CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Suppose your friend asked you to expand a $3 \times 3$ determinant. You might think about which method to use: row or column? This is where the concept of expansion of determinants using minors and cofactors becomes important. In NCERT Class 12 Maths Chapter 4 - Determinants, Exercise 4.3 explains how to expand a determinant of order 3 by choosing any row or column. Minor of an element $a_{i j}$ of a determinant is the determinant obtained by deleting its $ i$th row and $ j$th column in which element $a_{i j}$ lies. Minor of an element $a_{i j}$ is denoted by $\mathrm{M}_{i j}$. Cofactor of an element $a_{i j}$, denoted by $\mathrm{A}_{i j}$ is defined by $\mathrm{A}_{i j}=(-1)^{i+j} \mathrm{M}_{i j}$, where $\mathrm{M}_{i j}$ is minor of $a_{i j}$. This article on the NCERT Solutions for Exercise 4.3 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Question 1 (i) Write Minors and Cofactors of the elements of following determinants:
$\small \begin{vmatrix}2 &-4 \\0 &3 \end{vmatrix}$
Answer:
GIven determinant: $\begin{vmatrix}2 &-4 \\0 &3 \end{vmatrix}$
Minor of element $a_{ij}$ is $M_{ij}$.
Therefore we have
$M_{11}$ = minor of element $a_{11}$ = 3
$M_{12}$ = minor of element $a_{12}$ = 0
$M_{21}$ = minor of element $a_{21}$ = -4
$M_{22}$ = minor of element $a_{22}$ = 2
and finding cofactors of $a_{ij}$ is $A_{ij}$ = $(-1)^{i+j}M_{ij}$.
Therefore, we have:
$A_{11} = (-1)^{1+1}M_{11} = (-1)^2(3) = 3$
$A_{12} = (-1)^{1+2}M_{12} = (-1)^3(0) = 0$
$A_{21} = (-1)^{2+1}M_{21} = (-1)^3(-4) = 4$
$A_{22} = (-1)^{2+2}M_{22} = (-1)^4(2) = 2$
Question 1 (ii) Write Minors and Cofactors of the elements of following determinants:
$\small \begin{vmatrix} a &c \\ b &d \end{vmatrix}$
Answer:
GIven determinant: $\begin{vmatrix} a &c \\ b &d \end{vmatrix}$
Minor of element $a_{ij}$ is $M_{ij}$.
Therefore we have
$M_{11}$ = minor of element $a_{11}$ = d
$M_{12}$ = minor of element $a_{12}$ = b
$M_{21}$ = minor of element $a_{21}$ = c
$M_{22}$ = minor of element $a_{22}$ = a
and finding cofactors of $a_{ij}$ is $A_{ij}$ = $(-1)^{i+j}M_{ij}$.
Therefore, we have:
$A_{11} = (-1)^{1+1}M_{11} = (-1)^2(d) = d$
$A_{12} = (-1)^{1+2}M_{12} = (-1)^3(b) = -b$
$A_{21} = (-1)^{2+1}M_{21} = (-1)^3(c) = -c$
$A_{22} = (-1)^{2+2}M_{22} = (-1)^4(a) = a$
Question 2 (i) Write Minors and Cofactors of the elements of following determinants:
$\small \begin{vmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{vmatrix}$
Answer:
Given determinant : $\begin{vmatrix} 1 & 0 &0 \\ 0 &1 &0 \\ 0 &0 &1 \end{vmatrix}$
Finding Minors: by the definition,
$M_{11} =$ minor of $a_{11} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$ $M_{12} =$ minor of $a_{12} = \begin{vmatrix} 0 &0 \\ 0 &1 \end{vmatrix} = 0$
$M_{13} =$ minor of $a_{13} = \begin{vmatrix} 0 &1 \\ 0 &0 \end{vmatrix} = 0$ $M_{21} =$ minor of $a_{21} = \begin{vmatrix} 0 &0 \\ 0 &1 \end{vmatrix} = 0$
$M_{22} =$ minor of $a_{22} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$ $M_{23} =$ minor of $a_{23} = \begin{vmatrix} 1 &0 \\ 0 &0 \end{vmatrix} = 0$
$M_{31} =$ minor of $a_{31} = \begin{vmatrix} 0 &0 \\ 1 &0 \end{vmatrix} = 0$ $M_{32} =$ minor of $a_{32} = \begin{vmatrix} 1 &0 \\ 0 &0 \end{vmatrix} = 0$
$M_{33} =$ minor of $a_{33} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$
Finding the cofactors:
$A_{11}=$ cofactor of $a_{11} = (-1)^{1+1}M_{11} = 1$
$A_{12}=$ cofactor of $a_{12} = (-1)^{1+2}M_{12} = 0$
$A_{13}=$ cofactor of $a_{13} = (-1)^{1+3}M_{13} = 0$
$A_{21}=$ cofactor of $a_{21} = (-1)^{2+1}M_{21} = 0$
$A_{22}=$ cofactor of $a_{22} = (-1)^{2+2}M_{22} = 1$
$A_{23}=$ cofactor of $a_{23} = (-1)^{2+3}M_{23} = 0$
$A_{31}=$ cofactor of $a_{31} = (-1)^{3+1}M_{31} = 0$
$A_{32}=$ cofactor of $a_{32} = (-1)^{3+2}M_{32} = 0$
$A_{33}=$ cofactor of $a_{33} = (-1)^{3+3}M_{33} = 1$.
Question:2(ii) Write Minors and Cofactors of the elements of following determinants:
$\small \begin{vmatrix} 1 &0 &4 \\ 3 & 5 &-1 \\ 0 &1 &2 \end{vmatrix}$
Answer:
Given determinant : $\begin{vmatrix} 1 &0 &4 \\ 3 & 5 &-1 \\ 0 &1 &2 \end{vmatrix}$
Finding Minors: by the definition,
$M_{11} =$ minor of $a_{11} = \begin{vmatrix} 5 &-1 \\ 1 &2 \end{vmatrix} = 11$ $M_{12} =$ minor of $a_{12} = \begin{vmatrix} 3 &-1 \\ 0 &2 \end{vmatrix} = 6$
$M_{13} =$ minor of $a_{13} = \begin{vmatrix} 3 &5 \\ 0 &1 \end{vmatrix} = 3$ $M_{21} =$ minor of $a_{21} = \begin{vmatrix} 0 &4 \\ 1 &2 \end{vmatrix} = -4$
$M_{22} =$ minor of $a_{22} = \begin{vmatrix} 1 &4 \\ 0 &2 \end{vmatrix} = 2$ $M_{23} =$ minor of $a_{23} = \begin{vmatrix} 1 &0 \\ 0 &1 \end{vmatrix} = 1$
$M_{31} =$ minor of $a_{31} = \begin{vmatrix} 0 &4 \\ 5 &-1 \end{vmatrix} = -20$
$M_{32} =$ minor of $a_{32} = \begin{vmatrix} 1 &4 \\ 3 &-1 \end{vmatrix} = -1-12=-13$
$M_{33} =$ minor of $a_{33} = \begin{vmatrix} 1 &0 \\ 3 &5 \end{vmatrix} = 5$
Finding the cofactors:
$A_{11}=$ cofactor of $a_{11} = (-1)^{1+1}M_{11} = 11$
$A_{12}=$ cofactor of $a_{12} = (-1)^{1+2}M_{12} = -6$
$A_{13}=$ cofactor of $a_{13} = (-1)^{1+3}M_{13} = 3$
$A_{21}=$ cofactor of $a_{21} = (-1)^{2+1}M_{21} = 4$
$A_{22}=$ cofactor of $a_{22} = (-1)^{2+2}M_{22} = 2$
$A_{23}=$ cofactor of $a_{23} = (-1)^{2+3}M_{23} = -1$
$A_{31}=$ cofactor of $a_{31} = (-1)^{3+1}M_{31} = -20$
$A_{32}=$ cofactor of $a_{32} = (-1)^{3+2}M_{32} = 13$
$A_{33}=$ cofactor of $a_{33} = (-1)^{3+3}M_{33} = 5$.
Answer:
Given determinant : $\small \Delta =\begin{vmatrix} 5 &3 &8 \\ 2 & 0 & 1\\ 1 &2 &3 \end{vmatrix}$
First finding Minors of the second rows by the definition,
$M_{21} =$ minor of $a_{21} = \begin{vmatrix} 3 &8 \\ 2 &3 \end{vmatrix} =9-16 = -7$
$M_{22} =$ minor of $a_{22} = \begin{vmatrix} 5 &8 \\ 1 &3 \end{vmatrix} = 15-8=7$
$M_{23} =$ minor of $a_{23} = \begin{vmatrix} 5 &3 \\ 1 &2 \end{vmatrix} = 10-3 =7$
Finding the Cofactors of the second row:
$A_{21}=$ Cofactor of $a_{21} = (-1)^{2+1}M_{21} = 7$
$A_{22}=$ Cofactor of $a_{22} = (-1)^{2+2}M_{22} = 7$
$A_{23}=$ Cofactor of $a_{23} = (-1)^{2+3}M_{23} = -7$
Therefore we can calculate $\triangle$ by sum of the product of the elements of the second row with their corresponding cofactors.
Therefore we have,
$\triangle = a_{21}A_{21} + a_{22}A_{22} + a_{23}A_{23} = 2(7) +0(7) +1(-7) =14-7=7$
Answer:
Given determinant : $\small \Delta =\begin{vmatrix} 1 &x &yz \\ 1 &y &zx \\ 1 &z &xy \end{vmatrix}$
First finding Minors of the third column by the definition,
$M_{13} =$ minor of $a_{13} = \begin{vmatrix} 1 &y \\ 1 &z \end{vmatrix} =z-y$
$M_{23} =$ minor of $a_{23} = \begin{vmatrix} 1 &x \\ 1 &z \end{vmatrix} = z-x$
$M_{33} =$ minor of $a_{33} = \begin{vmatrix} 1 &x \\ 1 &y \end{vmatrix} =y-x$
Finding the Cofactors of the second row:
$A_{13}=$ Cofactor of $a_{13} = (-1)^{1+3}M_{13} = z-y$
$A_{23}=$ Cofactor of $a_{23} = (-1)^{2+3}M_{23} = x-z$
$A_{33}=$ Cofactor of $a_{33} = (-1)^{3+3}M_{33} = y-x$
Therefore we can calculate $\triangle$ by sum of the product of the elements of the third column with their corresponding cofactors.
Therefore we have,
$\triangle = a_{13}A_{13} + a_{23}A_{23} + a_{33}A_{33}$
$= (z-y)yz + (x-z)zx +(y-x)xy$
$=yz^2-y^2z + zx^2-xz^2 + xy^2-x^2y$
$=z(x^2-y^2) + z^2(y-x) +xy(y-x)$
$= (x-y) \left [ zx+zy-z^2-xy \right ]$
$=(x-y)\left [ z(x-z) +y(z-x) \right ]$
$= (x-y)(z-x)[-z+y]$
$= (x-y)(y-z)(z-x)$
Thus, we have value of $\triangle = (x-y)(y-z)(z-x)$.
Question 5: If $\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$ and $A_{ij}$ is the cofactor of $a_{ij}$, then the value of $\Delta$ is given by:
(A) $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$
(B) $a_{11}A_{11} + a_{12}A_{21} + a_{13}A_{31}$
(C) $a_{21}A_{11} + a_{22}A_{12} + a_{23}A_{13}$
(D) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$
Answer: (D) $a_{11}A_{11} + a_{21}A_{21} + a_{31}A_{31}$
By the definition itself, $\Delta$ is equal to the sum of the products of the elements of any row or column with their corresponding cofactors.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.3.
1. Determinant of Order 3 Using Expansion: A $3 \times 3$ determinant is expanded along a row or column using the formula:
$|A|=a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right)$
2. Minor of an Element: The minor of an element is the determinant of the $2 \times 2$ matrix that remains after deleting the row and column of that element.
3. Cofactor of an Element: The cofactor is the minor multiplied by $(-1)^{i+j}$, where $i$ is the row number and $j$ is the column number.
4. Expansion Along Row or Column: The determinant can be expanded using any row or column by multiplying each element by its corresponding cofactor and summing the results.
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
You can check here for CBSE Class 12 Maths previous years paper with solutions. The questions are based on the content of the NCERT syllabus. Refering to the previous year papers is helpful to understand the area from which more questions are asked.
If the determinant of a square matrix A is zero, it is called a singular matrix.
If the determinant of a square matrix A is not zero, it is called a non-singular matrix.
Here you will get CBSE Class 10 Maths previous years paper with solutions.
Most of the questions are not asked from miscellaneous exercises but sometimes a few questions are asked from the miscellaneous exercises too.
As most of the questions are not asked from miscellaneous exercises in the board exams, so it is not important from the board exam point of view but very important for competitive exams.
Here you will get CBSE Class 12 previous years paper.
No, CBSE doesn't provide previous papers solutions. Students can download the question papers and marking scheme from the CBSE website.
On Question asked by student community
Hello,
The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.
Hope this information is useful to you.
Hello,
Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.
Hope this information is useful to you.
Hello Pruthvi,
Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.
The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.
For more details about the KCET Exam preparation,
CLICK HERE.
I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.
Thank you, and I wish you all the best in your bright future.
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters