Pearson | PTE
Trusted by 3,500+ universities and colleges globally | Accepted for migration visa applications to AUS, CAN, New Zealand , and the UK
NCERT Solutions for miscellaneous exercise chapter 4 class 12 Determinants are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. As the name suggests miscellaneous exercise consists of mixed questions from all other exercises of the chapter. In NCERT solutions for Class 12 Maths chapter 4 miscellaneous exercise, you will get questions like solving determinants using cofactor expansion, solving determinants using properties, solving system of linear equation, checking the consistency of the system of linear equations, etc.
The CBSE Class 12 English paper analysis 2025 will be available shortly. Updates on CBSE Class 12 English exam difficulty level, types of questions, student reactions, and expert opinions will be updated soon.
In this Class 12 Maths chapter 4 miscellaneous solutions, you will get some difficult questions as compared to previous exercises. So, If you are not able to solve these questions at first by yourself, you don't need to be a worry. Over 95% of the questions in the board exams are not asked from Class 12 Maths chapter 4 miscellaneous exercise. You can Check Class 12 Maths chapter 4 miscellaneous exercise solutions in this article. Miscellaneous exercise class 12 chapter 4 are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise enumerated in NCERT Book together using the link provided below.
Also, see
Trusted by 3,500+ universities and colleges globally | Accepted for migration visa applications to AUS, CAN, New Zealand , and the UK
Answer:
Calculating the determinant value of $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$;
$= x\begin{bmatrix} -x &1 \\ 1& x \end{bmatrix}-\sin \Theta\begin{bmatrix} -\sin \Theta &1 \\ \cos \Theta& x \end{bmatrix} + \cos \Theta \begin{bmatrix} -\sin \Theta &-x \\ \cos \Theta& 1 \end{bmatrix}$
$= x(-x^2-1)-\sin \Theta (-x\sin \Theta-\cos \Theta)+\cos\Theta(-\sin \Theta+x\cos\Theta)$
$= -x^3-x+x\sin^2 \Theta+ \sin \Theta\cos \Theta-\cos\Theta\sin \Theta+x\cos^2\Theta$
$= -x^3-x+x(\sin^2 \Theta+\cos^2\Theta)$
$= -x^3-x+x = -x^3$
Clearly, the determinant is independent of $\Theta$.
Answer:
We have the
$L.H.S. = \begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}$
Multiplying rows with a, b, and c respectively.
$R_{1} \rightarrow aR_{1}, R_{2} \rightarrow bR_{2},\ and\ R_{3} \rightarrow cR_{3}$
we get;
$= \frac{1}{abc} \begin{vmatrix} a^2 &a^3 &abc \\ b^2& b^3 &abc \\ c^2& c^3 & abc \end{vmatrix}$
$= \frac{1}{abc}.abc \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix}$ $[after\ taking\ out\ abc\ from\ column\ 3].$
$= \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix} = \begin{vmatrix} 1&a^2 & a^3\\ 1& b^2 &b^3 \\ 1& c^2 & c^3 \end{vmatrix}$ $[Applying\ C_{1}\leftrightarrow C_{3}\ and\ C_{2} \leftrightarrow C_{3}]$
= R.H.S.
Hence proved. L.H.S. =R.H.S.
Answer:
Given determinant $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$;
$= \cos \alpha \cos \beta \begin{vmatrix} \cos \beta &0 \\ \sin \alpha \sin \beta & \cos \alpha \end{vmatrix} - \cos \alpha \sin \beta \begin{vmatrix} -\sin \beta & 0 \\ \sin \alpha \cos \beta & \cos \alpha \end{vmatrix} -\sin \alpha \begin{vmatrix} -\sin \beta &\cos \beta \\ \sin \alpha \cos \beta& \sin \alpha \sin \beta \end{vmatrix}$$= \cos \alpha \cos \beta (\cos \beta \cos \alpha -0 )- \cos \alpha \sin \beta (-\cos \alpha\sin \beta- 0) -\sin \alpha (-\sin \alpha\sin^2\beta - \sin \alpha \cos^2 \beta)$
$= \cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta +\sin^2 \alpha \sin^2\beta + \sin^2 \alpha \cos^2 \beta$
$= \cos^2 \alpha(\cos^2 \beta+\sin^2 \beta) +\sin^2 \alpha(\sin^2\beta+\cos^2 \beta)$
$= \cos^2 \alpha(1) +\sin^2 \alpha(1) = 1$.
Question:4 If $a,b$ and $c$ are real numbers, and
$\Delta =\begin{vmatrix} b+c & c+a &a+b \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}=0$
Show that either $a+b+c=0$ or $a=b=c$
Answer:
We have given $\Delta =\begin{vmatrix} b+c & c+a &a+b \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}=0$
Applying the row transformations; $R_{1} \rightarrow R_{1} +R_{2} +R_{3}$ we have;
$\Delta =\begin{vmatrix} 2(a+b+c) & 2(a+b+c) &2(a+b+c) \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}$
Taking out common factor 2(a+b+c) from the first row;
$\Delta =2(a+b+c)\begin{vmatrix} 1 & 1 &1 \\ c+a &a+b &b+c \\ a+b & b+c & c+a \end{vmatrix}$
Now, applying the column transformations; $C_{1}\rightarrow C_{1} - C_{2}\ and\ C_{2} \rightarrow C_{2}- C_{3}$
we have;
$=2(a+b+c)\begin{vmatrix} 0 & 0 &1 \\ c-b &a-c &b+c \\ a-c & b-a & c+a \end{vmatrix}$
$=2(a+b+c)[(c-b)(b-a)-(a-c)^2]$
$=2(a+b+c)[ab+bc+ca-a^2-b^2-c^2]$
and given that the determinant is equal to zero. i.e., $\triangle = 0$;
$(a+b+c)[ab+bc+ca-a^2-b^2-c^2] = 0$
So, either $(a+b+c) = 0$ or $[ab+bc+ca-a^2-b^2-c^2] = 0$.
we can write $[ab+bc+ca-a^2-b^2-c^2] = 0$ as;
$\Rightarrow -2ab-2bc-2ca+2a^2+2b^2+2c^2 =0$
$\Rightarrow (a-b)^2+(b-c)^2+(c-a)^2 =0$
$\because (a-b)^2,(b-c)^2,\ and\ (c-a)^2$ are non-negative.
Hence $(a-b)^2= (b-c)^2=(c-a)^2 = 0$.
we get then $a=b=c$
Therefore, if given $\triangle$ = 0 then either $(a+b+c) = 0$ or $a=b=c$.
Question:5 Solve the equation
$\begin{vmatrix} x+a & x &x \\ x &x+a &x\\ x & x & x+a \end{vmatrix}=0; a\neq 0$
Answer:
Given determinant $\begin{vmatrix} x+a & x &x \\ x &x+a &x\\ x & x & x+a \end{vmatrix}=0; a\neq 0$
Applying the row transformation; $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ we have;
$\begin{vmatrix} 3x+a & 3x+a &3x+a \\ x &x+a &x\\ x & x & x+a \end{vmatrix} =0$
Taking common factor (3x+a) out from first row.
$(3x+a)\begin{vmatrix} 1 & 1 &1 \\ x &x+a &x\\ x & x & x+a \end{vmatrix} =0$
Now applying the column transformations; $C_{1} \rightarrow C_{1}-C_{2}$ and $C_{2} \rightarrow C_{2}-C_{3}$.
we get;
$(3x+a)\begin{vmatrix} 0 & 0 &1 \\ -a &a &x\\ 0 & -a & x+a \end{vmatrix} =0$
$=(3x+a)(a^2)=0$ as $a^2 \neq 0$,
or $3x+a=0$ or $x= -\frac{a}{3}$
Answer:
Given matrix $\begin{vmatrix} a^2 &bc &ac+a^2 \\ a^2+ab & b^2 & ac\\ ab &b^2+bc &c^2 \end{vmatrix}$
Taking common factors a,b and c from the column $C_{1}, C_{2}, and\ C_{3}$ respectively.
we have;
$\triangle = abc\begin{vmatrix} a &c &a+c \\ a+b & b & a\\ b &b+c &c \end{vmatrix}$
Applying $R_{2} \rightarrow R_{2}-R_{1}\ and\ R_{3} \rightarrow R_{3} - R_{1}$, we have;
$\triangle = abc\begin{vmatrix} a &c &a+c \\ b & b-c &-c\\ b-a &b &-a \end{vmatrix}$
Then applying $R_{2} \rightarrow R_{2}+R_{1}$ , we get;
$\triangle = abc\begin{vmatrix} a &c &a+c \\ a+b & b &a\\ b-a &b &-a \end{vmatrix}$
Applying $R_{3} \rightarrow R_{3}+R_{2}$, we have;
$\triangle = abc\begin{vmatrix} a &c &a+c \\ a+b & b &a\\ 2b &2b &0 \end{vmatrix} = 2ab^2c\begin{vmatrix} a &c &a+c \\ a+b & b &a\\ 1 &1 &0 \end{vmatrix}$
Now, applying column transformation; $C_{2} \rightarrow C_{2 }-C_{1}$, we have
$\triangle = 2ab^2c\begin{vmatrix} a &c-a &a+c \\ a+b & -a &a\\ 1 &0 &0 \end{vmatrix}$
So we can now expand the remaining determinant along $R_{3}$ we have;
$\triangle = 2ab^2c\left [ a(c-a)+a(a+c) \right ]$
$= 2ab^2c\left [ ac-a^2+a^2+ac) \right ] = 2ab^2c\left [ 2ac \right ]$
$= 4a^2b^2c^2$
Hence proved.
Answer:
We know from the identity that;
$(AB)^{-1} = B^{-1}A^{-1}$.
Then we can find easily,
Given $A^-^1=\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}$ and $B=\begin{bmatrix} 1 &2 &-2 \\ -1&3 &0 \\ 0 &-2 &1 \end{bmatrix}$
Then we have to basically find the $B^{-1}$ matrix.
So, Given matrix $B=\begin{bmatrix} 1 &2 &-2 \\ -1&3 &0 \\ 0 &-2 &1 \end{bmatrix}$
$|B| = 1(3-0) -2(-1-0)-2(2-0) = 3+2-4 = 1 \neq 0$
Hence its inverse $B^{-1}$ exists;
Now, as we know that
$B^{-1} = \frac{1}{|B|} adjB$
So, calculating cofactors of B,
$B_{11} = (-1)^{1+1}(3-0) = 3$ $B_{12} = (-1)^{1+2}(-1-0) = 1$
$B_{13} = (-1)^{1+3}(2-0) = 2$ $B_{21} = (-1)^{2+1}(2-4) = 2$
$B_{22} = (-1)^{2+2}(1-0) = 1$ $B_{23} = (-1)^{2+3}(-2-0) = 2$
$B_{31} = (-1)^{3+1}(0+6) = 6$ $B_{32} = (-1)^{3+2}(0-2) = 2$
$B_{33} = (-1)^{3+3}(3+2) = 5$
$adjB = \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$
$B^{-1} = \frac{1}{|B|} adjB = \frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$
Now, We have both $A^{-1}$ as well as $B^{-1}$ ;
Putting in the relation we know; $(AB)^{-1} = B^{-1}A^{-1}$
$(AB)^{-1}=\frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}$
$= \begin{bmatrix} 9-30+30 &-3+12-12 &3-10+12 \\ 3-15+10&-1+6-4 &1-5+4 \\ 6-30+25 &-2+12-10 &2-10+10 \end{bmatrix}$
$= \begin{bmatrix} 9 &-3 &5 \\ -2&1 &0 \\ 1 &0 &2\end{bmatrix}$
Question:8(i) Let $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that,
$\dpi{100} [adj A]^-^1 = adj (A^-^1)$
Answer:
Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;
So, let us assume that $A^{-1} = B$ matrix and $adjA = C$ then;
$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$
Hence its inverse exists;
$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;
so, we now calculate the value of $adjA$
Cofactors of A;
$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$
$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$
$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$
$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$
$A_{33}= (-1)^{3+3}(3-4) = -1$
$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
Finding the inverse of C;
$|C| = 14(-4-1)+9(9+1)-1(-9+4) = -70+90+5 = 25 \neq 0$
Hence its inverse exists;
$C^{-1} = \frac{1}{|C|}adj C$
Now, finding the $adjC$;
$C_{11}= (-1)^{1+1}(-4-1) = -5$ $C_{12}= (-1)^{1+2}(9+1) = -10$
$C_{13}= (-1)^{1+3}(-9+4) = -5$ $C_{21}= (-1)^{2+1}(9+1) = -10$
$C_{22}= (-1)^{2+2}(-14-1) = -15$ $C_{23}= (-1)^{2+3}(14-9) = -5$
$C_{31}= (-1)^{3+1}(-9+4) = -5$ $C_{32}= (-1)^{3+2}(14-9) = -5$
$C_{33}= (-1)^{3+3}(56-81) = -25$
$adjC = \begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix}$
$C^{-1} = \frac{1}{|C|}adjC = \frac{1}{25}\begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
or $L.H.S. = C^{-1} = [adjA]^{-1} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
Now, finding the R.H.S.
$adj (A^{-1}) = adj B$
$A^{-1} =B= \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5}&& \frac{-4}{5}&& \frac{-1}{5}\\ \\ \frac{1}{5}&& \frac{-1}{5} &&\frac{1}{5}\end{bmatrix}$
Cofactors of B;
$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$
$B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) =- \frac{2}{5}$
$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$
$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$
$B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = -1$
$R.H.S. = adjB = adj(A^{-1}) =\begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
Hence L.H.S. = R.H.S. proved.
Question:8(ii) Let $A=\begin{bmatrix} 1 &2 &1 \\ 2 & 3 &1 \\ 1 & 1 & 5 \end{bmatrix}$, Verify that
Answer:
Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;
So, let us assume that $A^{-1} = B$
$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$
Hence its inverse exists;
$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;
so, we now calculate the value of $adjA$
Cofactors of A;
$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$
$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$
$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$
$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$
$A_{33}= (-1)^{3+3}(3-4) = -1$
$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$
Finding the inverse of B ;
$|B| = \frac{-14}{5}(\frac{-4}{25}-\frac{1}{25})-\frac{9}{5}(\frac{9}{25}+\frac{1}{25})+\frac{1}{5}(\frac{-9}{25}+\frac{4}{25})$
$= \frac{70}{125}-\frac{90}{125}-\frac{5}{125} = \frac{-25}{125} = \frac{-1}{5} \neq 0$
Hence its inverse exists;
$B^{-1} = \frac{1}{|B|}adj B$
Now, finding the $adjB$;
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$
$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$ $B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) = \frac{-2}{5}$
$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$ $B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$
$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$ $B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = \frac{-25}{25} =-1$
$adjB = \begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}$
$B^{-1} = \frac{1}{|B|}adjB = \frac{-5}{1}\begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}= \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$
$L.H.S. = B^{-1} = (A^{-1})^{-1} = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$
$R.H.S. = A = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1& 1 &5 \end{bmatrix}$
Hence proved L.H.S. =R.H.S..
Question:9 Evaluate $\begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Answer:
We have determinant $\triangle = \begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Applying row transformations; $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ , we have then;
$\triangle = \begin{vmatrix} 2(x+y) & 2(x+y) &2(x+y) \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Taking out the common factor 2(x+y) from the row first.
$= 2(x+y)\begin{vmatrix} 1 & 1 &1 \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Now, applying the column transformation; $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{1}$ we have ;
$= 2(x+y)\begin{vmatrix} 0 & 0 &1 \\ -x & y &x \\ y & x-y & y \end{vmatrix}$
Expanding the remaining determinant;
$= 2(x+y)(-x(x-y)-y^2) = 2(x+y)[-x^2+xy-y^2]$
$= -2(x+y)[x^2-xy+y^2] = -2(x^3+y^3)$.
Question:10 Evaluate $\begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$
Answer:
We have determinant $\triangle = \begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$
Applying row transformations; $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$ then we have then;
$\triangle = \begin{vmatrix} 0 & -y &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$
Taking out the common factor -y from the row first.
$\triangle = -y\begin{vmatrix} 0 & 1 &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$
Expanding the remaining determinant;
$-y[1(-x-o)] = xy$
Question:11 Using properties of determinants, prove that
Answer:
Given determinant $\triangle = \begin{vmatrix} \alpha & \alpha ^2 &\beta +\gamma \\ \beta & \beta ^2 &\gamma +\alpha \\ \gamma &\gamma ^2 &\alpha +\beta \end{vmatrix}$
Applying Row transformations; and $R_{3} \rightarrow R_{3}-R_{1}$, then we have;
$\triangle = \begin{vmatrix} \alpha & \alpha ^2 &\beta +\gamma \\ \beta -\alpha & \beta ^2 - \alpha^2 &\alpha - \beta \\ \gamma-\alpha &\gamma ^2-\alpha^2 &\alpha -\gamma \end{vmatrix}$
$= (\beta-\alpha)(\gamma-\alpha)\begin{vmatrix} \alpha & \alpha ^2 &\beta +\gamma \\ 1 & \beta + \alpha &-1 \\ 0 &\gamma-\beta &0\end{vmatrix}$
Expanding the remaining determinant;
$= (\beta-\alpha)(\gamma-\alpha)[-(\gamma-\beta)(-\alpha-\beta-\gamma)]$
$= (\beta-\alpha)(\gamma-\alpha)(\gamma-\beta)(\alpha+\beta+\gamma)$
$=(\alpha-\beta)(\beta-\gamma)(\gamma-\alpha)(\alpha+\beta+\gamma)$
hence the given result is proved.
Question:12 Using properties of determinants, prove that
$\begin{vmatrix} x & x^2&1+px^3 \\ y& y^2& 1+py^3\\ z&z^2 & 1+pz^3 \end{vmatrix}=(1+pxyz)(x-y)(y-z)(z-x),$ where p is any scalar.
Answer:
Given the determinant $\triangle = \begin{vmatrix} x & x^2&1+px^3 \\ y& y^2& 1+py^3\\ z&z^2 & 1+pz^3 \end{vmatrix}$
Applying the row transformations; $R_{2} \rightarrow R_{2} - R_{1}$ and $R_{3} \rightarrow R_{3} - R_{1}$ then we have;
$\triangle = \begin{vmatrix} x & x^2&1+px^3 \\ y-x& y^2-x^2& p(y^3-x^3)\\ z-x&z^2-x^2 & p(z^3-x^3) \end{vmatrix}$
Applying row transformation $R_{3} \rightarrow R_{3} - R_{2}$ we have then;
$\triangle =(y-x )(z-x)(z-y)\begin{vmatrix} x & x^2&1+px^3 \\ 1& y+x& p(y^2+x^2+xy)\\ 0&1 & p(x+y+z) \end{vmatrix}$
Now we can expand the remaining determinant to get the result;
$\triangle =(y-x )(z-x)(z-y)[(-1)(p)(xy^2+x^3+x^2y)+1+px^3+p(x+y+z)(xy)]$
$=(x-y)(y-z)(z-x)[-pxy^2-px^3-px^2y+1+px^3+px^2y+pxy^2+pxyz]$
$=(x-y)(y-z)(z-x)(1+pxyz)$
hence the given result is proved.
Question:13 Using properties of determinants, prove that
Answer:
Given determinant $\triangle = \begin{vmatrix} 3a &-a+b &-a+c \\ -b+c &3b &-b+c \\ -c+a &-c+b &3c \end{vmatrix}$
Applying the column transformation, $C_{1} \rightarrow C_{1} +C_{2}+C_{3}$ we have then;
$\triangle = \begin{vmatrix} a+b+c &-a+b &-a+c \\ a+b+c &3b &-b+c \\ a+b+c &-c+b &3c \end{vmatrix}$
Taking common factor (a+b+c) out from the column first;
$=(a+b+c) \begin{vmatrix} 1 &-a+b &-a+c \\ 1 &3b &-b+c \\1 &-c+b &3c \end{vmatrix}$
Applying $R_{2} \rightarrow R_{2}-R_{1}$ and $R_{3} \rightarrow R_{3}-R_{1}$, we have then;
$\triangle=(a+b+c) \begin{vmatrix} 1 &-a+b &-a+c \\ 0 &2b+a &a-b \\0 &a-c &2c+a \end{vmatrix}$
Now we can expand the remaining determinant along $C_{1}$ we have;
$\triangle=(a+b+c) [(2b+a)(2c+a)-(a-b)(a-c)]$
$=(a+b+c) [4bc+2ab+2ac+a^2-a^2+ac+ba-bc]$
$=(a+b+c)(3ab+3bc+3ac)$
$=3(a+b+c)(ab+bc+ac)$
Hence proved.
Question:14 Using properties of determinants, prove that
$\begin{vmatrix} 1 &1+p &1+p+q \\ 2&3+2p &4+3p+2q \\ 3&6+3p & 10+6p+3q \end{vmatrix}=1$
Answer:
Given determinant $\triangle = \begin{vmatrix} 1 &1+p &1+p+q \\ 2&3+2p &4+3p+2q \\ 3&6+3p & 10+6p+3q \end{vmatrix}$
Applying the row transformation; $R_{2} \rightarrow R_{2}-2R_{1}$ and $R_{3} \rightarrow R_{3}-3R_{1}$ we have then;
$\triangle = \begin{vmatrix} 1 &1+p &1+p+q \\ 0&1 &2+p \\ 0&3 & 7+3p \end{vmatrix}$
Now, applying another row transformation $R_{3}\rightarrow R_{3}-3R_{2}$ we have;
$\triangle = \begin{vmatrix} 1 &1+p &1+p+q \\ 0&1 &2+p \\ 0&0 & 1 \end{vmatrix}$
We can expand the remaining determinant along $C_{1}$, we have;
$\triangle = 1\begin{vmatrix} 1 & 2+p\\ 0 &1 \end{vmatrix} = 1(1-0) =1$
Hence the result is proved.
Question:15 Using properties of determinants, prove that
Answer:
Given determinant $\triangle = \begin{vmatrix} \sin \alpha &\cos \alpha &\cos (\alpha +\delta ) \\ \sin \beta & \cos \beta & \cos (\beta +\delta )\\ \sin \gamma &\cos \gamma & \cos (\gamma +\delta ) \end{vmatrix}$
Multiplying the first column by $\sin \delta$ and the second column by $\cos \delta$, and expanding the third column, we get
$\triangle =\frac{1}{\sin \delta \cos \delta} \begin{vmatrix} \sin \alpha \sin \delta &\cos \alpha\cos \delta &\cos \alpha \cos \delta -\sin \alpha \sin \delta \\ \sin \beta\sin \delta & \cos \beta\cos \delta & \cos \beta \cos \delta - \sin \beta\sin \delta \\ \sin \gamma\sin \delta &\cos \gamma\cos \delta & \cos \gamma \cos\delta- \sin \gamma\sin \delta \end{vmatrix}$
Applying column transformation, $C_{1} \rightarrow C_{1}+C_{3}$ we have then;
$\triangle =\frac{1}{\sin \delta \cos \delta} \begin{vmatrix} \cos \alpha \cos \delta &\cos \alpha\cos \delta &\cos \alpha \cos \delta -\sin \alpha \sin \delta \\ \cos \beta\cos \delta & \cos \beta\cos \delta & \cos \beta \cos \delta - \sin \beta\sin \delta \\ \cos \gamma\cos \delta &\cos \gamma\cos \delta & \cos \gamma \cos\delta- \sin \gamma\sin \delta \end{vmatrix}$
Here we can see that two columns $C_{1}\ and\ C_{2}$ are identical.
The determinant value is equal to zero. $\therefore \triangle = 0$
Hence proved.
Question:16 Solve the system of equations
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
Answer:
We have a system of equations;
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
So, we will convert the given system of equations in a simple form to solve the problem by the matrix method;
Let us take, $\frac{1}{x} = a$, $\frac{1}{y} = b\ and\ \frac{1}{z} = c$
Then we have the equations;
$2a +3b+10c = 4$
$4a-6b+5c =1$
$6a+9b-20c = 2$
We can write it in the matrix form as $AX =B$ , where
$A= \begin{bmatrix} 2 &3 &10 \\ 4& -6 & 5\\ 6 & 9 & -20 \end{bmatrix} , X = \begin{bmatrix} a\\b \\c \end{bmatrix}\ and\ B = \begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}.$
Now, Finding the determinant value of A;
$|A| = 2(120-45)-3(-80-30)+10(36+36)$
$=150+330+720$
$=1200 \neq 0$
Hence we can say that A is non-singular $\therefore$ its invers exists;
Finding cofactors of A;
$A_{11} = 75$ , $A_{12} = 110$, $A_{13} = 72$
$A_{21} = 150$, $A_{22} = -100$, $A_{23} = 0$
$A_{31} =75$, $A_{31} =30$, $A_{33} =-24$
$\therefore$ as we know $A^{-1} = \frac{1}{|A|}adjA$
$= \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}$
Now we will find the solutions by relation $X = A^{-1}B$.
$\Rightarrow \begin{bmatrix} a\\b \\ c \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}\begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}$
$= \frac{1}{1200}\begin{bmatrix} 300+150+150\\440-100+60 \\ 288+0-48 \end{bmatrix}$
$= \frac{1}{1200}\begin{bmatrix} 600\\400\\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \\ \frac{1}{3} \\ \\ \frac{1}{5} \end{bmatrix}$
Therefore we have the solutions $a = \frac{1}{2},\ b= \frac{1}{3},\ and\ c = \frac{1}{5}.$
Or in terms of x, y, and z;
$x =2,\ y =3,\ and\ z = 5$
Question:17 Choose the correct answer.
If $a,b,c,$ are in A.P, then the determinant
$\dpi{100} \begin{vmatrix} x+2 &x+3 &x+2a \\ x+3 & x+4 & x+2b\\ x+4 & x+5 &x+2c \end{vmatrix}$is
(A) $0$ (B) $1$ (C) $x$ (D) $2x$
Answer:
Given determinant $\triangle = \begin{vmatrix} x+2 &x+3 &x+2a \\ x+3 & x+4 & x+2b\\ x+4 & x+5 &x+2c \end{vmatrix}$and given that a, b, c are in A.P.
That means , 2b =a+c
$\triangle = \begin{vmatrix} x+2 &x+3 &x+2a \\ x+3 & x+4 & x+(a+c)\\ x+4 & x+5 &x+2c \end{vmatrix}$
Applying the row transformations, $R_{1} \rightarrow R_{1} -R_{2}$ and then $R_{3} \rightarrow R_{3} -R_{2}$ we have;
$\triangle = \begin{vmatrix} -1 &-1 &a-c \\ x+3 & x+4 & x+(a+c)\\ 1 & 1 &c-a \end{vmatrix}$
Now, applying another row transformation, $R_{1} \rightarrow R_{1} + R_{3}$, we have
$\triangle = \begin{vmatrix} 0 &0 &0 \\ x+3 & x+4 & x+(a+c)\\ 1 & 1 &c-a \end{vmatrix}$
Clearly we have the determinant value equal to zero;
Hence the option (A) is correct.
Question:18 Choose the correct answer.
If x, y, z are nonzero real numbers, then the inverse of matrix $A=\begin{bmatrix} x &0 &0 \\ 0 &y &0 \\ 0 & 0 & z \end{bmatrix}$ is
Answer:
Given Matrix $A=\begin{bmatrix} x &0 &0 \\ 0 &y &0 \\ 0 & 0 & z \end{bmatrix}$,
$|A| = x(yz-0) =xyz$
As we know,
$A^{-1} = \frac{1}{|A|}adjA$
So, we will find the $adjA$,
Determining its cofactor first,
$A_{11} = yz$ $A_{12} = 0$ $A_{13} = 0$
$A_{21} = 0$ $A_{22} = xz$ $A_{23} = 0$
$A_{31} = 0$ $A_{32} = 0$ $A_{33} = xy$
Hence $A^{-1} = \frac{1}{|A|}adjA = \frac{1}{xyz}\begin{bmatrix} yz &0 &0 \\ 0& xz & 0\\ 0& 0& xy \end{bmatrix}$
$A^{-1} = \begin{bmatrix} \frac{1}{x} &&0 &&0 \\ 0&& \frac{1}{y} && 0\\ 0&& 0&& \frac{1}{z} \end{bmatrix}$
Therefore the correct answer is (A)
Question:19 Choose the correct answer.
Let $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix},$ where $0\leq \theta \leq 2\pi$. Then
(A)$Det(A)=0$ nbsp; (B) $Det(A)\in (2,\infty)$
(C) $Det(A)\in (2,4)$ (D)$Det(A)\in [2,4]$
Answer:
Given determinant $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix}$
$|A| = 1(1+\sin^2 \Theta) -\sin \Theta(-\sin \Theta+\sin \Theta)+1(\sin^2 \Theta +1)$
$= 1+ \sin ^2 \Theta + \sin ^2 \Theta +1$
$= 2+2\sin ^2 \Theta = 2(1+\sin^2 \Theta)$
Now, given the range of $\Theta$ from $0\leq \Theta \leq 2\pi$
$\Rightarrow 0 \leq \sin \Theta \leq 1$
$\Rightarrow 0 \leq \sin^2 \Theta \leq 1$
$\Rightarrow 1 \leq 1+\sin^2 \Theta \leq 2$
$\Rightarrow 2 \leq 2(1+\sin^2 \Theta) \leq 4$
Therefore the $|A|\ \epsilon\ [2,4]$.
Hence the correct answer is D.
The first 10 questions in the NCERT book Class 12 Maths chapter 4 miscellaneous exercise are related to solving the determinants and the next five questions are related to solving determinants using properties of determinants. There are three multiple-choice types of questions in this exercise. Before this exercise, there are five solved examples given in the NCERT textbook which you can solve to get conceptual clarity. Miscellaneous exercises questions are considered to be very important for board exams and for competitive exams. If you are preparing for engineering competitive exams, you must try to solve questions from this exercise. For good score in the CBSE board exam following NCERT syllabus will be helpful.
Also Read| Determinants Class 12 Chapter 4 Notes
Happy learning!!!
The value of the determinant is zero if any two rows of a determinant are identical.
The value of the determinant is zero If any two rows of a determinant are proportional.
If first row of matrix A is multiplied by 3 then the new value of |A| = 3x3 = 9.
No, singular matrices are non-invertible.
If the transpose of matrix A and matrix A are equal then such matrix is called symmetric matrix.
The matrix has all the non-diagonal elements zero is called a diagonal matrix.
Yes, all the identity matrices are diagonal matrices.
No, CBSE doesn't provide NCERT solutions for miscellaneous exercises.
Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.
Hello there! Thanks for reaching out to us at Careers360.
Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.
Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!
Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.
If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.
Let me know if you need any other tips for your math prep. Good luck with your studies!
It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.
Possible steps:
Re-evaluate Your Study Strategies:
Consider Professional Help:
Explore Alternative Options:
Focus on NEET 2025 Preparation:
Seek Support:
Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.
I hope this information helps you.
Hi,
Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.
Scholarship Details:
Type A: For candidates scoring 60% or above in the exam.
Type B: For candidates scoring between 50% and 60%.
Type C: For candidates scoring between 40% and 50%.
Cash Scholarship:
Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).
Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.
Hope you find this useful!
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE