Imagine you are asked to solve different types of problems, like finding the area of a triangle using a determinant, checking if a system of equations has a solution, or finding the inverse of a matrix. How do you know which method to use? The Miscellaneous Exercise of NCERT Class 12 Maths Chapter 4 – Determinants brings together all the important topics from the chapter. It includes questions on: finding the value of determinants, using properties of determinants to simplify problems, calculating the area of a triangle using coordinates, solving systems of linear equations, finding the adjoint and inverse of a matrix. Miscellaneous Exercise of NCERT Class 12 Maths Chapter 4 helps you revise everything you have learned and tests your overall understanding. It is great for practice before exams. This article on the NCERT Solutions for miscellaneous exercise Class 12 Maths Chapter 4 - Determinant, offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Answer:
Calculating the determinant value of $\begin{vmatrix} x & \sin \theta &\cos \theta \\ -\sin \theta &-x & 1\\ \cos \theta &1 &x \end{vmatrix}$;
$= x\begin{bmatrix} -x &1 \\ 1& x \end{bmatrix}-\sin \Theta\begin{bmatrix} -\sin \Theta &1 \\ \cos \Theta& x \end{bmatrix} + \cos \Theta \begin{bmatrix} -\sin \Theta &-x \\ \cos \Theta& 1 \end{bmatrix}$
$= x(-x^2-1)-\sin \Theta (-x\sin \Theta-\cos \Theta)+\cos\Theta(-\sin \Theta+x\cos\Theta)$
$= -x^3-x+x\sin^2 \Theta+ \sin \Theta\cos \Theta-\cos\Theta\sin \Theta+x\cos^2\Theta$
$= -x^3-x+x(\sin^2 \Theta+\cos^2\Theta)$
$= -x^3-x+x = -x^3$
Clearly, the determinant is independent of $\Theta$.
Answer:
We have the
$L.H.S. = \begin{vmatrix} a &a^2 &bc \\ b& b^2 &ca \\ c & c^2 &ab \end{vmatrix}$
Multiplying rows with a, b, and c respectively.
$R_{1} \rightarrow aR_{1}, R_{2} \rightarrow bR_{2},\ and\ R_{3} \rightarrow cR_{3}$
we get;
$= \frac{1}{abc} \begin{vmatrix} a^2 &a^3 &abc \\ b^2& b^3 &abc \\ c^2& c^3 & abc \end{vmatrix}$
$= \frac{1}{abc}.abc \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix}$ $[after\ taking\ out\ abc\ from\ column\ 3].$
$= \begin{vmatrix} a^2 &a^3 & 1\\ b^2& b^3 &1 \\ c^2& c^3 & 1 \end{vmatrix} = \begin{vmatrix} 1&a^2 & a^3\\ 1& b^2 &b^3 \\ 1& c^2 & c^3 \end{vmatrix}$ $[Applying\ C_{1}\leftrightarrow C_{3}\ and\ C_{2} \leftrightarrow C_{3}]$
= R.H.S.
Hence proved. L.H.S. =R.H.S.
Answer:
Given determinant $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta &-\sin \alpha \\ -\sin \beta & \cos \beta &0 \\ \sin \alpha \cos \beta &\sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$;
$= \cos \alpha \cos \beta \begin{vmatrix} \cos \beta &0 \\ \sin \alpha \sin \beta & \cos \alpha \end{vmatrix} - \cos \alpha \sin \beta \begin{vmatrix} -\sin \beta & 0 \\ \sin \alpha \cos \beta & \cos \alpha \end{vmatrix} -\sin \alpha \begin{vmatrix} -\sin \beta &\cos \beta \\ \sin \alpha \cos \beta& \sin \alpha \sin \beta \end{vmatrix}$$= \cos \alpha \cos \beta (\cos \beta \cos \alpha -0 )- \cos \alpha \sin \beta (-\cos \alpha\sin \beta- 0) -\sin \alpha (-\sin \alpha\sin^2\beta - \sin \alpha \cos^2 \beta)$
$= \cos^2 \alpha \cos^2 \beta + \cos^2 \alpha \sin^2 \beta +\sin^2 \alpha \sin^2\beta + \sin^2 \alpha \cos^2 \beta$
$= \cos^2 \alpha(\cos^2 \beta+\sin^2 \beta) +\sin^2 \alpha(\sin^2\beta+\cos^2 \beta)$
$= \cos^2 \alpha(1) +\sin^2 \alpha(1) = 1$.
Question 4: If \( A^{-1} = \begin{bmatrix} 3 & -1 & 1 \\ -15 & 6 & -5 \\ 5 & -2 & 2 \end{bmatrix} \) and \( B = \begin{bmatrix} 1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1 \end{bmatrix} \), find \( (AB)^{-1} \).
Answer:
We know from the identity that:
$(AB)^{-1} = B^{-1}A^{-1}$
Then we can find easily,
Given
Given
$A^{-1} = \begin{bmatrix} 3 & -1 & 1 \ -15 & 6 & -5 \ 5 & -2 & 2 \end{bmatrix}$,
$B = \begin{bmatrix} 1 & 2 & -2 \ -1 & 3 & 0 \ 0 & -2 & 1 \end{bmatrix}$
Then we have to basically find the $B^{-1}$ matrix.
So, Given matrix $B=\begin{bmatrix} 1 &2 &-2 \\ -1&3 &0 \\ 0 &-2 &1 \end{bmatrix}$
$|B| = 1(3-0) -2(-1-0)-2(2-0) = 3+2-4 = 1 \neq 0$
Hence its inverse $B^{-1}$ exists;
Now, as we know that
$B^{-1} = \frac{1}{|B|} adjB$
So, calculating cofactors of B,
$B_{11} = (-1)^{1+1}(3-0) = 3$ $B_{12} = (-1)^{1+2}(-1-0) = 1$
$B_{13} = (-1)^{1+3}(2-0) = 2$ $B_{21} = (-1)^{2+1}(2-4) = 2$
$B_{22} = (-1)^{2+2}(1-0) = 1$ $B_{23} = (-1)^{2+3}(-2-0) = 2$
$B_{31} = (-1)^{3+1}(0+6) = 6$ $B_{32} = (-1)^{3+2}(0-2) = 2$
$B_{33} = (-1)^{3+3}(3+2) = 5$
$adjB = \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$
$B^{-1} = \frac{1}{|B|} adjB = \frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}$
Now, We have both $A^{-1}$ as well as $B^{-1}$ ;
Putting in the relation we know; $(AB)^{-1} = B^{-1}A^{-1}$
$(AB)^{-1}=\frac{1}{1} \begin{bmatrix} 3 &2 &6 \\ 1& 1& 2\\ 2& 2& 5 \end{bmatrix}\begin{bmatrix} 3 &-1 &1 \\ -15 &6 &-5 \\ 5 &-2 &2 \end{bmatrix}$
$= \begin{bmatrix} 9-30+30 &-3+12-12 &3-10+12 \\ 3-15+10&-1+6-4 &1-5+4 \\ 6-30+25 &-2+12-10 &2-10+10 \end{bmatrix}$
$= \begin{bmatrix} 9 &-3 &5 \\ -2&1 &0 \\ 1 &0 &2\end{bmatrix}$
Question 5(i): Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$. Verify that $100[\operatorname{adj} A]^{-1} = \operatorname{adj}(A^{-1})$.
Answer:
Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;
So, let us assume that $A^{-1} = B$ matrix and $adjA = C$ then;
$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$
Hence its inverse exists;
$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;
so, we now calculate the value of $adjA$
Cofactors of A;
$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$
$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$
$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$
$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$
$A_{33}= (-1)^{3+3}(3-4) = -1$
$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
Finding the inverse of C;
$|C| = 14(-4-1)+9(9+1)-1(-9+4) = -70+90+5 = 25 \neq 0$
Hence its inverse exists;
$C^{-1} = \frac{1}{|C|}adj C$
Now, finding the $adjC$;
$C_{11}= (-1)^{1+1}(-4-1) = -5$ $C_{12}= (-1)^{1+2}(9+1) = -10$
$C_{13}= (-1)^{1+3}(-9+4) = -5$ $C_{21}= (-1)^{2+1}(9+1) = -10$
$C_{22}= (-1)^{2+2}(-14-1) = -15$ $C_{23}= (-1)^{2+3}(14-9) = -5$
$C_{31}= (-1)^{3+1}(-9+4) = -5$ $C_{32}= (-1)^{3+2}(14-9) = -5$
$C_{33}= (-1)^{3+3}(56-81) = -25$
$adjC = \begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix}$
$C^{-1} = \frac{1}{|C|}adjC = \frac{1}{25}\begin{bmatrix} -5 &-10 &-5 \\ -10& -15 & -5\\ -5& -5& -25 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
or $L.H.S. = C^{-1} = [adjA]^{-1} = \begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
Now, finding the R.H.S.
$adj (A^{-1}) = adj B$
$A^{-1} =B= \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5}&& \frac{-4}{5}&& \frac{-1}{5}\\ \\ \frac{1}{5}&& \frac{-1}{5} &&\frac{1}{5}\end{bmatrix}$
Cofactors of B;
$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$
$B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) =- \frac{2}{5}$
$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$
$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$
$B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = -1$
$R.H.S. = adjB = adj(A^{-1}) =\begin{bmatrix} -\frac{1}{5} && -\frac{2}{5} &&-\frac{1}{5} \\ \\ -\frac{2}{5}&& -\frac{3}{5} && -\frac{1}{5}\\ \\ -\frac{1}{5} && -\frac{1}{5} && -1 \end{bmatrix}$
Hence L.H.S. = R.H.S. proved.
Question 5(ii):Let $A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 1 & 5 \end{bmatrix}$, verify that $(A^{-1})^{-1} = A$.
Answer:
Given that $A=\begin{bmatrix} 1 &2 &1 \\ 2 &3 &1 \\ 1 & 1 & 5 \end{bmatrix}$;
So, let us assume that $A^{-1} = B$
$|A| = 1(15-1) -2(10-1) +1(2-3) = 14-18-1 = -5 \neq 0$
Hence its inverse exists;
$A^{-1} = \frac{1}{|A|} adjA$ or $B = \frac{1}{|A|}C$;
so, we now calculate the value of $adjA$
Cofactors of A;
$A_{11}= (-1)^{1+1}(15-1) = 14$ $A_{12}= (-1)^{1+2}(10-1) = -9$
$A_{13}= (-1)^{1+3}(2-3) = -1$ $A_{21}= (-1)^{2+1}(10-1) = -9$
$A_{22}= (-1)^{2+2}(5-1) = 4$ $A_{23}= (-1)^{2+3}(1-2) = 1$
$A_{31}= (-1)^{3+1}(2-3) = -1$ $A_{32}= (-1)^{3+2}(1-2) = 1$
$A_{33}= (-1)^{3+3}(3-4) = -1$
$\Rightarrow adjA =C= \begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix}$
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$
Finding the inverse of B ;
$|B| = \frac{-14}{5}(\frac{-4}{25}-\frac{1}{25})-\frac{9}{5}(\frac{9}{25}+\frac{1}{25})+\frac{1}{5}(\frac{-9}{25}+\frac{4}{25})$
$= \frac{70}{125}-\frac{90}{125}-\frac{5}{125} = \frac{-25}{125} = \frac{-1}{5} \neq 0$
Hence its inverse exists;
$B^{-1} = \frac{1}{|B|}adj B$
Now, finding the $adjB$;
$A^{-1} =B= \frac{1}{|A|} adjA = \frac{1}{-5}\begin{bmatrix} 14 &-9 &-1 \\ -9& 4& 1\\ -1& 1 &-1 \end{bmatrix} = \begin{bmatrix} \frac{-14}{5} &&\frac{9}{5} &&\frac{1}{5} \\ \\ \frac{9}{5} && \frac{-4}{5} &&\frac{-1}{5} \\ \\ \frac{1}{5} &&\frac{-1}{5} &&\frac{1}{5} \end{bmatrix}$
$B_{11}= (-1)^{1+1}(\frac{-4}{25}-\frac{1}{25}) = \frac{-1}{5}$ $B_{12}= (-1)^{1+2}(\frac{9}{25}+\frac{1}{25}) = \frac{-2}{5}$
$B_{13}= (-1)^{1+3}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$ $B_{21}= (-1)^{2+1}(\frac{9}{25}+\frac{1}{25}) = -\frac{2}{5}$
$B_{22}= (-1)^{2+2}(\frac{-14}{25}-\frac{1}{25}) = \frac{-3}{5}$ $B_{23}= (-1)^{2+3}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{31}= (-1)^{3+1}(\frac{-9}{25}+\frac{4}{25}) = \frac{-1}{5}$
$B_{32}= (-1)^{3+2}(\frac{14}{25}-\frac{9}{25}) = \frac{-1}{5}$
$B_{33}= (-1)^{3+3}(\frac{56}{25}-\frac{81}{25}) = \frac{-25}{25} =-1$
$adjB = \begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}$
$B^{-1} = \frac{1}{|B|}adjB = \frac{-5}{1}\begin{bmatrix} \frac{-1}{5} &&\frac{-2}{5} &&\frac{-1}{5} \\ \\\frac{-2}{5}&& \frac{-3}{5} && \frac{-1}{5}\\ \\ \frac{-1}{5}&& \frac{-1}{5}&& -1 \end{bmatrix}= \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$
$L.H.S. = B^{-1} = (A^{-1})^{-1} = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1 & 1 &5 \end{bmatrix}$
$R.H.S. = A = \begin{bmatrix} 1 &2 &1 \\ 2& 3& 1\\ 1& 1 &5 \end{bmatrix}$
Hence proved L.H.S. =R.H.S..
Question:6 Evaluate $\begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Answer:
We have determinant $\triangle = \begin{vmatrix} x & y &x+y \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Applying row transformations; $R_{1} \rightarrow R_{1}+R_{2}+R_{3}$ , we have then;
$\triangle = \begin{vmatrix} 2(x+y) & 2(x+y) &2(x+y) \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Taking out the common factor 2(x+y) from the row first.
$= 2(x+y)\begin{vmatrix} 1 & 1 &1 \\ y & x+y &x \\ x+y & x & y \end{vmatrix}$
Now, applying the column transformation; $C_{1} \rightarrow C_{1} - C_{2}$ and $C_{2} \rightarrow C_{2} - C_{1}$ we have ;
$= 2(x+y)\begin{vmatrix} 0 & 0 &1 \\ -x & y &x \\ y & x-y & y \end{vmatrix}$
Expanding the remaining determinant;
$= 2(x+y)(-x(x-y)-y^2) = 2(x+y)[-x^2+xy-y^2]$
$= -2(x+y)[x^2-xy+y^2] = -2(x^3+y^3)$.
Question:7 Evaluate $\begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$
Answer:
We have determinant $\triangle = \begin{vmatrix} 1 & x &y \\ 1 &x+y &y \\ 1 &x &x+y \end{vmatrix}$
Applying row transformations; $R_{1} \rightarrow R_{1}-R_{2}$ and $R_{2} \rightarrow R_{2}-R_{3}$ then we have then;
$\triangle = \begin{vmatrix} 0 & -y &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$
Taking out the common factor -y from the row first.
$\triangle = -y\begin{vmatrix} 0 & 1 &0 \\ 0 &y &-x \\ 1 &x &x+y \end{vmatrix}$
Expanding the remaining determinant;
$-y[1(-x-o)] = xy$
Question:8 Solve the system of equations
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
Answer:
We have a system of equations;
$\frac{2}{x}+\frac{3}{y}+\frac{10}{z}=4$
$\frac{4}{x}-\frac{6}{y}+\frac{5}{z}=1$
$\frac{6}{x}+\frac{9}{y}-\frac{20}{z}=2$
So, we will convert the given system of equations in a simple form to solve the problem by the matrix method;
Let us take, $\frac{1}{x} = a$, $\frac{1}{y} = b\ and\ \frac{1}{z} = c$
Then we have the equations;
$2a +3b+10c = 4$
$4a-6b+5c =1$
$6a+9b-20c = 2$
We can write it in the matrix form as $AX =B$ , where
$A= \begin{bmatrix} 2 &3 &10 \\ 4& -6 & 5\\ 6 & 9 & -20 \end{bmatrix} , X = \begin{bmatrix} a\\b \\c \end{bmatrix}\ and\ B = \begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}.$
Now, Finding the determinant value of A;
$|A| = 2(120-45)-3(-80-30)+10(36+36)$
$=150+330+720$
$=1200 \neq 0$
Hence we can say that A is non-singular $\therefore$ its invers exists;
Finding cofactors of A;
$A_{11} = 75$ , $A_{12} = 110$, $A_{13} = 72$
$A_{21} = 150$, $A_{22} = -100$, $A_{23} = 0$
$A_{31} =75$, $A_{31} =30$, $A_{33} =-24$
$\therefore$ as we know $A^{-1} = \frac{1}{|A|}adjA$
$= \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}$
Now we will find the solutions by relation $X = A^{-1}B$.
$\Rightarrow \begin{bmatrix} a\\b \\ c \end{bmatrix} = \frac{1}{1200} \begin{bmatrix} 75 &150 &75 \\ 110& -100& 30\\ 72&0 &-24 \end{bmatrix}\begin{bmatrix} 4\\1 \\ 2 \end{bmatrix}$
$= \frac{1}{1200}\begin{bmatrix} 300+150+150\\440-100+60 \\ 288+0-48 \end{bmatrix}$
$= \frac{1}{1200}\begin{bmatrix} 600\\400\\ 240 \end{bmatrix} = \begin{bmatrix} \frac{1}{2}\\ \\ \frac{1}{3} \\ \\ \frac{1}{5} \end{bmatrix}$
Therefore we have the solutions $a = \frac{1}{2},\ b= \frac{1}{3},\ and\ c = \frac{1}{5}.$
Or in terms of x, y, and z;
$x =2,\ y =3,\ and\ z = 5$
Question 9: Choose the correct answer.
If $x$, $y$, $z$ are nonzero real numbers, then the inverse of the matrix
$A = \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix}$
is
(A) $ \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $
(B) $ xyz \begin{bmatrix} x^{-1} & 0 & 0 \\ 0 & y^{-1} & 0 \\ 0 & 0 & z^{-1} \end{bmatrix} $
(C) $ \dfrac{1}{xyz} \begin{bmatrix} x & 0 & 0 \\ 0 & y & 0 \\ 0 & 0 & z \end{bmatrix} $
(D) $ \dfrac{1}{xyz} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} $
Answer:
Given Matrix $A=\begin{bmatrix} x &0 &0 \\ 0 &y &0 \\ 0 & 0 & z \end{bmatrix}$,
$|A| = x(yz-0) =xyz$
As we know,
$A^{-1} = \frac{1}{|A|}adjA$
So, we will find the $adjA$,
Determining its cofactor first,
$A_{11} = yz$ $A_{12} = 0$ $A_{13} = 0$
$A_{21} = 0$ $A_{22} = xz$ $A_{23} = 0$
$A_{31} = 0$ $A_{32} = 0$ $A_{33} = xy$
Hence $A^{-1} = \frac{1}{|A|}adjA = \frac{1}{xyz}\begin{bmatrix} yz &0 &0 \\ 0& xz & 0\\ 0& 0& xy \end{bmatrix}$
$A^{-1} = \begin{bmatrix} \frac{1}{x} &&0 &&0 \\ 0&& \frac{1}{y} && 0\\ 0&& 0&& \frac{1}{z} \end{bmatrix}$
Therefore, the correct answer is (A)
Question:10 Choose the correct answer.
Let $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix},$ where $0\leq \theta \leq 2\pi$. Then
(A)$Det(A)=0$ nbsp; (B) $Det(A)\in (2,\infty)$
(C) $Det(A)\in (2,4)$ (D)$Det(A)\in [2,4]$
Answer:
Given determinant $A=\begin{vmatrix} 1 &\sin \theta &1 \\ -\sin \theta & 1 & \sin \theta \\ -1&-\sin \theta &1 \end{vmatrix}$
$|A| = 1(1+\sin^2 \Theta) -\sin \Theta(-\sin \Theta+\sin \Theta)+1(\sin^2 \Theta +1)$
$= 1+ \sin ^2 \Theta + \sin ^2 \Theta +1$
$= 2+2\sin ^2 \Theta = 2(1+\sin^2 \Theta)$
Now, given the range of $\Theta$ from $0\leq \Theta \leq 2\pi$
$\Rightarrow 0 \leq \sin \Theta \leq 1$
$\Rightarrow 0 \leq \sin^2 \Theta \leq 1$
$\Rightarrow 1 \leq 1+\sin^2 \Theta \leq 2$
$\Rightarrow 2 \leq 2(1+\sin^2 \Theta) \leq 4$
Therefore the $|A|\ \epsilon\ [2,4]$.
Hence, the correct answer is D.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Miscellaneous Exercise.
1. Evaluation of Determinants: Practice of expanding 3×3 determinants along any row or column using minors and cofactors.
2. Properties of Determinants: Apply key properties like row/column interchange, scalar multiplication, and linear combinations to simplify determinants.
3. Area of a Triangle Using Determinants: Use coordinate geometry and the determinant formula to find the area of a triangle formed by three points.
4. Consistency and Inconsistency of Systems: Determine whether systems of linear equations have unique solutions, no solutions, or infinitely many solutions based on determinant values.
5. Adjoint and Inverse of a Matrix: Calculate the adjoint and use it to find the inverse of a square matrix, then verify it through matrix multiplication.
6. Solving Linear Equations Using Matrix Inverse: Apply the formula $X=A^{-1} B$ to find the solution of a system of equations expressed in matrix form.
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
If first row of matrix A is multiplied by 3 then the new value of |A| = 3x3 = 9.
No, singular matrices are non-invertible.
If the transpose of matrix A and matrix A are equal then such matrix is called symmetric matrix.
The matrix has all the non-diagonal elements zero is called a diagonal matrix.
Yes, all the identity matrices are diagonal matrices.
No, CBSE doesn't provide NCERT solutions for miscellaneous exercises.
The value of the determinant is zero if any two rows of a determinant are identical.
The value of the determinant is zero If any two rows of a determinant are proportional.
On Question asked by student community
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters