NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 - Determinants

NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 - Determinants

Upcoming Event

CBSE Class 12th Exam Date:01 Jan' 26 - 14 Feb' 26

Komal MiglaniUpdated on 25 Apr 2025, 08:47 AM IST

Suppose you are given a square matrix and asked to find its inverse. Before doing that, the first step is to calculate its adjoint. The adjoint and inverse of a matrix are two of the most important applications of determinants and are key topics in this exercise. The adjoint of a square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is defined as the transpose of the matrix $\left[\mathrm{A}_{i j}\right]_{n \times n}$, where $\mathrm{A}_{i j}$ is the cofactor of the element $a_{i j}$. The adjoint of the matrix A is denoted by adj A. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.4 focuses on computing the adjoint and inverse of a square matrix using minors, cofactors, and determinants. This article on the NCERT Solutions for Exercise 4.4 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 4 Exercise 4.4 Solutions: Download PDF

Download PDF

Determinants Exercise: 4.4

Question:1 Find adjoint of each of the matrices.

$\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}$

Answer:

Given matrix: $\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}= A$

Then we have,

$A_{11} = 4, A_{12}=-(1)3, A_{21} = -(1)2,\ and\ A_{22}= 1$

Hence we get:

$adjA = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} &A_{22} \end{bmatrix}^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} &A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 &1 \end{bmatrix}$

Question:2 Find adjoint of each of the matrices

$\small \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$

Answer:

Given the matrix: $\small A = \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$

Then we have,

$A_{11} = (-1)^{1+1}\begin{vmatrix} 3 &5 \\ 0& 1 \end{vmatrix} =(3-0)= 3$

$A_{12} = (-1)^{1+2}\begin{vmatrix} 2 &5 \\ -2& 1 \end{vmatrix} =-(2+10)= -12$

$A_{13} = (-1)^{1+3}\begin{vmatrix} 2 &3 \\ -2& 0 \end{vmatrix} =0+6= 6$

$A_{21} = (-1)^{2+1}\begin{vmatrix} -1 &2 \\ 0& 1 \end{vmatrix} =-(-1-0)= 1$

$A_{22} = (-1)^{2+2}\begin{vmatrix} 1 &2 \\ -2& 1 \end{vmatrix} =(1+4)= 5$

$A_{23} = (-1)^{2+3}\begin{vmatrix} 1 &-1 \\-2& 0 \end{vmatrix} =-(0-2)= 2$

$A_{31} = (-1)^{3+1}\begin{vmatrix} -1 &2 \\ 3& 5 \end{vmatrix} =(-5-6)= -11$

$A_{32} = (-1)^{3+2}\begin{vmatrix} 1 &2 \\2& 5\end{vmatrix} =-(5-4)= -1$

$A_{33} = (-1)^{3+3}\begin{vmatrix} 1 &-1 \\ 2& 3 \end{vmatrix} =(3+2)= 5$

Hence we get:

$adjA = \begin{bmatrix} A_{11} &A_{21} &A_{31} \\ A_{12}&A_{22} &A_{32} \\ A_{13}&A_{23} &A_{33} \end{bmatrix} = \begin{bmatrix} 3 &1 &-11 \\ -12&5 &-1 \\ 6&2 &5 \end{bmatrix}$

Question:3 Verify $\small A (adj A)=(adj A)A=|A|I$.

$\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Answer:

Given the matrix: $\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Let $\small A = \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Calculating the cofactors;

$\small A_{11} = (-1)^{1+1}(-6) = -6$

$\small A_{12} = (-1)^{1+2}(-4) = 4$

$\small A_{21} = (-1)^{2+1}(3) = -3$

$\small A_{22} = (-1)^{2+2}(2) = 2$

Hence, $\small adjA = \begin{bmatrix} -6 &-3 \\ 4& 2 \end{bmatrix}$

Now,

$\small A (adj A) = \begin{bmatrix} 2 &3 \\ -4&-6 \end{bmatrix}\left ( \begin{bmatrix} -6 &-3 \\ 4 &2 \end{bmatrix} \right )$

$\small \begin{bmatrix} -12+12 &-6+6 \\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$

aslo,

$\small (adjA)A = \begin{bmatrix} -6 &-3 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 2 &3 \\ -4& -6 \end{bmatrix}$

$\small = \begin{bmatrix} -12+12 &-18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

Now, calculating |A|;

$\small |A| = -12-(-12) = -12+12 = 0$

So, $\small |A|I = 0\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

Hence we get

$\small A (adj A)=(adj A)A=|A|I$

Question:4 Verify $\small A (adj A)=(adjA)A=|A| I$.

$\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Answer:

Given matrix: $\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Let $\small A= \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Calculating the cofactors;

$\small A_{11} = (-1)^{1+1} \begin{vmatrix} 0 &-2 \\ 0& 3 \end{vmatrix} = 0$

$\small A_{12} = (-1)^{1+2} \begin{vmatrix} 3 &-2 \\1& 3 \end{vmatrix} = -(9+2) =-11$

$\small A_{13} = (-1)^{1+3} \begin{vmatrix} 3 &0 \\ 1& 0 \end{vmatrix} = 0$

$\small A_{21} = (-1)^{2+1} \begin{vmatrix} -1 &2 \\ 0& 3 \end{vmatrix} = -(-3-0)= 3$

$\small A_{22} = (-1)^{2+2} \begin{vmatrix} 1 &2 \\ 1& 3 \end{vmatrix} = 3-2=1$

$\small A_{23} = (-1)^{2+3} \begin{vmatrix} 1 &-1 \\ 1& 0 \end{vmatrix} = -(0+1) = -1$

$\small A_{31} = (-1)^{3+1} \begin{vmatrix} -1 &2 \\ 0& -2 \end{vmatrix} = 2$

$\small A_{32} = (-1)^{3+2} \begin{vmatrix} 1 &2 \\ 3& -2 \end{vmatrix} = -(-2-6) = 8$

$\small A_{33} = (-1)^{3+3} \begin{vmatrix} 1 &-1 \\ 3& 0 \end{vmatrix} = 0+3 =3$

Hence, $\small adjA = \begin{bmatrix} 0 &3 &2 \\ -11 & 1& 8\\ 0 &-1 & 3 \end{bmatrix}$

Now,

$\small A (adj A) =\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}$

$\small =\begin{bmatrix} 0+11+0 &3-1-2 &2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 &3+0-3 & 2+0+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$

also,

$\small A (adj A) =\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}$

$\small =\begin{bmatrix} 0+9+2 &0+0+0 &0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 &0+0+0 & 0+2+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$

Now, calculating |A|;

$\small |A| = 1(0-0) +1(9+2) +2(0-0) = 11$

So, $\small |A|I = 11\begin{bmatrix} 1 &0&0 \\ 0& 1&0 \\ 0&0&1 \end{bmatrix} = \begin{bmatrix} 11 &0&0 \\ 0& 11&0\\ 0&0&11 \end{bmatrix}$

Hence we get,

$\small A (adj A)=(adj A)A=|A|I$.

Question:5 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$

Answer:

Given matrix : $\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

|A| = (6+8) = 14

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (3) = 3$

$A_{12} = (-1)^{1+2} (4) = -4$

$A_{21} = (-1)^{2+1} (-2) = 2$

$A_{22} = (-1)^{2+2} (2) = 2$

So, we have $adjA = \begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{14}\begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{14} &\frac{1}{7} \\ \\ \frac{-2}{7} & \frac{1}{7} \end{bmatrix}$

Question:6 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

|A| = (-2+15) = 13

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (2) = 2$

$A_{12} = (-1)^{1+2} (-3) = 3$

$A_{21} = (-1)^{2+1} (5) =-5$

$A_{22} = (-1)^{2+2} (-1) = -1$

So, we have $adjA = \begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{13}\begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix} = \begin{bmatrix} \frac{2}{13} &\frac{-5}{13} \\ \\ \frac{3}{13} & \frac{-1}{13} \end{bmatrix}$

Question:7 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}= A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(10-0)-2(0-0)+3(0-0) = 10$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (10) = 10$ $A_{12} = (-1)^{1+2} (0) = 0$

$A_{13} = (-1)^{1+3} (0) =0$ $A_{21} = (-1)^{2+1} (10) = -10$

$A_{22} = (-1)^{2+2} (5-0) = 5$ $A_{23} = (-1)^{2+1} (0-0) = 0$

$A_{31} = (-1)^{3+1} (8-6) = 2$ $A_{32} = (-1)^{3+2} (4-0) =-4$

$A_{33} = (-1)^{3+3} (2-0) = 2$

So, we have $adjA = \begin{bmatrix} 10 &-10 &2 \\ 0& 5 &-4 \\ 0& 0 &2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{10}\begin{bmatrix} 10 &-10 &2 \\ 0 & 5& -4\\ 0 &0 &2 \end{bmatrix}$

Question:8 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(-3-0)-0(-3-0)+0(6-15) = -3$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-3-0) = -3$ $A_{12} = (-1)^{1+2} (-3-0) = 3$

$A_{13} = (-1)^{1+3} (6-15) =-9$ $A_{21} = (-1)^{2+1} (0-0) = 0$

$A_{22} = (-1)^{2+2} (-1-0) = -1$ $A_{23} = (-1)^{2+1} (2-0) = -2$

$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (0-0) =0$

$A_{33} = (-1)^{3+3} (3-0) = 3$

So, we have $adjA = \begin{bmatrix} -3 &0 &0 \\ 3& -1 &0 \\ -9& -2 &3 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{-1}{3}\begin{bmatrix} -3 &0 &0 \\ 3 & -1& 0\\ -9 &-2 &3 \end{bmatrix}$

Question:9 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix} =A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 2(-1-0)-1(4-0)+3(8-7) =-2-4+3 = -3$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-1-0) = -1$ $A_{12} = (-1)^{1+2} (4-0) = -4$

$A_{13} = (-1)^{1+3} (8-7) =1$ $A_{21} = (-1)^{2+1} (1-6) = 5$

$A_{22} = (-1)^{2+2} (2+21) = 23$ $A_{23} = (-1)^{2+1} (4+7) = -11$

$A_{31} = (-1)^{3+1} (0+3) = 3$ $A_{32} = (-1)^{3+2} (0-12) =12$

$A_{33} = (-1)^{3+3} (-2-4) = -6$

So, we have $adjA = \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-3} \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$

Question:10 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(8-6)+1(0+9)+2(0-6) =2+9-12 = -1$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (8-6) = 2$ $A_{12} = (-1)^{1+2} (0+9) = -9$

$A_{13} = (-1)^{1+3} (0-6) =-6$ $A_{21} = (-1)^{2+1} (-4+4) = 0$

$A_{22} = (-1)^{2+2} (4-6) = -2$ $A_{23} = (-1)^{2+1} (-2+3) = -1$

$A_{31} = (-1)^{3+1} (3-4) = -1$ $A_{32} = (-1)^{3+2} (-3-0) =3$

$A_{33} = (-1)^{3+3} (2-0) = 2$

So, we have $adjA = \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-1} \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$

$A^{-1} = \begin{bmatrix} -2 &0 &1 \\ 9& 2 &-3 \\ 6& 1 &-2 \end{bmatrix}$

Question:11 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix} =A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(-\cos^2 \alpha-\sin^2 \alpha)+0(0-0)+0(0-0)$

$=-(\cos^2 \alpha + \sin^2 \alpha) = -1$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-\cos^2 \alpha - \sin^2 \alpha) = -1$ $A_{12} = (-1)^{1+2} (0-0) = 0$

$A_{13} = (-1)^{1+3} (0-0) =0$ $A_{21} = (-1)^{2+1} (0-0) = 0$

$A_{22} = (-1)^{2+2} (-\cos \alpha-0) = -\cos \alpha$ $A_{23} = (-1)^{2+1} (\sin \alpha-0) = -\sin \alpha$

$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (\sin \alpha-0) =-\sin \alpha$

$A_{33} = (-1)^{3+3} (\cos \alpha - 0) = \cos \alpha$

So, we have $adjA = \begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-1}\begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix} = \begin{bmatrix}1 &0 &0 \\ 0&\cos \alpha &\sin \alpha \\ 0& \sin \alpha &-\cos \alpha \end{bmatrix}$

Question:12 Let $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$. Verify that $\small (AB)^{-1} = B^{-1}A^{-1}$.

Answer:

We have $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$.

then calculating;

$AB = \begin{bmatrix} 3 &7 \\ 2& 5 \end{bmatrix}\begin{bmatrix} 6 &8 \\ 7& 9 \end{bmatrix}$

$=\begin{bmatrix} 18+49 &24+63 \\ 12+35 & 16+45 \end{bmatrix} = \begin{bmatrix} 67 &87 \\ 47& 61 \end{bmatrix}$

Finding the inverse of AB.

Calculating the cofactors fo AB:

$AB_{11}=(-1)^{1+1}(61) = 61$ $AB_{12}=(-1)^{1+2}(47) = -47$

$AB_{21}=(-1)^{2+1}(87) = -87$ $AB_{22}=(-1)^{2+2}(67) = 67$

Then we have adj(AB):

$adj(AB) = \begin{bmatrix} 61 &-87 \\ -47& 67 \end{bmatrix}$

and |AB| = 61(67) - (-87)(-47) = 4087-4089 = -2

Therefore we have inverse:

$(AB)^{-1}=\frac{1}{|AB|}adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 &-87 \\ -47 & 67 \end{bmatrix}$

$= \begin{bmatrix} \frac{-61}{2} &\frac{87}{2} \\ \\ \frac{47}{2} & \frac{-67}{2} \end{bmatrix}$ .....................................(1)

Now, calculating inverses of A and B.

|A| = 15-14 = 1 and |B| = 54- 56 = -2

$adjA = \begin{bmatrix} 5 &-7 \\ -2 & 3 \end{bmatrix}$ and $adjB = \begin{bmatrix} 9 &-8 \\ -7 & 6 \end{bmatrix}$

therefore we have

$A^{-1} = \frac{1}{|A|}adjA= \frac{1}{1} \begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$ and $B^{-1} = \frac{1}{|B|}adjB= \frac{1}{-2} \begin{bmatrix} 9&-8 \\ -7& 6 \end{bmatrix}= \begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}$

Now calculating$B^{-1}A^{-1}$.

$B^{-1}A^{-1} =\begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}\begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$

$=\begin{bmatrix} \frac{-45}{2}-8 && \frac{63}{2}+12 \\ \\ \frac{35}{2}+6 && \frac{-49}{2}-9 \end{bmatrix} = \begin{bmatrix} \frac{-61}{2} && \frac{87}{2} \\ \\ \frac{47}{2} && \frac{-67}{2} \end{bmatrix}$........................(2)

From (1) and (2) we get

$\small (AB)^{-1} = B^{-1}A^{-1}$

Hence proved.

Question:13 If $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$? , show that $A^2-5A+7I=O$. Hence find $A^{-1}$.

Answer:

Given $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$ then we have to show the relation $A^2-5A+7I=0$

So, calculating each term;

$A^2 = \begin{bmatrix} 3& 1\\ -1& 2 \end{bmatrix}\begin{bmatrix} 3&1 \\ -1& 2 \end{bmatrix} = \begin{bmatrix} 9-1 &3+2 \\ -3-2&-1+4 \end{bmatrix} = \begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix}$

therefore $A^2-5A+7I$;

$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - 5\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix} + 7 \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}$

$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - \begin{bmatrix} 15 &5 \\ -5& 10 \end{bmatrix} + \begin{bmatrix} 7 &0 \\ 0 & 7 \end{bmatrix}$

$\begin{bmatrix} 8-15+7 &&5-5+0 \\ -5+5+0 && 3-10+7 \end{bmatrix} = \begin{bmatrix} 0 &&0 \\ 0 && 0 \end{bmatrix}$

Hence $A^2-5A+7I = 0$.

$\therefore A.A -5A = -7I$

$\Rightarrow A.A(A^{-1}) - 5AA^{-1} = -7IA^{-1}$

[Post multiplying by $A^{-1}$, also $|A| \neq 0$]

$\Rightarrow A(AA^{-1}) - 5I = -7A^{-1}$

$\Rightarrow AI - 5I = -7A^{-1}$

$\Rightarrow -\frac{1}{7}(AI - 5I)= \frac{1}{7}(5I-A)$

$\therefore A^{-1} = \frac{1}{7}(5\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}-\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix}) = \frac{1}{7}\begin{bmatrix} 2 &-1 \\ 1& 3 \end{bmatrix}$

Question:14 For the matrix $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ , find the numbers $\small a$ and $\small b$ such that $A^2+aA+bI=0$.

Answer:

Given $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ then we have the relation $A^2+aA+bI=O$

So, calculating each term;

$A^2 = \begin{bmatrix} 3& 2\\ 1& 1 \end{bmatrix}\begin{bmatrix} 3&2 \\ 1& 1 \end{bmatrix} = \begin{bmatrix} 9+2 &6+2 \\ 3+1&2+1 \end{bmatrix} = \begin{bmatrix} 11 &8 \\ 4& 3 \end{bmatrix}$

therefore $A^2+aA+bI=O$;

$=\begin{bmatrix}11 &8 \\ 4& 3 \end{bmatrix} + a\begin{bmatrix} 3 &2 \\ 1& 1 \end{bmatrix} + b \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

$\begin{bmatrix} 11+3a+b & 8+2a \\ 4+a & 3+a+b \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$

So, we have equations;

$11+3a+b = 0,\ 8+2a = 0$ and $4+a = 0,and\ \ 3+a+b = 0$

We get $a = -4\ and\ b= 1$.

Question:15 For the matrix $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$ Show that $\small A^3-6A^2+5A+11I=O$ Hence, find $A^{-1}$.

Answer:

Given matrix: $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$;

To show: $\small A^3-6A^2+5A+11I=O$

Finding each term:

$A^{2} = \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix}$

$= \begin{bmatrix} 1+1+2 &&1+2-1 &&1-3+3 \\ 1+2-6 &&1+4+3 &&1-6-9 \\ 2-1+6 &&2-2-3 && 2+3+9 \end{bmatrix}$

$= \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}$

$A^{3} = \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$

$= \begin{bmatrix} 4+2+2 &4+4-1 &4-6+3 \\ -3+8-28 &-3+16+14 & -3-24-42 \\ 7-3+28&7-6-14 &7+9+42 \end{bmatrix}$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}$

So now we have, $\small A^3-6A^2+5A+11I$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-6\begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}+5\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+11\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-\begin{bmatrix} 24 &&12 &&6 \\ -18 &&48 &&-84 \\ 42 &&-18 && 84 \end{bmatrix}+\begin{bmatrix} 5 &5 &5 \\ 5 &10 &-15 \\ 10 &-5 &15 \end{bmatrix}+\begin{bmatrix} 11 &0 &0 \\ 0 &11 & 0\\ 0& 0& 11 \end{bmatrix}$

$= \begin{bmatrix} 8-24+5+11 &7-12+5 &1-6+5 \\ -23+18+5&27-48+10+11 &-69+84-15 \\ 32-42+10&-13+18-5 & 58-84+15+11 \end{bmatrix}$

$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = 0$

Now finding the inverse of A;

Post-multiplying by $A^{-1}$ as, $|A| \neq 0$

$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +5AA^{-1}+11IA^{-1} = 0$

$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +5(AA^{-1})=- 11IA^{-1}$

$\Rightarrow A^{2}-6A +5I=- 11A^{-1}$

$A^{-1} = \frac{-1}{11}(A^{2}-6A+5I)$ ...................(1)

Now,

From equation (1) we get;

$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}-6\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+5\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$


$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4-6+5 &&2-6 &&1-6 \\ -3-6 &&8-12+5 &&-14+18 \\ 7-12 &&-3+6 && 14-18+5 \end{bmatrix}$


$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 3 &&-4 &&-5 \\ -9 &&1 &&4 \\ -5 &&3 && 1 \end{bmatrix}$

Question:16 If $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$ , verify that $\small A^3-6A^2+9A-4I=O$. Hence find $A^{-1}$.

Answer:

Given matrix: $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$;

To show: $\small A^3-6A^2+9A-4I$

Finding each term:

$A^{2} = \begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$

$= \begin{bmatrix} 4+1+1 &&-2-2-1 &&2+1+2 \\ -2-2-1 &&1+4+1 &&-1-2-2 \\ 2+1+2 &&-1-2-2 && 1+1+4 \end{bmatrix}$

$= \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}$

$A^{3} =\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$

$= \begin{bmatrix} 12+5+5 &-6-10-5 &6+5+10 \\ -10-6-5 &5+12+5 & -5-6-10 \\ 10+5+6&-5-10-6 &5+5+12 \end{bmatrix}$

$= \begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}$

So now we have, $\small A^3-6A^2+9A-4I$

$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}-6 \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}+9\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}-4\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$

$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}- \begin{bmatrix} 36 &&-30 &&30 \\ -30 &&36 &&-30 \\30 &&-30 && 36 \end{bmatrix}+\begin{bmatrix} 18 &-9 &9 \\ -9 &18 &-9 \\ 9 &-9 &18 \end{bmatrix}-\begin{bmatrix} 4 &0 &0 \\ 0 &4 & 0\\ 0& 0& 4 \end{bmatrix}$

$= \begin{bmatrix} 22-36+18-4 &-21+30-9 &21-30+9 \\ -21+30-9&22-36+18-4 &-21+30-9 \\ 21-30+9&-21+30-9 & 22-36+18-4 \end{bmatrix}$

$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = O$

Now finding the inverse of A;

Post-multiplying by $A^{-1}$ as, $|A| \neq 0$

$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +9AA^{-1}-4IA^{-1} = 0$

$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +9(AA^{-1})=4IA^{-1}$

$\Rightarrow A^{2}-6A +9I=4A^{-1}$

$A^{-1} = \frac{1}{4}(A^{2}-6A+9I)$ ...................(1)

Now,

From equation (1) we get;

$A^{-1} = \frac{1}{4}(\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}-6\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}+9\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$

$A^{-1} = \frac{1}{4} \begin{bmatrix} 6-12+9 &&-5+6 &&5-6 \\ -5+6 &&6-12+9 &&-5+6 \\ 5-6 &&-5+6 && 6-12+9 \end{bmatrix}$

Hence inverse of A is :

$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 &&1 &&-1 \\ 1 &&3 &&1 \\ -1 &&1 && 3 \end{bmatrix}$

Question:17 Let A be a nonsingular square matrix of order $\small 3\times 3$. Then $\small |adjA|$ is equal to

(A) $\small |A|$ (B) $\small |A|^2$ (C) $\small |A|^3$ (D) $\small 3|A|$

Answer:

We know the identity $(adjA)A = |A| I$

Hence we can determine the value of $|(adjA)|$.

Taking both sides determinant value we get,

$|(adjA)A| = ||A| I|$ or $|(adjA)||A| = ||A||| I|$

or taking R.H.S.,

$||A||| I| = \begin{vmatrix} |A| & 0&0 \\ 0&|A| &0 \\ 0&0 &|A| \end{vmatrix}$

$= |A| (|A|^2) = |A|^3$

or, we have then $|(adjA)||A| = |A|^3$

Therefore $|(adjA)| = |A|^2$

Hence the correct answer is B.

Question:18 If A is an invertible matrix of order 2, then det $\left(A^{-1}\right)$ is equal to $\dfrac{1}{\det(A)}$.

(A) $\small det(A)$ (B) $\small \frac{1}{det (A)}$ (C) $\small 1$ (D) $\small 0$

Answer:

Given that the matrix is invertible hence $A^{-1}$ exists and $A^{-1} = \frac{1}{|A|}adjA$

Let us assume a matrix of the order of 2;

$A = \begin{bmatrix} a &b \\ c &d \end{bmatrix}$.

Then $|A| = ad-bc$.

$adjA = \begin{bmatrix} d &-b \\ -c & a \end{bmatrix}$ and $|adjA| = ad-bc$

Now,

$A^{-1} = \frac{1}{|A|}adjA$

Taking determinant both sides;

$|A^{-1}| = |\frac{1}{|A|}adjA| = \begin{bmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$

$\therefore|A^{-1}| = \begin{vmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2}\begin{vmatrix} d &-b \\ -c& a \end{vmatrix} = \frac{1}{|A|^2}(ad-bc) =\frac{1}{|A|^2}.|A| = \frac{1}{|A|}$

Therefore we get;

$|A^{-1}| = \frac{1}{|A|}$

Hence the correct answer is B.


Also read,

Topics Covered in Chapter 4, Determinants: Exercise 4.4

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.4.

1. Adjoint of a Matrix: The adjoint of a square matrix is the transpose of the cofactor matrix.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad \operatorname{then} \operatorname{adj}(A)=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

2. Inverse of a Matrix using Determinants: The inverse of a square matrix $A$, when it exists (i.e., when $\operatorname{det}(A) \neq 0$ ), is given by:

$A^{-1}=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{adj}(A)$

3. Verification and Application: Once the inverse is found, students can verify the result by checking:

$A \cdot A^{-1}=A^{-1} \cdot A=I$

This confirms that the inverse is correct.

Also, read,

NCERT Solutions of Class 12 Subject Wise

Given below are some useful links for subject-wise NCERT solutions of class 12.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

Frequently Asked Questions (FAQs)

Q: Does singular matrices are invertible ?
A:

No, singular matrices are not invertible.

Q: Does non-singular matrices are invertible ?
A:

Yes, non-singular matrices are invertible.

Q: what is an invertible matrix ?
A:

If an inverse of a square matrix exists then it is called an invertible matrix.

Q: If |A| = 5 and order of A is 2 then |3A| = ?​
A:

|3A| = 3^2|A| = 45

Q: If A is a symmetric matrix then the transpose of A is?
A:

If A is a symmetric matrix then the transpose of A is A.

Q: If A is a skew-symmetric matrix then the transpose of A is?
A:

If A is a skew-symmetric matrix then the transpose of A is -A.

Q: If A is a matrix and A' is the transpose of matrix A then what is |A|?
A:

If A is a matrix and A' is the transpose of matrix A then |A| = |A'|.

Q: Does square diagonal marix is a symmetric matrix ?
A:

Yes, every square diagonal matrix is a symmetric matrix.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Maharashtra HSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your admit card. Some schools may pressure or warn students who fail multiple subjects, but legally they cannot detain you just because of pre-board results if your attendance and internal requirements are completed. In most cases, schools allow students to sit for boards after extra tests, remedial classes, or a written undertaking from parents. So don’t panic—but also don’t be careless. Use this as a wake-up call and seriously work on weak subjects instead of relying on hope alone.

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.

LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS