CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
A system of linear equations has two types of solutions in general, ie, consistent (unique solution and infinitely many solutions) and inconsistent (No solutions). Earlier in class 10, we had solved these using algebraic methods, but in class 12, we will learn to solve these using matrices and determinants. NCERT Class 12 Maths Chapter 4 – Determinants, Exercise 4.5 introduces the concept of solving a system of linear equations using the inverse of a matrix and explains how to determine whether the system is consistent or inconsistent. This article on the NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+2y=2$
$\small 2x+3y=3$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A= \begin{bmatrix} 1 &2 \\ 2&3 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 2\\3 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(3) -2(2) = -1 \neq 0$
Here A is non -singular therefore there exists $A^{-1}$.
Hence, the given system of equations is consistent.
Question:2 Examine the consistency of the system of equations
Answer:
We have given the system of equations:
$\small 2x-y=5$
$\small x+y=4$
The given system of equations can be written in the form of matrix; $AX =B$
where $A= \begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 5\\4 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 2(1) -1(-1) = 3 \neq 0$
Here A is non -singular therefore there exists $A^{-1}$.
Hence, the given system of equations is consistent.
Question:3 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+3y=5$
$\small 2x+6y=8$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A= \begin{bmatrix} 1 &3 \\ 2&6 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 5\\8 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(6) -2(3) = 0$
Here A is singular matrix therefore now we will check whether the $(adjA)B$ is zero or non-zero.
$adjA= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}$
So, $(adjA)B= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 30-24\\-10+8 \end{bmatrix}=\begin{bmatrix} 6\\-2 \end{bmatrix} \neq 0$
As, $(adjA)B \neq 0$ , the solution of the given system of equations does not exist.
Hence, the given system of equations is inconsistent.
Question:4 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+y+z=1$
$\small 2x+3y+2z=2$
$\small ax+ay+2az=4$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A = \begin{bmatrix} 1& 1&1 \\ 2& 3& 2\\ a& a &2a \end{bmatrix}$,
$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and
$B = \begin{bmatrix} 1\\2 \\ 4 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(6a-2a) -1(4a-2a)+1(2a-3a)$
$= 4a -2a-a = 4a -3a =a \neq 0$
[If zero then it won't satisfy the third equation]
Here A is non- singular matrix therefore there exist $A^{-1}$.
Hence, the given system of equations is consistent.
Question:5 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small 3x-y-2z=2$
$\small 2y-z=-1$
$\small 3x-5y=3$
The given system of equations can be written in the form of matrix; $AX =B$
where $A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix}$,
$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and
$B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 3(0-5) -(-1)(0+3)-2(0-6)$
$= -15 +3+12 = 0$
Therefore matrix A is a singular matrix.
So, we will then check $(adjA)B,$
$(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}$
$\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0$
As, $(adjA)B$ is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.
Question:6 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small 5x-y+4z=5$
$\small 2x+3y+5z=2$
$\small 5x-2y+6z=-1$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A = \begin{bmatrix} 5& -1&4 \\ 2& 3& 5\\ 5& -2 &6 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\2 \\ -1 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 5(18+10) +1(12-25)+4(-4-15)$
$= 140-13-76 = 51 \neq 0$
Here A is non- singular matrix therefore there exist $A^{-1}$.
Hence, the given system of equations is consistent.
Question:7 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 5x+2y=4$
$\small 7x+3y=5$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 5 &4 \\ 7& 3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 4\\5 \end{bmatrix}$
we have,
$|A| = 15-14=1 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = (adjA) = \begin{bmatrix} 3 &-2 \\ -7& 5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 3 &-2 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 4\\5 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 12-10\\ -28+25 \end{bmatrix} = \begin{bmatrix} 2\\-3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2 and y =-3.
Question:8 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$2x-y=-2$
$3x+4y=3$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$
we have,
$|A| = 8+3=11 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -5/11 and y = 12/11.
Question:9 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 4x-3y=3$
$\small 3x-5y=7$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 4 &-3 \\ 3& -5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\7 \end{bmatrix}$
we have,
$|A| = -20+9=-11 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{-1}{11}\begin{bmatrix} -5 &3 \\ -3& 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 &-3 \\ 3& -4 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 5 &-3 \\ 3 & -4 \end{bmatrix}\begin{bmatrix} 3\\7 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 15-21\\ 9-28 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -6\\-19 \end{bmatrix}= \begin{bmatrix} -\frac{6}{11}\\ \\-\frac{19}{11} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -6/11 and y = -19/11.
Question:10 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 5x+2y=3$
$\small 3x+2y=5$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$
we have,
$|A| = 10-6=4 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -1 and y = 4
Question:11 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 2x+y+z=1$
$\small x-2y-z= \frac{3}{2}$
$\small 3y-5z=9$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &1 &1 \\ 1 & -2 &-1 \\ 0& 3 &-5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ and $B =\begin{bmatrix} 1\\ \\ \frac{3}{2} \\ \\ 9 \end{bmatrix}$
we have,
$|A| =2(10+3)-1(-5-0)+1(3-0) = 26+5+3 = 34 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(10+3) = 13$ $A_{12} =(-1)^{1+2}(-5-0) = 5$
$A_{13} =(-1)^{1+3}(3-0) = 3$ $A_{21} =(-1)^{2+1}(-5-3) = 8$
$A_{22} =(-1)^{2+2}(-10-0) = -10$ $A_{23} =(-1)^{2+3}(6-0) = -6$
$A_{31} =(-1)^{3+1}(-1+2) = 1$ $A_{32} =(-1)^{3+2}(-2-1) = 3$
$A_{33} =(-1)^{3+3}(-4-1) = -5$
$(adjA) =\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}\begin{bmatrix} 1\\\frac{3}{2} \\ 9 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 13+12+9\\5-15+27 \\ 3-9-45 \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 34\\17 \\ -51 \end{bmatrix}= \begin{bmatrix} 1\\\frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 1/2, and z = -3/2.
Question:12 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small x-y+z=4$
$\small 2x+y-3z=0$
$\small x+y+z=2$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 1 &-1 &1 \\ 2 & 1 &-3 \\ 1& 1 &1 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 4\\ 0 \\ 2 \end{bmatrix}.$
we have,
$|A| =1(1+3)+1(2+3)+1(2-1) = 4+5+1= 10 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(1+3) = 4$ $A_{12} =(-1)^{1+2}(2+3) = -5$
$A_{13} =(-1)^{1+3}(2-1) = 1$ $A_{21} =(-1)^{2+1}(-1-1) = 2$
$A_{22} =(-1)^{2+2}(1-1) = 0$ $A_{23} =(-1)^{2+3}(1+1) = -2$
$A_{31} =(-1)^{3+1}(3-1) = 2$ $A_{32} =(-1)^{3+2}(-3-2) = 5$
$A_{33} =(-1)^{3+3}(1+2) = 3$
$(adjA) =\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}\begin{bmatrix} 4\\0 \\ 2 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 16+0+4\\-20+0+10 \\ 4+0+6 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 20\\-10 \\ 10 \end{bmatrix}= \begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2, y = -1, and z = 1.
Question:13 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 2x+3y+3z=5$
$\small x-2y+z=-4$
$\small 3x-y-2z=3$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &3 &3 \\ 1 & -2 &1 \\ 3& -1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 5\\ -4 \\ 3 \end{bmatrix}.$
we have,
$|A| =2(4+1) -3(-2-3)+3(-1+6) = 10+15+15 = 40$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(4+1) = 5$ $A_{12} =(-1)^{1+2}(-2-3) = 5$
$A_{13} =(-1)^{1+3}(-1+6) = 5$ $A_{21} =(-1)^{2+1}(-6+3) = 3$
$A_{22} =(-1)^{2+2}(-4-9) = -13$ $A_{23} =(-1)^{2+3}(-2-9) = 11$
$A_{31} =(-1)^{3+1}(3+6) = 9$ $A_{32} =(-1)^{3+2}(2-3) = 1$
$A_{33} =(-1)^{3+3}(-4-3) = -7$
$(adjA) =\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5&11 & -7 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}\begin{bmatrix} 5\\-4 \\ 3 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25-12+27\\25+52+3 \\ 25-44-21 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 40\\80 \\ -40 \end{bmatrix}= \begin{bmatrix} 1\\2 \\ -1 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 2, and z = -1.
Question:14 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small x-y+2z=7$
$\small 3x+4y-5z=-5$
$\small 2x-y+3z=12$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 1 &-1 &2 \\ 3 & 4 &-5 \\ 2& -1 &3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 7\\ -5 \\ 12 \end{bmatrix}.$
we have,
$|A| =1(12-5) +1(9+10)+2(-3-8) = 7+19-22 = 4 \neq0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{12-5} = 7$ $A_{12} =(-1)^{1+2}(9+10) = -19$
$A_{13} =(-1)^{1+3}(-3-8) = -11$ $A_{21} =(-1)^{2+1}(-3+2) = 1$
$A_{22} =(-1)^{2+2}(3-4) = -1$ $A_{23} =(-1)^{2+3}(-1+2) = -1$
$A_{31} =(-1)^{3+1}(5-8) = -3$ $A_{32} =(-1)^{3+2}(-5-6) = 11$
$A_{33} =(-1)^{3+3}(4+3) = 7$
$(adjA) =\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}\begin{bmatrix} 7\\-5 \\ 12 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 49-5-36\\-133+5+132 \\ -77+5+84 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 8\\4 \\ 12 \end{bmatrix}= \begin{bmatrix} 2\\1 \\ 3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2, y = 1, and z = 3.
Answer:
The given system of equations
$2x-3y+5z=11$
$3x+2y-4z=-5$
$x+y-2z=-3$
can be written in the matrix form of AX =B, where
$A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 11\\ -5 \\ -3 \end{bmatrix}.$
we have,
$|A| =2(-4+4) +3(-6+4)+5(3-2) = 0-6+5 = -1 \neq0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{-4+4} = 0$ $A_{12} =(-1)^{1+2}(-6+4) = 2$
$A_{13} =(-1)^{1+3}(3-2) = 1$ $A_{21} =(-1)^{2+1}(6-5) = -1$
$A_{22} =(-1)^{2+2}(-4-5) = -9$ $A_{23} =(-1)^{2+3}(2+3) = -5$
$A_{31} =(-1)^{3+1}(12-10) = 2$ $A_{32} =(-1)^{3+2}(-8-15) = 23$
$A_{33} =(-1)^{3+3}(4+9) = 13$
$(adjA) =\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = -1\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix} = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}\begin{bmatrix} 11\\-5 \\ -3 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-5+6\\-22-45+69 \\ -11-25+39 \end{bmatrix} = \begin{bmatrix} 1\\2 \\ 3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 2, and z = 3.
Answer:
So, let us assume the cost of onion, wheat, and rice be x, y and z respectively.
Then we have the equations for the given situation :
$4x+3y+2z = 60$
$2x+4y+6z = 90$
$6x+2y+3y = 70$
We can find the cost of each item per Kg by the matrix method as follows;
Taking the coefficients of x, y, and z as a matrix $A$.
We have;
$A = \begin{bmatrix} 4 &3 &2 \\ 2& 4 &6 \\ 6 & 2 & 3 \end{bmatrix},$ $X= \begin{bmatrix} x\\y \\ z \end{bmatrix}$ $and\ B = \begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}.$
$|A| = 4(12-12) -3(6-36)+2(4-24) = 0 +90-40 = 50 \neq 0$
Now, we will find the cofactors of A;
$A_{11} = (-1)^{1+1}(12-12) = 0$ $A_{12} = (-1)^{1+2}(6-36) = 30$
$A_{13} = (-1)^{1+3}(4-24) = -20$ $A_{21} = (-1)^{2+1}(9-4) = -5$
$A_{22} = (-1)^{2+2}(12-12) = 0$ $A_{23} = (-1)^{2+3}(8-18) = 10$
$A_{31} = (-1)^{3+1}(18-8) = 10$ $A_{32} = (-1)^{3+2}(24-4) = -20$
$A_{33} = (-1)^{3+3}(16-6) = 10$
Now we have adjA;
$adjA = \begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$s
So, the solutions can be found by $X = A^{-1}B = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}\begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-450+700\\1800+0-1400 \\ -1200+900+700 \end{bmatrix} =\frac{1}{50} \begin{bmatrix} 250\\400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5\\8 \\ 8 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 5, y = 8, and z = 8
Therefore, we have the cost of onions is Rs. 5 per Kg, the cost of wheat is Rs. 8 per Kg, and the cost of rice is Rs. 8 per kg.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.5.
1. System of Linear Equations in Matrix Form: A system like
$\begin{aligned} & a_1 x+b_1 y+c_1 z=d_1 \\ & a_2 x+b_2 y+c_2 z=d_2 \\ & a_3 x+b_3 y+c_3 z=d_3\end{aligned}$
is written in matrix form as: $AX=B$
Where:
- $A$ is the coefficient matrix,
- $X$ is the variable matrix,
- $B$ is the constant matrix.
2. Solution Using Matrix Inverse: If $A^{-1}$ exists, then the unique solution of the system is given by: $X=A^{-1} B$
3. Consistency Conditions:
- Consistent System (Unique Solution): $\operatorname{det} A \neq 0$
- Inconsistent or Dependent System: Requires further analysis when $\operatorname{det} A=0$
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
If the solution of a system of equations doesn't exist then it is called a inconsistent system.
There are 16 questions in the exercise 4.6 Class 12 Maths. The questions are solved with all the necessary steps. Students can follow the NCERT syllabus to get a good score in the board exam.
The transpose of the row matrix is the column matrix.
The transpose of the column matrix is the row matrix.
If the determinant of matrix A is zero then matrix A is called singular matrix.
|A^T| = |A| = 2
If three-point are collinear then the area of triangle formed by these points is zero.
If solutions of a system of equations exist then it is called a consistent system.
On Question asked by student community
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters