NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 - Determinants

NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 - Determinants

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 25 Apr 2025, 08:47 AM IST

Suppose you are given a square matrix and asked to find its inverse. Before doing that, the first step is to calculate its adjoint. The adjoint and inverse of a matrix are two of the most important applications of determinants and are key topics in this exercise. The adjoint of a square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is defined as the transpose of the matrix $\left[\mathrm{A}_{i j}\right]_{n \times n}$, where $\mathrm{A}_{i j}$ is the cofactor of the element $a_{i j}$. The adjoint of the matrix A is denoted by adj A. NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.4 focuses on computing the adjoint and inverse of a square matrix using minors, cofactors, and determinants. This article on the NCERT Solutions for Exercise 4.4 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 4 Exercise 4.4 Solutions: Download PDF

Download PDF

Determinants Exercise: 4.4

Question:1 Find adjoint of each of the matrices.

$\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}$

Answer:

Given matrix: $\small \begin{bmatrix} 1 &2 \\ 3 & 4 \end{bmatrix}= A$

Then we have,

$A_{11} = 4, A_{12}=-(1)3, A_{21} = -(1)2,\ and\ A_{22}= 1$

Hence we get:

$adjA = \begin{bmatrix} A_{11} & A_{12} \\ A_{21} &A_{22} \end{bmatrix}^T = \begin{bmatrix} A_{11} & A_{21} \\ A_{12} &A_{22} \end{bmatrix} = \begin{bmatrix} 4 & -2 \\ -3 &1 \end{bmatrix}$

Question:2 Find adjoint of each of the matrices

$\small \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$

Answer:

Given the matrix: $\small A = \begin{bmatrix} 1 &-1 &2 \\ 2 & 3 &5 \\ -2 & 0 &1 \end{bmatrix}$

Then we have,

$A_{11} = (-1)^{1+1}\begin{vmatrix} 3 &5 \\ 0& 1 \end{vmatrix} =(3-0)= 3$

$A_{12} = (-1)^{1+2}\begin{vmatrix} 2 &5 \\ -2& 1 \end{vmatrix} =-(2+10)= -12$

$A_{13} = (-1)^{1+3}\begin{vmatrix} 2 &3 \\ -2& 0 \end{vmatrix} =0+6= 6$

$A_{21} = (-1)^{2+1}\begin{vmatrix} -1 &2 \\ 0& 1 \end{vmatrix} =-(-1-0)= 1$

$A_{22} = (-1)^{2+2}\begin{vmatrix} 1 &2 \\ -2& 1 \end{vmatrix} =(1+4)= 5$

$A_{23} = (-1)^{2+3}\begin{vmatrix} 1 &-1 \\-2& 0 \end{vmatrix} =-(0-2)= 2$

$A_{31} = (-1)^{3+1}\begin{vmatrix} -1 &2 \\ 3& 5 \end{vmatrix} =(-5-6)= -11$

$A_{32} = (-1)^{3+2}\begin{vmatrix} 1 &2 \\2& 5\end{vmatrix} =-(5-4)= -1$

$A_{33} = (-1)^{3+3}\begin{vmatrix} 1 &-1 \\ 2& 3 \end{vmatrix} =(3+2)= 5$

Hence we get:

$adjA = \begin{bmatrix} A_{11} &A_{21} &A_{31} \\ A_{12}&A_{22} &A_{32} \\ A_{13}&A_{23} &A_{33} \end{bmatrix} = \begin{bmatrix} 3 &1 &-11 \\ -12&5 &-1 \\ 6&2 &5 \end{bmatrix}$

Question:3 Verify $\small A (adj A)=(adj A)A=|A|I$.

$\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Answer:

Given the matrix: $\small \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Let $\small A = \begin{bmatrix} 2 &3 \\ -4 & -6 \end{bmatrix}$

Calculating the cofactors;

$\small A_{11} = (-1)^{1+1}(-6) = -6$

$\small A_{12} = (-1)^{1+2}(-4) = 4$

$\small A_{21} = (-1)^{2+1}(3) = -3$

$\small A_{22} = (-1)^{2+2}(2) = 2$

Hence, $\small adjA = \begin{bmatrix} -6 &-3 \\ 4& 2 \end{bmatrix}$

Now,

$\small A (adj A) = \begin{bmatrix} 2 &3 \\ -4&-6 \end{bmatrix}\left ( \begin{bmatrix} -6 &-3 \\ 4 &2 \end{bmatrix} \right )$

$\small \begin{bmatrix} -12+12 &-6+6 \\ 24-24 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$

aslo,

$\small (adjA)A = \begin{bmatrix} -6 &-3 \\ 4 & 2 \end{bmatrix}\begin{bmatrix} 2 &3 \\ -4& -6 \end{bmatrix}$

$\small = \begin{bmatrix} -12+12 &-18+18 \\ 8-8 & 12-12 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

Now, calculating |A|;

$\small |A| = -12-(-12) = -12+12 = 0$

So, $\small |A|I = 0\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

Hence we get

$\small A (adj A)=(adj A)A=|A|I$

Question:4 Verify $\small A (adj A)=(adjA)A=|A| I$.

$\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Answer:

Given matrix: $\small \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Let $\small A= \begin{bmatrix} 1 &-1 & 2\\ 3 &0 &-2 \\ 1 & 0 &3 \end{bmatrix}$

Calculating the cofactors;

$\small A_{11} = (-1)^{1+1} \begin{vmatrix} 0 &-2 \\ 0& 3 \end{vmatrix} = 0$

$\small A_{12} = (-1)^{1+2} \begin{vmatrix} 3 &-2 \\1& 3 \end{vmatrix} = -(9+2) =-11$

$\small A_{13} = (-1)^{1+3} \begin{vmatrix} 3 &0 \\ 1& 0 \end{vmatrix} = 0$

$\small A_{21} = (-1)^{2+1} \begin{vmatrix} -1 &2 \\ 0& 3 \end{vmatrix} = -(-3-0)= 3$

$\small A_{22} = (-1)^{2+2} \begin{vmatrix} 1 &2 \\ 1& 3 \end{vmatrix} = 3-2=1$

$\small A_{23} = (-1)^{2+3} \begin{vmatrix} 1 &-1 \\ 1& 0 \end{vmatrix} = -(0+1) = -1$

$\small A_{31} = (-1)^{3+1} \begin{vmatrix} -1 &2 \\ 0& -2 \end{vmatrix} = 2$

$\small A_{32} = (-1)^{3+2} \begin{vmatrix} 1 &2 \\ 3& -2 \end{vmatrix} = -(-2-6) = 8$

$\small A_{33} = (-1)^{3+3} \begin{vmatrix} 1 &-1 \\ 3& 0 \end{vmatrix} = 0+3 =3$

Hence, $\small adjA = \begin{bmatrix} 0 &3 &2 \\ -11 & 1& 8\\ 0 &-1 & 3 \end{bmatrix}$

Now,

$\small A (adj A) =\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}$

$\small =\begin{bmatrix} 0+11+0 &3-1-2 &2-8+6 \\ 0+0+0 & 9+0+2 & 6+0-6 \\ 0+0+0 &3+0-3 & 2+0+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$

also,

$\small A (adj A) =\begin{bmatrix} 0 &3 &2 \\ -11& 1& 8\\ 0& -1 &3 \end{bmatrix}\begin{bmatrix} 1 &-1 &2 \\ 3& 0 & -2\\ 1 & 0 & 3 \end{bmatrix}$

$\small =\begin{bmatrix} 0+9+2 &0+0+0 &0-6+6 \\ -11+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 &0+0+0 & 0+2+9 \end{bmatrix} = \begin{bmatrix} 11 & 0 &0 \\ 0& 11&0 \\ 0 & 0 & 11 \end{bmatrix}$

Now, calculating |A|;

$\small |A| = 1(0-0) +1(9+2) +2(0-0) = 11$

So, $\small |A|I = 11\begin{bmatrix} 1 &0&0 \\ 0& 1&0 \\ 0&0&1 \end{bmatrix} = \begin{bmatrix} 11 &0&0 \\ 0& 11&0\\ 0&0&11 \end{bmatrix}$

Hence we get,

$\small A (adj A)=(adj A)A=|A|I$.

Question:5 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$

Answer:

Given matrix : $\small \begin{bmatrix} 2 &-2 \\ 4 & 3 \end{bmatrix}$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

|A| = (6+8) = 14

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (3) = 3$

$A_{12} = (-1)^{1+2} (4) = -4$

$A_{21} = (-1)^{2+1} (-2) = 2$

$A_{22} = (-1)^{2+2} (2) = 2$

So, we have $adjA = \begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{14}\begin{bmatrix} 3 &2 \\ -4& 2 \end{bmatrix} = \begin{bmatrix} \frac{3}{14} &\frac{1}{7} \\ \\ \frac{-2}{7} & \frac{1}{7} \end{bmatrix}$

Question:6 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} -1 &5 \\ -3 &2 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

|A| = (-2+15) = 13

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (2) = 2$

$A_{12} = (-1)^{1+2} (-3) = 3$

$A_{21} = (-1)^{2+1} (5) =-5$

$A_{22} = (-1)^{2+2} (-1) = -1$

So, we have $adjA = \begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{13}\begin{bmatrix} 2 &-5 \\ 3& -1 \end{bmatrix} = \begin{bmatrix} \frac{2}{13} &\frac{-5}{13} \\ \\ \frac{3}{13} & \frac{-1}{13} \end{bmatrix}$

Question:7 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 &2 &3 \\ 0 &2 &4 \\ 0 &0 &5 \end{bmatrix}= A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(10-0)-2(0-0)+3(0-0) = 10$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (10) = 10$ $A_{12} = (-1)^{1+2} (0) = 0$

$A_{13} = (-1)^{1+3} (0) =0$ $A_{21} = (-1)^{2+1} (10) = -10$

$A_{22} = (-1)^{2+2} (5-0) = 5$ $A_{23} = (-1)^{2+1} (0-0) = 0$

$A_{31} = (-1)^{3+1} (8-6) = 2$ $A_{32} = (-1)^{3+2} (4-0) =-4$

$A_{33} = (-1)^{3+3} (2-0) = 2$

So, we have $adjA = \begin{bmatrix} 10 &-10 &2 \\ 0& 5 &-4 \\ 0& 0 &2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{10}\begin{bmatrix} 10 &-10 &2 \\ 0 & 5& -4\\ 0 &0 &2 \end{bmatrix}$

Question:8 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 &0 &0 \\ 3 &3 &0 \\ 5 &2 &-1 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(-3-0)-0(-3-0)+0(6-15) = -3$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-3-0) = -3$ $A_{12} = (-1)^{1+2} (-3-0) = 3$

$A_{13} = (-1)^{1+3} (6-15) =-9$ $A_{21} = (-1)^{2+1} (0-0) = 0$

$A_{22} = (-1)^{2+2} (-1-0) = -1$ $A_{23} = (-1)^{2+1} (2-0) = -2$

$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (0-0) =0$

$A_{33} = (-1)^{3+3} (3-0) = 3$

So, we have $adjA = \begin{bmatrix} -3 &0 &0 \\ 3& -1 &0 \\ -9& -2 &3 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$= \frac{-1}{3}\begin{bmatrix} -3 &0 &0 \\ 3 & -1& 0\\ -9 &-2 &3 \end{bmatrix}$

Question:9 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 2 &1 &3 \\ 4 &-1 &0 \\ -7 &2 &1 \end{bmatrix} =A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 2(-1-0)-1(4-0)+3(8-7) =-2-4+3 = -3$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-1-0) = -1$ $A_{12} = (-1)^{1+2} (4-0) = -4$

$A_{13} = (-1)^{1+3} (8-7) =1$ $A_{21} = (-1)^{2+1} (1-6) = 5$

$A_{22} = (-1)^{2+2} (2+21) = 23$ $A_{23} = (-1)^{2+1} (4+7) = -11$

$A_{31} = (-1)^{3+1} (0+3) = 3$ $A_{32} = (-1)^{3+2} (0-12) =12$

$A_{33} = (-1)^{3+3} (-2-4) = -6$

So, we have $adjA = \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-3} \begin{bmatrix} -1 &5 &3 \\ -4& 23 &12 \\ 1& -11 &-6 \end{bmatrix}$

Question:10 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 & -1 & 2\\ 0 & 2 &-3 \\ 3 &-2 &4 \end{bmatrix} = A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(8-6)+1(0+9)+2(0-6) =2+9-12 = -1$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (8-6) = 2$ $A_{12} = (-1)^{1+2} (0+9) = -9$

$A_{13} = (-1)^{1+3} (0-6) =-6$ $A_{21} = (-1)^{2+1} (-4+4) = 0$

$A_{22} = (-1)^{2+2} (4-6) = -2$ $A_{23} = (-1)^{2+1} (-2+3) = -1$

$A_{31} = (-1)^{3+1} (3-4) = -1$ $A_{32} = (-1)^{3+2} (-3-0) =3$

$A_{33} = (-1)^{3+3} (2-0) = 2$

So, we have $adjA = \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-1} \begin{bmatrix} 2 &0 &-1 \\ -9& -2 &3 \\ -6& -1 &2 \end{bmatrix}$

$A^{-1} = \begin{bmatrix} -2 &0 &1 \\ 9& 2 &-3 \\ 6& 1 &-2 \end{bmatrix}$

Question:11 Find the inverse of each of the matrices (if it exists).

$\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix}$

Answer:

Given the matrix : $\small \begin{bmatrix} 1 & 0&0 \\ 0 &\cos \alpha &\sin \alpha \\ 0 &\sin \alpha &-\cos \alpha \end{bmatrix} =A$

To find the inverse we have to first find adjA then as we know the relation:

$A^{-1} = \frac{1}{|A|}adjA$

So, calculating |A| :

$|A| = 1(-\cos^2 \alpha-\sin^2 \alpha)+0(0-0)+0(0-0)$

$=-(\cos^2 \alpha + \sin^2 \alpha) = -1$

Now, calculating the cofactors terms and then adjA.

$A_{11} = (-1)^{1+1} (-\cos^2 \alpha - \sin^2 \alpha) = -1$ $A_{12} = (-1)^{1+2} (0-0) = 0$

$A_{13} = (-1)^{1+3} (0-0) =0$ $A_{21} = (-1)^{2+1} (0-0) = 0$

$A_{22} = (-1)^{2+2} (-\cos \alpha-0) = -\cos \alpha$ $A_{23} = (-1)^{2+1} (\sin \alpha-0) = -\sin \alpha$

$A_{31} = (-1)^{3+1} (0-0) = 0$ $A_{32} = (-1)^{3+2} (\sin \alpha-0) =-\sin \alpha$

$A_{33} = (-1)^{3+3} (\cos \alpha - 0) = \cos \alpha$

So, we have $adjA = \begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix}$

Therefore inverse of A will be:

$A^{-1} = \frac{1}{|A|}adjA$

$A^{-1} = \frac{1}{-1}\begin{bmatrix} -1 &0 &0 \\ 0& -\cos \alpha &-\sin \alpha \\ 0& -\sin \alpha &\cos \alpha \end{bmatrix} = \begin{bmatrix}1 &0 &0 \\ 0&\cos \alpha &\sin \alpha \\ 0& \sin \alpha &-\cos \alpha \end{bmatrix}$

Question:12 Let $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$. Verify that $\small (AB)^{-1} = B^{-1}A^{-1}$.

Answer:

We have $\small A=\begin{bmatrix} 3 &7 \\ 2 & 5 \end{bmatrix}$ and $\small B=\begin{bmatrix} 6 &8 \\ 7 & 9 \end{bmatrix}$.

then calculating;

$AB = \begin{bmatrix} 3 &7 \\ 2& 5 \end{bmatrix}\begin{bmatrix} 6 &8 \\ 7& 9 \end{bmatrix}$

$=\begin{bmatrix} 18+49 &24+63 \\ 12+35 & 16+45 \end{bmatrix} = \begin{bmatrix} 67 &87 \\ 47& 61 \end{bmatrix}$

Finding the inverse of AB.

Calculating the cofactors fo AB:

$AB_{11}=(-1)^{1+1}(61) = 61$ $AB_{12}=(-1)^{1+2}(47) = -47$

$AB_{21}=(-1)^{2+1}(87) = -87$ $AB_{22}=(-1)^{2+2}(67) = 67$

Then we have adj(AB):

$adj(AB) = \begin{bmatrix} 61 &-87 \\ -47& 67 \end{bmatrix}$

and |AB| = 61(67) - (-87)(-47) = 4087-4089 = -2

Therefore we have inverse:

$(AB)^{-1}=\frac{1}{|AB|}adj(AB) = -\frac{1}{2} \begin{bmatrix} 61 &-87 \\ -47 & 67 \end{bmatrix}$

$= \begin{bmatrix} \frac{-61}{2} &\frac{87}{2} \\ \\ \frac{47}{2} & \frac{-67}{2} \end{bmatrix}$ .....................................(1)

Now, calculating inverses of A and B.

|A| = 15-14 = 1 and |B| = 54- 56 = -2

$adjA = \begin{bmatrix} 5 &-7 \\ -2 & 3 \end{bmatrix}$ and $adjB = \begin{bmatrix} 9 &-8 \\ -7 & 6 \end{bmatrix}$

therefore we have

$A^{-1} = \frac{1}{|A|}adjA= \frac{1}{1} \begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$ and $B^{-1} = \frac{1}{|B|}adjB= \frac{1}{-2} \begin{bmatrix} 9&-8 \\ -7& 6 \end{bmatrix}= \begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}$

Now calculating$B^{-1}A^{-1}$.

$B^{-1}A^{-1} =\begin{bmatrix} \frac{-9}{2} & 4 \\ \\ \frac{7}{2} & -3 \end{bmatrix}\begin{bmatrix} 5&-7 \\ -2& 3 \end{bmatrix}$

$=\begin{bmatrix} \frac{-45}{2}-8 && \frac{63}{2}+12 \\ \\ \frac{35}{2}+6 && \frac{-49}{2}-9 \end{bmatrix} = \begin{bmatrix} \frac{-61}{2} && \frac{87}{2} \\ \\ \frac{47}{2} && \frac{-67}{2} \end{bmatrix}$........................(2)

From (1) and (2) we get

$\small (AB)^{-1} = B^{-1}A^{-1}$

Hence proved.

Question:13 If $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$? , show that $A^2-5A+7I=O$. Hence find $A^{-1}$.

Answer:

Given $\small A=\begin{bmatrix} 3 &1 \\ -1 &2 \end{bmatrix}$ then we have to show the relation $A^2-5A+7I=0$

So, calculating each term;

$A^2 = \begin{bmatrix} 3& 1\\ -1& 2 \end{bmatrix}\begin{bmatrix} 3&1 \\ -1& 2 \end{bmatrix} = \begin{bmatrix} 9-1 &3+2 \\ -3-2&-1+4 \end{bmatrix} = \begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix}$

therefore $A^2-5A+7I$;

$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - 5\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix} + 7 \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix}$

$=\begin{bmatrix} 8 &5 \\ -5& 3 \end{bmatrix} - \begin{bmatrix} 15 &5 \\ -5& 10 \end{bmatrix} + \begin{bmatrix} 7 &0 \\ 0 & 7 \end{bmatrix}$

$\begin{bmatrix} 8-15+7 &&5-5+0 \\ -5+5+0 && 3-10+7 \end{bmatrix} = \begin{bmatrix} 0 &&0 \\ 0 && 0 \end{bmatrix}$

Hence $A^2-5A+7I = 0$.

$\therefore A.A -5A = -7I$

$\Rightarrow A.A(A^{-1}) - 5AA^{-1} = -7IA^{-1}$

[Post multiplying by $A^{-1}$, also $|A| \neq 0$]

$\Rightarrow A(AA^{-1}) - 5I = -7A^{-1}$

$\Rightarrow AI - 5I = -7A^{-1}$

$\Rightarrow -\frac{1}{7}(AI - 5I)= \frac{1}{7}(5I-A)$

$\therefore A^{-1} = \frac{1}{7}(5\begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}-\begin{bmatrix} 3 &1 \\ -1& 2 \end{bmatrix}) = \frac{1}{7}\begin{bmatrix} 2 &-1 \\ 1& 3 \end{bmatrix}$

Question:14 For the matrix $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ , find the numbers $\small a$ and $\small b$ such that $A^2+aA+bI=0$.

Answer:

Given $\small A=\begin{bmatrix} 3 &2 \\ 1 & 1 \end{bmatrix}$ then we have the relation $A^2+aA+bI=O$

So, calculating each term;

$A^2 = \begin{bmatrix} 3& 2\\ 1& 1 \end{bmatrix}\begin{bmatrix} 3&2 \\ 1& 1 \end{bmatrix} = \begin{bmatrix} 9+2 &6+2 \\ 3+1&2+1 \end{bmatrix} = \begin{bmatrix} 11 &8 \\ 4& 3 \end{bmatrix}$

therefore $A^2+aA+bI=O$;

$=\begin{bmatrix}11 &8 \\ 4& 3 \end{bmatrix} + a\begin{bmatrix} 3 &2 \\ 1& 1 \end{bmatrix} + b \begin{bmatrix} 1 &0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix}$

$\begin{bmatrix} 11+3a+b & 8+2a \\ 4+a & 3+a+b \end{bmatrix} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}$

So, we have equations;

$11+3a+b = 0,\ 8+2a = 0$ and $4+a = 0,and\ \ 3+a+b = 0$

We get $a = -4\ and\ b= 1$.

Question:15 For the matrix $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$ Show that $\small A^3-6A^2+5A+11I=O$ Hence, find $A^{-1}$.

Answer:

Given matrix: $\small A=\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$;

To show: $\small A^3-6A^2+5A+11I=O$

Finding each term:

$A^{2} = \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1& 1\\ 1 & 2& -3\\ 2& -1 & 3 \end{bmatrix}$

$= \begin{bmatrix} 1+1+2 &&1+2-1 &&1-3+3 \\ 1+2-6 &&1+4+3 &&1-6-9 \\ 2-1+6 &&2-2-3 && 2+3+9 \end{bmatrix}$

$= \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}$

$A^{3} = \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}$

$= \begin{bmatrix} 4+2+2 &4+4-1 &4-6+3 \\ -3+8-28 &-3+16+14 & -3-24-42 \\ 7-3+28&7-6-14 &7+9+42 \end{bmatrix}$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}$

So now we have, $\small A^3-6A^2+5A+11I$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-6\begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}+5\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+11\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$

$= \begin{bmatrix} 8 &7 &1 \\ -23 &27 & -69 \\ 32&-13 &58 \end{bmatrix}-\begin{bmatrix} 24 &&12 &&6 \\ -18 &&48 &&-84 \\ 42 &&-18 && 84 \end{bmatrix}+\begin{bmatrix} 5 &5 &5 \\ 5 &10 &-15 \\ 10 &-5 &15 \end{bmatrix}+\begin{bmatrix} 11 &0 &0 \\ 0 &11 & 0\\ 0& 0& 11 \end{bmatrix}$

$= \begin{bmatrix} 8-24+5+11 &7-12+5 &1-6+5 \\ -23+18+5&27-48+10+11 &-69+84-15 \\ 32-42+10&-13+18-5 & 58-84+15+11 \end{bmatrix}$

$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = 0$

Now finding the inverse of A;

Post-multiplying by $A^{-1}$ as, $|A| \neq 0$

$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +5AA^{-1}+11IA^{-1} = 0$

$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +5(AA^{-1})=- 11IA^{-1}$

$\Rightarrow A^{2}-6A +5I=- 11A^{-1}$

$A^{-1} = \frac{-1}{11}(A^{2}-6A+5I)$ ...................(1)

Now,

From equation (1) we get;

$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4 &&2 &&1 \\ -3 &&8 &&-14 \\ 7 &&-3 && 14 \end{bmatrix}-6\begin{bmatrix} 1 &1 &1 \\ 1 &2 &-3 \\ 2 &-1 &3 \end{bmatrix}+5\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$


$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 4-6+5 &&2-6 &&1-6 \\ -3-6 &&8-12+5 &&-14+18 \\ 7-12 &&-3+6 && 14-18+5 \end{bmatrix}$


$A^{-1} = \frac{-1}{11}( \begin{bmatrix} 3 &&-4 &&-5 \\ -9 &&1 &&4 \\ -5 &&3 && 1 \end{bmatrix}$

Question:16 If $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$ , verify that $\small A^3-6A^2+9A-4I=O$. Hence find $A^{-1}$.

Answer:

Given matrix: $\small A=\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$;

To show: $\small A^3-6A^2+9A-4I$

Finding each term:

$A^{2} = \begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$

$= \begin{bmatrix} 4+1+1 &&-2-2-1 &&2+1+2 \\ -2-2-1 &&1+4+1 &&-1-2-2 \\ 2+1+2 &&-1-2-2 && 1+1+4 \end{bmatrix}$

$= \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}$

$A^{3} =\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}$

$= \begin{bmatrix} 12+5+5 &-6-10-5 &6+5+10 \\ -10-6-5 &5+12+5 & -5-6-10 \\ 10+5+6&-5-10-6 &5+5+12 \end{bmatrix}$

$= \begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}$

So now we have, $\small A^3-6A^2+9A-4I$

$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}-6 \begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}+9\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}-4\begin{bmatrix} 1 &0 &0 \\ 0 &1 & 0\\ 0& 0& 1 \end{bmatrix}$

$=\begin{bmatrix} 22 &-21 &21 \\ -21 &22 & -21 \\ 21&-21 &22 \end{bmatrix}- \begin{bmatrix} 36 &&-30 &&30 \\ -30 &&36 &&-30 \\30 &&-30 && 36 \end{bmatrix}+\begin{bmatrix} 18 &-9 &9 \\ -9 &18 &-9 \\ 9 &-9 &18 \end{bmatrix}-\begin{bmatrix} 4 &0 &0 \\ 0 &4 & 0\\ 0& 0& 4 \end{bmatrix}$

$= \begin{bmatrix} 22-36+18-4 &-21+30-9 &21-30+9 \\ -21+30-9&22-36+18-4 &-21+30-9 \\ 21-30+9&-21+30-9 & 22-36+18-4 \end{bmatrix}$

$= \begin{bmatrix} 0 &0 &0 \\ 0&0 &0 \\ 0&0 & 0 \end{bmatrix} = O$

Now finding the inverse of A;

Post-multiplying by $A^{-1}$ as, $|A| \neq 0$

$\Rightarrow (AAA)A^{-1}-6(AA)A^{-1} +9AA^{-1}-4IA^{-1} = 0$

$\Rightarrow AA(AA^{-1})-6A(AA^{-1}) +9(AA^{-1})=4IA^{-1}$

$\Rightarrow A^{2}-6A +9I=4A^{-1}$

$A^{-1} = \frac{1}{4}(A^{2}-6A+9I)$ ...................(1)

Now,

From equation (1) we get;

$A^{-1} = \frac{1}{4}(\begin{bmatrix} 6 &&-5 &&5 \\ -5 &&6 &&-5 \\ 5 &&-5 && 6 \end{bmatrix}-6\begin{bmatrix} 2 &-1 &1 \\ -1 &2 &-1 \\ 1 &-1 &2 \end{bmatrix}+9\begin{bmatrix} 1 & 0& 0\\ 0&1 &0 \\ 0& 0&1 \end{bmatrix})$

$A^{-1} = \frac{1}{4} \begin{bmatrix} 6-12+9 &&-5+6 &&5-6 \\ -5+6 &&6-12+9 &&-5+6 \\ 5-6 &&-5+6 && 6-12+9 \end{bmatrix}$

Hence inverse of A is :

$A^{-1} = \frac{1}{4} \begin{bmatrix} 3 &&1 &&-1 \\ 1 &&3 &&1 \\ -1 &&1 && 3 \end{bmatrix}$

Question:17 Let A be a nonsingular square matrix of order $\small 3\times 3$. Then $\small |adjA|$ is equal to

(A) $\small |A|$ (B) $\small |A|^2$ (C) $\small |A|^3$ (D) $\small 3|A|$

Answer:

We know the identity $(adjA)A = |A| I$

Hence we can determine the value of $|(adjA)|$.

Taking both sides determinant value we get,

$|(adjA)A| = ||A| I|$ or $|(adjA)||A| = ||A||| I|$

or taking R.H.S.,

$||A||| I| = \begin{vmatrix} |A| & 0&0 \\ 0&|A| &0 \\ 0&0 &|A| \end{vmatrix}$

$= |A| (|A|^2) = |A|^3$

or, we have then $|(adjA)||A| = |A|^3$

Therefore $|(adjA)| = |A|^2$

Hence the correct answer is B.

Question:18 If A is an invertible matrix of order 2, then det $\left(A^{-1}\right)$ is equal to $\dfrac{1}{\det(A)}$.

(A) $\small det(A)$ (B) $\small \frac{1}{det (A)}$ (C) $\small 1$ (D) $\small 0$

Answer:

Given that the matrix is invertible hence $A^{-1}$ exists and $A^{-1} = \frac{1}{|A|}adjA$

Let us assume a matrix of the order of 2;

$A = \begin{bmatrix} a &b \\ c &d \end{bmatrix}$.

Then $|A| = ad-bc$.

$adjA = \begin{bmatrix} d &-b \\ -c & a \end{bmatrix}$ and $|adjA| = ad-bc$

Now,

$A^{-1} = \frac{1}{|A|}adjA$

Taking determinant both sides;

$|A^{-1}| = |\frac{1}{|A|}adjA| = \begin{bmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{bmatrix}$

$\therefore|A^{-1}| = \begin{vmatrix} \frac{d}{|A|} &\frac{-b}{|A|} \\ \\ \frac{-c}{|A|} & \frac{a}{|A|} \end{vmatrix} = \frac{1}{|A|^2}\begin{vmatrix} d &-b \\ -c& a \end{vmatrix} = \frac{1}{|A|^2}(ad-bc) =\frac{1}{|A|^2}.|A| = \frac{1}{|A|}$

Therefore we get;

$|A^{-1}| = \frac{1}{|A|}$

Hence the correct answer is B.


Also read,

Topics Covered in Chapter 4, Determinants: Exercise 4.4

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.4.

1. Adjoint of a Matrix: The adjoint of a square matrix is the transpose of the cofactor matrix.

If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right], \quad \operatorname{then} \operatorname{adj}(A)=\left[\begin{array}{cc}d & -b \\ -c & a\end{array}\right]$

2. Inverse of a Matrix using Determinants: The inverse of a square matrix $A$, when it exists (i.e., when $\operatorname{det}(A) \neq 0$ ), is given by:

$A^{-1}=\frac{1}{\operatorname{det}(A)} \cdot \operatorname{adj}(A)$

3. Verification and Application: Once the inverse is found, students can verify the result by checking:

$A \cdot A^{-1}=A^{-1} \cdot A=I$

This confirms that the inverse is correct.

Also, read,

Frequently Asked Questions (FAQs)

Q: Does singular matrices are invertible ?
A:

No, singular matrices are not invertible.

Q: Does non-singular matrices are invertible ?
A:

Yes, non-singular matrices are invertible.

Q: what is an invertible matrix ?
A:

If an inverse of a square matrix exists then it is called an invertible matrix.

Q: If |A| = 5 and order of A is 2 then |3A| = ?​
A:

|3A| = 3^2|A| = 45

Q: If A is a symmetric matrix then the transpose of A is?
A:

If A is a symmetric matrix then the transpose of A is A.

Q: If A is a skew-symmetric matrix then the transpose of A is?
A:

If A is a skew-symmetric matrix then the transpose of A is -A.

Q: If A is a matrix and A' is the transpose of matrix A then what is |A|?
A:

If A is a matrix and A' is the transpose of matrix A then |A| = |A'|.

Q: Does square diagonal marix is a symmetric matrix ?
A:

Yes, every square diagonal matrix is a symmetric matrix.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 31 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 31 Oct'25 (Online)

Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 21 Oct'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.

Hope this information is useful to you.

Hello,

Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.

Hope this information is useful to you.

Hello Pruthvi,

Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.

The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.

For more details about the KCET Exam preparation, CLICK HERE.

I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.

Thank you, and I wish you all the best in your bright future.

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.