CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Imagine you are asked to solve different types of problems, like finding the area of a triangle using a determinant, checking if a system of equations has a solution, or finding the inverse of a matrix. How do you know which method to use? The Miscellaneous Exercise of NCERT Class 12 Maths Chapter 4 – Determinants brings together all the important topics from the chapter. It includes questions on: finding the value of determinants, using properties of determinants to simplify problems, calculating the area of a triangle using coordinates, solving systems of linear equations, finding the adjoint and inverse of a matrix. Miscellaneous Exercise of NCERT Class 12 Maths Chapter 4 helps you revise everything you have learned and tests your overall understanding. It is great for practice before exams. This article on the NCERT Solutions for miscellaneous exercise Class 12 Maths Chapter 4 - Determinant, offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Answer:
Calculating the determinant value of $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$;
$= x\begin{bmatrix} -x &1 \\ 1& x \end{bmatrix}-\sin \Theta\begin{bmatrix} -\sin \Theta &1 \\ \cos \Theta& x \end{bmatrix} + \cos \Theta \begin{bmatrix} -\sin \Theta &-x \\ \cos \Theta& 1 \end{bmatrix}$
$= x(-x^2-1)-\sin \Theta (-x\sin \Theta-\cos \Theta)+\cos\Theta(-\sin \Theta+x\cos\Theta)$
$= -x^3-x+x\sin^2 \Theta+ \sin \Theta\cos \Theta-\cos\Theta\sin \Theta+x\cos^2\Theta$
$= -x^3-x+x(\sin^2 \Theta+\cos^2\Theta)$
$= -x^3-x+x = -x^3$
Clearly, the determinant is independent of $\Theta$.
Answer:
We have the
$L.H.S. = \begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}$
Multiplying rows with a, b, and c respectively.
$R_{1} \rightarrow aR_{1}, R_{2} \rightarrow bR_{2},\ and\ R_{3} \rightarrow cR_{3}$
we get;
$= \frac{1}{abc} \begin{vmatrix} a^2 &a^3 &abc \\ b^2& b^3 &abc \\ c^2& c^3 & abc \end{vmatrix}$
$= \frac{1}{abc}.abc \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix}$ $[after\ taking\ out\ abc\ from\ column\ 3].$
$= \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix} = \begin{vmatrix} 1&a^2 & a^3\\ 1& b^2 &b^3 \\ 1& c^2 & c^3 \end{vmatrix}$ $[Applying\ C_{1}\leftrightarrow C_{3}\ and\ C_{2} \leftrightarrow C_{3}]$
= R.H.S.
Hence proved. L.H.S. =R.H.S.
Answer:
Given determinant $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$;
$= \cos \alpha \cos \beta \begin{vmatrix} \cos \beta &0 \\ \sin \alpha \sin \beta & \cos \alpha \end{vmatrix} - \cos \alpha \sin \beta \begin{vmatrix} -\sin \beta & 0 \\ \sin \alpha \cos \beta & \cos \alpha \end{vmatrix} -\sin \alpha \begin{vmatrix} -\sin \beta &\cos \beta \\ \sin \alpha \cos \beta& \sin \alpha \sin \beta \end{vmatrix}$$= \cos \alpha \cos \beta (\cos \beta \cos \alpha -0 )- \cos \alpha \sin \beta (-\cos \alpha\sin \beta- 0) -\sin \alpha (-\sin \alpha\sin^2\beta - \sin \alpha \cos^2 \beta)$
$= \cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta +\sin^2 \alpha \sin^2\beta + \sin^2 \alpha \cos^2 \beta$
$= \cos^2 \alpha(\cos^2 \beta+\sin^2 \beta) +\sin^2 \alpha(\sin^2\beta+\cos^2 \beta)$
$= \cos^2 \alpha(1) +\sin^2 \alpha(1) = 1$.
Question 4: If \( A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \), find \( (AB)^{-1} \).
Answer:
We know from the identity that:
$(AB)^{-1} = B^{-1}A^{-1}$
Then we can find easily,
Given
Given
$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \ -15 & 6 & -5 \ 5 & -2 & 2 \end{bmatrix}$,
$B = \begin{bmatrix} 1 & 2 & -2 \ -1 & 3 & 0 \ 0 & -2 & 1 \end{bmatrix}$
Then we have to basically find the $B^{-1}$ matrix.
So, Given matrix $B=\begin{bmatrix} 1 &2 &-2 \\ -1&3 &0 \\ 0 &-2 &1 \end{bmatrix}$
$|B| = 1(3-0) -2(-1-0)-2(2-0) = 3+2-4 = 1 \neq 0$
Hence its inverse $B^{-1}$ exists;
Now, as we know that
$B^{-1} = \frac{1}{|B|} adjB$
So, calculating cofactors of B,
$B_{11} = (-1)^{1+1}(3-0) = 3$ $B_{12} = (-1)^{1+2}(-1-0) = 1$
$B_{13} = (-1)^{1+3}(2-0) = 2$ $B_{21} = (-1)^{2+1}(2-4) = 2$
$B_{22} = (-1)^{2+2}(1-0) = 1$ $B_{23} = (-1)^{2+3}(-2-0) = 2$
$B_{31} = (-1)^{3+1}(0+6) = 6$ $B_{32} = (-1)^{3+2}(0-2) = 2$
$B_{33} = (-1)^{3+3}(3+2) = 5$
$adjB = \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$
$B^{-1} = \frac{1}{|B|} adjB = \frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$
Now, We have both $A^{-1}$ as well as $B^{-1}$ ;
Putting in the relation we know; $(AB)^{-1} = B^{-1}A^{-1}$
$(AB)^{-1}=\frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}$
$= \begin{bmatrix} 9-30+30 &-3+12-12 &3-10+12 \\ 3-15+10&-1+6-4 &1-5+4 \\ 6-30+25 &-2+12-10 &2-10+10 \end{bmatrix}$
$= \begin{bmatrix} 9 &-3 &5 \\ -2&1 &0 \\ 1 &0 &2\end{bmatrix}$
Question 5(i): Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that $100[\operatorname{adj} A]^{-1} = \operatorname{adj}(A^{-1})$.
Answer:
Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;
So, let us assume that $A^{-1} = B$ matrix and $adjA = C$ then;
$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$
Hence its inverse exists;
$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;
so, we now calculate the value of $adjA$
Cofactors of A;
$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$
$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$
$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$
$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$
$A_{33}= (-1)^{3+3}(3-4) = -1$
$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
Finding the inverse of C;
$|C| = 14(-4-1)+9(9+1)-1(-9+4) = -70+90+5 = 25 \neq 0$
Hence its inverse exists;
$C^{-1} = \frac{1}{|C|}adj C$
Now, finding the $adjC$;
$C_{11}= (-1)^{1+1}(-4-1) = -5$ $C_{12}= (-1)^{1+2}(9+1) = -10$
$C_{13}= (-1)^{1+3}(-9+4) = -5$ $C_{21}= (-1)^{2+1}(9+1) = -10$
$C_{22}= (-1)^{2+2}(-14-1) = -15$ $C_{23}= (-1)^{2+3}(14-9) = -5$
$C_{31}= (-1)^{3+1}(-9+4) = -5$ $C_{32}= (-1)^{3+2}(14-9) = -5$
$C_{33}= (-1)^{3+3}(56-81) = -25$
$adjC = \begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix}$
$C^{-1} = \frac{1}{|C|}adjC = \frac{1}{25}\begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
or $L.H.S. = C^{-1} = [adjA]^{-1} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
Now, finding the R.H.S.
$adj (A^{-1}) = adj B$
$A^{-1} =B= \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5}&& \frac{-4}{5}&& \frac{-1}{5}\\ \\ \frac{1}{5}&& \frac{-1}{5} &&\frac{1}{5}\end{bmatrix}$
Cofactors of B;
$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$
$B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) =- \frac{2}{5}$
$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$
$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$
$B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = -1$
$R.H.S. = adjB = adj(A^{-1}) =\begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
Hence L.H.S. = R.H.S. proved.
Question 5(ii):Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$, verify that $(A^{-1})^{-1} = A$.
Answer:
Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;
So, let us assume that $A^{-1} = B$
$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$
Hence its inverse exists;
$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;
so, we now calculate the value of $adjA$
Cofactors of A;
$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$
$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$
$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$
$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$
$A_{33}= (-1)^{3+3}(3-4) = -1$
$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$
Finding the inverse of B ;
$|B| = \frac{-14}{5}(\frac{-4}{25}-\frac{1}{25})-\frac{9}{5}(\frac{9}{25}+\frac{1}{25})+\frac{1}{5}(\frac{-9}{25}+\frac{4}{25})$
$= \frac{70}{125}-\frac{90}{125}-\frac{5}{125} = \frac{-25}{125} = \frac{-1}{5} \neq 0$
Hence its inverse exists;
$B^{-1} = \frac{1}{|B|}adj B$
Now, finding the $adjB$;
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$
$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$ $B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) = \frac{-2}{5}$
$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$ $B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$
$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$ $B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = \frac{-25}{25} =-1$
$adjB = \begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}$
$B^{-1} = \frac{1}{|B|}adjB = \frac{-5}{1}\begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}= \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$
$L.H.S. = B^{-1} = (A^{-1})^{-1} = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$
$R.H.S. = A = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1& 1 &5 \end{bmatrix}$
Hence proved L.H.S. =R.H.S..
Question:6 Evaluate $\begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Answer:
We have determinant $\triangle = \begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Applying row transformations; $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ , we have then;
$\triangle = \begin{vmatrix} 2(x+y) & 2(x+y) &2(x+y) \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Taking out the common factor 2(x+y) from the row first.
$= 2(x+y)\begin{vmatrix} 1 & 1 &1 \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Now, applying the column transformation; $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{1}$ we have ;
$= 2(x+y)\begin{vmatrix} 0 & 0 &1 \\ -x & y &x \\ y & x-y & y \end{vmatrix}$
Expanding the remaining determinant;
$= 2(x+y)(-x(x-y)-y^2) = 2(x+y)[-x^2+xy-y^2]$
$= -2(x+y)[x^2-xy+y^2] = -2(x^3+y^3)$.
Question:7 Evaluate $\begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$
Answer:
We have determinant $\triangle = \begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$
Applying row transformations; $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$ then we have then;
$\triangle = \begin{vmatrix} 0 & -y &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$
Taking out the common factor -y from the row first.
$\triangle = -y\begin{vmatrix} 0 & 1 &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$
Expanding the remaining determinant;
$-y[1(-x-o)] = xy$
Question:8 Solve the system of equations
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
Answer:
We have a system of equations;
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
So, we will convert the given system of equations in a simple form to solve the problem by the matrix method;
Let us take, $\frac{1}{x} = a$, $\frac{1}{y} = b\ and\ \frac{1}{z} = c$
Then we have the equations;
$2a +3b+10c = 4$
$4a-6b+5c =1$
$6a+9b-20c = 2$
We can write it in the matrix form as $AX =B$ , where
$A= \begin{bmatrix} 2 &3 &10 \\ 4& -6 & 5\\ 6 & 9 & -20 \end{bmatrix} , X = \begin{bmatrix} a\\b \\c \end{bmatrix}\ and\ B = \begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}.$
Now, Finding the determinant value of A;
$|A| = 2(120-45)-3(-80-30)+10(36+36)$
$=150+330+720$
$=1200 \neq 0$
Hence we can say that A is non-singular $\therefore$ its invers exists;
Finding cofactors of A;
$A_{11} = 75$ , $A_{12} = 110$, $A_{13} = 72$
$A_{21} = 150$, $A_{22} = -100$, $A_{23} = 0$
$A_{31} =75$, $A_{31} =30$, $A_{33} =-24$
$\therefore$ as we know $A^{-1} = \frac{1}{|A|}adjA$
$= \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}$
Now we will find the solutions by relation $X = A^{-1}B$.
$\Rightarrow \begin{bmatrix} a\\b \\ c \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}\begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}$
$= \frac{1}{1200}\begin{bmatrix} 300+150+150\\440-100+60 \\ 288+0-48 \end{bmatrix}$
$= \frac{1}{1200}\begin{bmatrix} 600\\400\\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \\ \frac{1}{3} \\ \\ \frac{1}{5} \end{bmatrix}$
Therefore we have the solutions $a = \frac{1}{2},\ b= \frac{1}{3},\ and\ c = \frac{1}{5}.$
Or in terms of x, y, and z;
$x =2,\ y =3,\ and\ z = 5$
Question 9: Choose the correct answer.
If $x$, $y$, $z$ are nonzero real numbers, then the inverse of the matrix
$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$
is
(A) $ \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $
(B) $ xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $
(C) $ \dfrac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} $
(D) $ \dfrac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
Answer:
Given Matrix $A=\begin{bmatrix} x &0 &0 \\ 0 &y &0 \\ 0 & 0 & z \end{bmatrix}$,
$|A| = x(yz-0) =xyz$
As we know,
$A^{-1} = \frac{1}{|A|}adjA$
So, we will find the $adjA$,
Determining its cofactor first,
$A_{11} = yz$ $A_{12} = 0$ $A_{13} = 0$
$A_{21} = 0$ $A_{22} = xz$ $A_{23} = 0$
$A_{31} = 0$ $A_{32} = 0$ $A_{33} = xy$
Hence $A^{-1} = \frac{1}{|A|}adjA = \frac{1}{xyz}\begin{bmatrix} yz &0 &0 \\ 0& xz & 0\\ 0& 0& xy \end{bmatrix}$
$A^{-1} = \begin{bmatrix} \frac{1}{x} &&0 &&0 \\ 0&& \frac{1}{y} && 0\\ 0&& 0&& \frac{1}{z} \end{bmatrix}$
Therefore, the correct answer is (A)
Question:10 Choose the correct answer.
Let $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix},$ where $0\leq \theta \leq 2\pi$. Then
(A)$Det(A)=0$ nbsp; (B) $Det(A)\in (2,\infty)$
(C) $Det(A)\in (2,4)$ (D)$Det(A)\in [2,4]$
Answer:
Given determinant $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix}$
$|A| = 1(1+\sin^2 \Theta) -\sin \Theta(-\sin \Theta+\sin \Theta)+1(\sin^2 \Theta +1)$
$= 1+ \sin ^2 \Theta + \sin ^2 \Theta +1$
$= 2+2\sin ^2 \Theta = 2(1+\sin^2 \Theta)$
Now, given the range of $\Theta$ from $0\leq \Theta \leq 2\pi$
$\Rightarrow 0 \leq \sin \Theta \leq 1$
$\Rightarrow 0 \leq \sin^2 \Theta \leq 1$
$\Rightarrow 1 \leq 1+\sin^2 \Theta \leq 2$
$\Rightarrow 2 \leq 2(1+\sin^2 \Theta) \leq 4$
Therefore the $|A|\ \epsilon\ [2,4]$.
Hence, the correct answer is D.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Miscellaneous Exercise.
1. Evaluation of Determinants: Practice of expanding 3×3 determinants along any row or column using minors and cofactors.
2. Properties of Determinants: Apply key properties like row/column interchange, scalar multiplication, and linear combinations to simplify determinants.
3. Area of a Triangle Using Determinants: Use coordinate geometry and the determinant formula to find the area of a triangle formed by three points.
4. Consistency and Inconsistency of Systems: Determine whether systems of linear equations have unique solutions, no solutions, or infinitely many solutions based on determinant values.
5. Adjoint and Inverse of a Matrix: Calculate the adjoint and use it to find the inverse of a square matrix, then verify it through matrix multiplication.
6. Solving Linear Equations Using Matrix Inverse: Apply the formula $X=A^{-1} B$ to find the solution of a system of equations expressed in matrix form.
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
If first row of matrix A is multiplied by 3 then the new value of |A| = 3x3 = 9.
No, singular matrices are non-invertible.
If the transpose of matrix A and matrix A are equal then such matrix is called symmetric matrix.
The matrix has all the non-diagonal elements zero is called a diagonal matrix.
Yes, all the identity matrices are diagonal matrices.
No, CBSE doesn't provide NCERT solutions for miscellaneous exercises.
The value of the determinant is zero if any two rows of a determinant are identical.
The value of the determinant is zero If any two rows of a determinant are proportional.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters