NCERT Solutions for Miscellaneous Exercise Chapter 4 Class 12 - Determinants

NCERT Solutions for Miscellaneous Exercise Chapter 4 Class 12 - Determinants

Komal MiglaniUpdated on 24 Apr 2025, 01:22 PM IST

Imagine you are asked to solve different types of problems, like finding the area of a triangle using a determinant, checking if a system of equations has a solution, or finding the inverse of a matrix. How do you know which method to use? The Miscellaneous Exercise of NCERT Class 12 Maths Chapter 4 – Determinants brings together all the important topics from the chapter. It includes questions on: finding the value of determinants, using properties of determinants to simplify problems, calculating the area of a triangle using coordinates, solving systems of linear equations, finding the adjoint and inverse of a matrix. Miscellaneous Exercise of NCERT Class 12 Maths Chapter 4 helps you revise everything you have learned and tests your overall understanding. It is great for practice before exams. This article on the NCERT Solutions for miscellaneous exercise Class 12 Maths Chapter 4 - Determinant, offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 4 Miscellaneous Exercise Solutions: Download PDF

Download PDF

Determinants Miscellaneous Exercise

Question:1 Prove that the determinant $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$ is independent of $\theta$.

Answer:

Calculating the determinant value of $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$;

$= x\begin{bmatrix} -x &1 \\ 1& x \end{bmatrix}-\sin \Theta\begin{bmatrix} -\sin \Theta &1 \\ \cos \Theta& x \end{bmatrix} + \cos \Theta \begin{bmatrix} -\sin \Theta &-x \\ \cos \Theta& 1 \end{bmatrix}$

$= x(-x^2-1)-\sin \Theta (-x\sin \Theta-\cos \Theta)+\cos\Theta(-\sin \Theta+x\cos\Theta)$

$= -x^3-x+x\sin^2 \Theta+ \sin \Theta\cos \Theta-\cos\Theta\sin \Theta+x\cos^2\Theta$

$= -x^3-x+x(\sin^2 \Theta+\cos^2\Theta)$

$= -x^3-x+x = -x^3$

Clearly, the determinant is independent of $\Theta$.

Question:2 Without expanding the determinant, prove that
$\begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}= \begin{vmatrix} 1 &a^2 &a^3 \\ 1 &b^2 &b^3 \\ 1 & c^2 &c^3 \end{vmatrix}$

Answer:

We have the

$L.H.S. = \begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}$

Multiplying rows with a, b, and c respectively.

$R_{1} \rightarrow aR_{1}, R_{2} \rightarrow bR_{2},\ and\ R_{3} \rightarrow cR_{3}$

we get;

$= \frac{1}{abc} \begin{vmatrix} a^2 &a^3 &abc \\ b^2& b^3 &abc \\ c^2& c^3 & abc \end{vmatrix}$

$= \frac{1}{abc}.abc \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix}$ $[after\ taking\ out\ abc\ from\ column\ 3].$

$= \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix} = \begin{vmatrix} 1&a^2 & a^3\\ 1& b^2 &b^3 \\ 1& c^2 & c^3 \end{vmatrix}$ $[Applying\ C_{1}\leftrightarrow C_{3}\ and\ C_{2} \leftrightarrow C_{3}]$

= R.H.S.

Hence proved. L.H.S. =R.H.S.

Question:3 Evaluate $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$.

Answer:

Given determinant $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$;

$= \cos \alpha \cos \beta \begin{vmatrix} \cos \beta &0 \\ \sin \alpha \sin \beta & \cos \alpha \end{vmatrix} - \cos \alpha \sin \beta \begin{vmatrix} -\sin \beta & 0 \\ \sin \alpha \cos \beta & \cos \alpha \end{vmatrix} -\sin \alpha \begin{vmatrix} -\sin \beta &\cos \beta \\ \sin \alpha \cos \beta& \sin \alpha \sin \beta \end{vmatrix}$$= \cos \alpha \cos \beta (\cos \beta \cos \alpha -0 )- \cos \alpha \sin \beta (-\cos \alpha\sin \beta- 0) -\sin \alpha (-\sin \alpha\sin^2\beta - \sin \alpha \cos^2 \beta)$

$= \cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta +\sin^2 \alpha \sin^2\beta + \sin^2 \alpha \cos^2 \beta$

$= \cos^2 \alpha(\cos^2 \beta+\sin^2 \beta) +\sin^2 \alpha(\sin^2\beta+\cos^2 \beta)$

$= \cos^2 \alpha(1) +\sin^2 \alpha(1) = 1$.

Question 4: If \( A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \), find \( (AB)^{-1} \).
Answer:

We know from the identity that:

$(AB)^{-1} = B^{-1}A^{-1}$

Then we can find easily,

Given

Given
$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \ -15 & 6 & -5 \ 5 & -2 & 2 \end{bmatrix}$,
$B = \begin{bmatrix} 1 & 2 & -2 \ -1 & 3 & 0 \ 0 & -2 & 1 \end{bmatrix}$

Then we have to basically find the $B^{-1}$ matrix.

So, Given matrix $B=\begin{bmatrix} 1 &2 &-2 \\ -1&3 &0 \\ 0 &-2 &1 \end{bmatrix}$

$|B| = 1(3-0) -2(-1-0)-2(2-0) = 3+2-4 = 1 \neq 0$

Hence its inverse $B^{-1}$ exists;

Now, as we know that

$B^{-1} = \frac{1}{|B|} adjB$

So, calculating cofactors of B,

$B_{11} = (-1)^{1+1}(3-0) = 3$ $B_{12} = (-1)^{1+2}(-1-0) = 1$

$B_{13} = (-1)^{1+3}(2-0) = 2$ $B_{21} = (-1)^{2+1}(2-4) = 2$

$B_{22} = (-1)^{2+2}(1-0) = 1$ $B_{23} = (-1)^{2+3}(-2-0) = 2$

$B_{31} = (-1)^{3+1}(0+6) = 6$ $B_{32} = (-1)^{3+2}(0-2) = 2$

$B_{33} = (-1)^{3+3}(3+2) = 5$

$adjB = \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$

$B^{-1} = \frac{1}{|B|} adjB = \frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$

Now, We have both $A^{-1}$ as well as $B^{-1}$ ;

Putting in the relation we know; $(AB)^{-1} = B^{-1}A^{-1}$

$(AB)^{-1}=\frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}$

$= \begin{bmatrix} 9-30+30 &-3+12-12 &3-10+12 \\ 3-15+10&-1+6-4 &1-5+4 \\ 6-30+25 &-2+12-10 &2-10+10 \end{bmatrix}$

$= \begin{bmatrix} 9 &-3 &5 \\ -2&1 &0 \\ 1 &0 &2\end{bmatrix}$

Question 5(i): Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that $100[\operatorname{adj} A]^{-1} = \operatorname{adj}(A^{-1})$.
Answer:

Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;

So, let us assume that $A^{-1} = B$ matrix and $adjA = C$ then;

$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$

Hence its inverse exists;

$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;

so, we now calculate the value of $adjA$

Cofactors of A;

$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$

$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$

$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$

$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$

$A_{33}= (-1)^{3+3}(3-4) = -1$

$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$

$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$

Finding the inverse of C;

$|C| = 14(-4-1)+9(9+1)-1(-9+4) = -70+90+5 = 25 \neq 0$

Hence its inverse exists;

$C^{-1} = \frac{1}{|C|}adj C$

Now, finding the $adjC$;

$C_{11}= (-1)^{1+1}(-4-1) = -5$ $C_{12}= (-1)^{1+2}(9+1) = -10$

$C_{13}= (-1)^{1+3}(-9+4) = -5$ $C_{21}= (-1)^{2+1}(9+1) = -10$

$C_{22}= (-1)^{2+2}(-14-1) = -15$ $C_{23}= (-1)^{2+3}(14-9) = -5$

$C_{31}= (-1)^{3+1}(-9+4) = -5$ $C_{32}= (-1)^{3+2}(14-9) = -5$

$C_{33}= (-1)^{3+3}(56-81) = -25$

$adjC = \begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix}$

$C^{-1} = \frac{1}{|C|}adjC = \frac{1}{25}\begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$

or $L.H.S. = C^{-1} = [adjA]^{-1} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$

Now, finding the R.H.S.

$adj (A^{-1}) = adj B$

$A^{-1} =B= \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5}&& \frac{-4}{5}&& \frac{-1}{5}\\ \\ \frac{1}{5}&& \frac{-1}{5} &&\frac{1}{5}\end{bmatrix}$

Cofactors of B;

$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$

$B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) =- \frac{2}{5}$

$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$

$B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$

$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$

$B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$

$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = -1$

$R.H.S. = adjB = adj(A^{-1}) =\begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$


Hence L.H.S. = R.H.S. proved.

Question 5(ii):Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$, verify that $(A^{-1})^{-1} = A$.

Answer:

Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;

So, let us assume that $A^{-1} = B$

$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$

Hence its inverse exists;

$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;

so, we now calculate the value of $adjA$

Cofactors of A;

$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$

$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$

$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$

$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$

$A_{33}= (-1)^{3+3}(3-4) = -1$

$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$

$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$

Finding the inverse of B ;

$|B| = \frac{-14}{5}(\frac{-4}{25}-\frac{1}{25})-\frac{9}{5}(\frac{9}{25}+\frac{1}{25})+\frac{1}{5}(\frac{-9}{25}+\frac{4}{25})$

$= \frac{70}{125}-\frac{90}{125}-\frac{5}{125} = \frac{-25}{125} = \frac{-1}{5} \neq 0$

Hence its inverse exists;

$B^{-1} = \frac{1}{|B|}adj B$

Now, finding the $adjB$;

$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$

$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$ $B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) = \frac{-2}{5}$

$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$ $B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$

$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$ $B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$

$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$

$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = \frac{-25}{25} =-1$

$adjB = \begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}$

$B^{-1} = \frac{1}{|B|}adjB = \frac{-5}{1}\begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}= \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$

$L.H.S. = B^{-1} = (A^{-1})^{-1} = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$

$R.H.S. = A = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1& 1 &5 \end{bmatrix}$

Hence proved L.H.S. =R.H.S..

Question:6 Evaluate $\begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Answer:

We have determinant $\triangle = \begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Applying row transformations; $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ , we have then;

$\triangle = \begin{vmatrix} 2(x+y) & 2(x+y) &2(x+y) \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Taking out the common factor 2(x+y) from the row first.

$= 2(x+y)\begin{vmatrix} 1 & 1 &1 \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$

Now, applying the column transformation; $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{1}$ we have ;

$= 2(x+y)\begin{vmatrix} 0 & 0 &1 \\ -x & y &x \\ y & x-y & y \end{vmatrix}$

Expanding the remaining determinant;

$= 2(x+y)(-x(x-y)-y^2) = 2(x+y)[-x^2+xy-y^2]$

$= -2(x+y)[x^2-xy+y^2] = -2(x^3+y^3)$.

Question:7 Evaluate $\begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$

Answer:

We have determinant $\triangle = \begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$

Applying row transformations; $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$ then we have then;

$\triangle = \begin{vmatrix} 0 & -y &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$

Taking out the common factor -y from the row first.

$\triangle = -y\begin{vmatrix} 0 & 1 &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$

Expanding the remaining determinant;

$-y[1(-x-o)] = xy$


Question:8 Solve the system of equations

$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$

$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$

$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$

Answer:

We have a system of equations;

$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$

$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$

$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$

So, we will convert the given system of equations in a simple form to solve the problem by the matrix method;

Let us take, $\frac{1}{x} = a$, $\frac{1}{y} = b\ and\ \frac{1}{z} = c$

Then we have the equations;

$2a +3b+10c = 4$

$4a-6b+5c =1$

$6a+9b-20c = 2$

We can write it in the matrix form as $AX =B$ , where

$A= \begin{bmatrix} 2 &3 &10 \\ 4& -6 & 5\\ 6 & 9 & -20 \end{bmatrix} , X = \begin{bmatrix} a\\b \\c \end{bmatrix}\ and\ B = \begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}.$

Now, Finding the determinant value of A;

$|A| = 2(120-45)-3(-80-30)+10(36+36)$

$=150+330+720$

$=1200 \neq 0$

Hence we can say that A is non-singular $\therefore$ its invers exists;

Finding cofactors of A;

$A_{11} = 75$ , $A_{12} = 110$, $A_{13} = 72$

$A_{21} = 150$, $A_{22} = -100$, $A_{23} = 0$

$A_{31} =75$, $A_{31} =30$, $A_{33} =-24$

$\therefore$ as we know $A^{-1} = \frac{1}{|A|}adjA$

$= \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}$

Now we will find the solutions by relation $X = A^{-1}B$.

$\Rightarrow \begin{bmatrix} a\\b \\ c \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}\begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}$

$= \frac{1}{1200}\begin{bmatrix} 300+150+150\\440-100+60 \\ 288+0-48 \end{bmatrix}$

$= \frac{1}{1200}\begin{bmatrix} 600\\400\\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \\ \frac{1}{3} \\ \\ \frac{1}{5} \end{bmatrix}$

Therefore we have the solutions $a = \frac{1}{2},\ b= \frac{1}{3},\ and\ c = \frac{1}{5}.$

Or in terms of x, y, and z;

$x =2,\ y =3,\ and\ z = 5$


Question 9: Choose the correct answer.

If $x$, $y$, $z$ are nonzero real numbers, then the inverse of the matrix

$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$

is

(A) $ \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $

(B) $ xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $

(C) $ \dfrac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} $

(D) $ \dfrac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $


Answer:

Given Matrix $A=\begin{bmatrix} x &0 &0 \\ 0 &y &0 \\ 0 & 0 & z \end{bmatrix}$,

$|A| = x(yz-0) =xyz$

As we know,

$A^{-1} = \frac{1}{|A|}adjA$

So, we will find the $adjA$,

Determining its cofactor first,

$A_{11} = yz$ $A_{12} = 0$ $A_{13} = 0$

$A_{21} = 0$ $A_{22} = xz$ $A_{23} = 0$

$A_{31} = 0$ $A_{32} = 0$ $A_{33} = xy$

Hence $A^{-1} = \frac{1}{|A|}adjA = \frac{1}{xyz}\begin{bmatrix} yz &0 &0 \\ 0& xz & 0\\ 0& 0& xy \end{bmatrix}$

$A^{-1} = \begin{bmatrix} \frac{1}{x} &&0 &&0 \\ 0&& \frac{1}{y} && 0\\ 0&& 0&& \frac{1}{z} \end{bmatrix}$

Therefore, the correct answer is (A)

Question:10 Choose the correct answer.

Let $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix},$ where $0\leq \theta \leq 2\pi$. Then


(A)$Det(A)=0$ nbsp; (B) $Det(A)\in (2,\infty)$

(C) $Det(A)\in (2,4)$ (D)$Det(A)\in [2,4]$

Answer:

Given determinant $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix}$

$|A| = 1(1+\sin^2 \Theta) -\sin \Theta(-\sin \Theta+\sin \Theta)+1(\sin^2 \Theta +1)$

$= 1+ \sin ^2 \Theta + \sin ^2 \Theta +1$

$= 2+2\sin ^2 \Theta = 2(1+\sin^2 \Theta)$

Now, given the range of $\Theta$ from $0\leq \Theta \leq 2\pi$

$\Rightarrow 0 \leq \sin \Theta \leq 1$

$\Rightarrow 0 \leq \sin^2 \Theta \leq 1$

$\Rightarrow 1 \leq 1+\sin^2 \Theta \leq 2$

$\Rightarrow 2 \leq 2(1+\sin^2 \Theta) \leq 4$

Therefore the $|A|\ \epsilon\ [2,4]$.

Hence, the correct answer is D.


Also read,

Topics Covered in Chapter 4, Determinants: Miscellaneous Exercise

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Miscellaneous Exercise.

1. Evaluation of Determinants: Practice of expanding 3×3 determinants along any row or column using minors and cofactors.

2. Properties of Determinants: Apply key properties like row/column interchange, scalar multiplication, and linear combinations to simplify determinants.

3. Area of a Triangle Using Determinants: Use coordinate geometry and the determinant formula to find the area of a triangle formed by three points.

4. Consistency and Inconsistency of Systems: Determine whether systems of linear equations have unique solutions, no solutions, or infinitely many solutions based on determinant values.

5. Adjoint and Inverse of a Matrix: Calculate the adjoint and use it to find the inverse of a square matrix, then verify it through matrix multiplication.

6. Solving Linear Equations Using Matrix Inverse: Apply the formula $X=A^{-1} B$ to find the solution of a system of equations expressed in matrix form.

Also, read,

Frequently Asked Questions (FAQs)

Q: If |A| = 3 and the first row matrix A is multiplied by 3 then what is the value of |A|?
A:

If first row of matrix A is multiplied by 3 then the new value of |A| = 3x3 = 9.

Q: Can you find the inverse of a singular matrix ?
A:

No, singular matrices are non-invertible.

Q: If transpose of matrix A and matrix A are equal then such matrix is called ?
A:

If the transpose of matrix A and matrix A are equal then such matrix is called symmetric matrix.

Q: What is the definition of diagonal matrix ?
A:

The matrix has all the non-diagonal elements zero is called a diagonal matrix.

Q: Do all the identity matrices are diagonal matrices ?
A:

Yes,  all the identity matrices are diagonal matrices.

Q: Do CBSE provides solutions for miscellaneous exercise ?
A:

No, CBSE doesn't provide NCERT solutions for miscellaneous exercises.

Q: What is the value of determinant, If any two rows of a determinant are identical ?
A:

The value of the determinant is zero if any two rows of a determinant are identical.

Q: What is the value of determinant if any two rows of a determinant are proportional ?
A:

The value of the determinant is zero If any two rows of a determinant are proportional.

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

8 Sep'25 - 30 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.

You can download it in pdf form from below link

CBSE DATE SHEET 2026

all the best for your exam!!

Hii neeraj!

You can check CBSE class 12th registration number in:

  • Your class 12th board exam admit card. Please do check admit card for registration number, it must be there.
  • You can also check the registration number in your class 12th marksheet in case you have got it.
  • Alternatively you can also visit your school and ask for the same in the administration office they may tell you the registration number.

Hope it helps!