm 6$

Hence answer is (B).


Also read,

Topics covered in Chapter 4, Determinants: Exercise 4.1

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.1.

1. Definition:

We know that multiplication and addition are basic operations in matrices. In determinants, we evaluate a scalar value from a square matrix using specific rules. For example, for a $2 \times 2$ matrix

$ \left[\begin{array}{ll} a & b \\ c & d \end{array}\right], \quad \text { the determinant is given by } a d-b c $

2. Determinant of a $\mathbf{2 \times 2}$ Matrix: Let the matrix $A$ be defined as:

$A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$

To evaluate the determinant of a $2 \times 2$ matrix, use the formula:

$ \operatorname{det}(A)=a_{11} a_{22}-a_{12} a_{21} $

3. Determinant of a $\mathbf{3 \times 3}$ Matrix:

For $3 \times 3$ matrices, the determinant is calculated using expansion by minors.

$ \left|\begin{array}{lll} a & b & c \\ d & e & f \\ g & h & i \end{array}\right|=a(e i-f h)-b(d i-f g)+c(d h-e g) $

Also, read,

Frequently Asked Questions (FAQs)

Q: what is determinant ?
A:

The determinant is a scalar value of a square matrix which characterize some properties of the matrix.

Q: If square matrix A is order of 2 then | 2A | = ?
A:

|2A| = 2^2 = 4 | A |

Q: How many exercises are there in Class 12 Maths chapter 4 ?
A:

There are 6 exercises and one miscellaneous exercise given in the NCERT textbook Class 12 Maths chapter 4.

Q: Does CBSE provides NCERT solutions for Class 12 Maths chapter 4?
A:

No, CBSE doesn't provide NCERT solutions, you can get NCERT solutions for chapter 4 Class 12 Maths.

Q: What is the determinant of a singular matrix ?
A:

The determinant of a singular matrix is always zero.

Q: What is non-singular matrix?
A:

A matrix that is not singular is called a non-singular matrix. The determinant of a non-singular matrix is non-zero.  

Q: What is syllabus for CBSE Class 12 Maths ?
Q: how many chapters are there in NCERT Class 12 Maths syllabus?
A:

There are 13 chapters in the NCERT Class 12 Maths book.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

15 Sep'25 - 17 Nov'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !