A system of linear equations has two types of solutions in general, ie, consistent (unique solution and infinitely many solutions) and inconsistent (No solutions). Earlier in class 10, we had solved these using algebraic methods, but in class 12, we will learn to solve these using matrices and determinants. NCERT Class 12 Maths Chapter 4 – Determinants, Exercise 4.5 introduces the concept of solving a system of linear equations using the inverse of a matrix and explains how to determine whether the system is consistent or inconsistent. This article on the NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+2y=2$
$\small 2x+3y=3$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A= \begin{bmatrix} 1 &2 \\ 2&3 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 2\\3 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(3) -2(2) = -1 \neq 0$
Here A is non -singular therefore there exists $A^{-1}$.
Hence, the given system of equations is consistent.
Question:2 Examine the consistency of the system of equations
Answer:
We have given the system of equations:
$\small 2x-y=5$
$\small x+y=4$
The given system of equations can be written in the form of matrix; $AX =B$
where $A= \begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 5\\4 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 2(1) -1(-1) = 3 \neq 0$
Here A is non -singular therefore there exists $A^{-1}$.
Hence, the given system of equations is consistent.
Question:3 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+3y=5$
$\small 2x+6y=8$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A= \begin{bmatrix} 1 &3 \\ 2&6 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 5\\8 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(6) -2(3) = 0$
Here A is singular matrix therefore now we will check whether the $(adjA)B$ is zero or non-zero.
$adjA= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}$
So, $(adjA)B= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 30-24\\-10+8 \end{bmatrix}=\begin{bmatrix} 6\\-2 \end{bmatrix} \neq 0$
As, $(adjA)B \neq 0$ , the solution of the given system of equations does not exist.
Hence, the given system of equations is inconsistent.
Question:4 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+y+z=1$
$\small 2x+3y+2z=2$
$\small ax+ay+2az=4$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A = \begin{bmatrix} 1& 1&1 \\ 2& 3& 2\\ a& a &2a \end{bmatrix}$,
$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and
$B = \begin{bmatrix} 1\\2 \\ 4 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(6a-2a) -1(4a-2a)+1(2a-3a)$
$= 4a -2a-a = 4a -3a =a \neq 0$
[If zero then it won't satisfy the third equation]
Here A is non- singular matrix therefore there exist $A^{-1}$.
Hence, the given system of equations is consistent.
Question:5 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small 3x-y-2z=2$
$\small 2y-z=-1$
$\small 3x-5y=3$
The given system of equations can be written in the form of matrix; $AX =B$
where $A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix}$,
$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and
$B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 3(0-5) -(-1)(0+3)-2(0-6)$
$= -15 +3+12 = 0$
Therefore matrix A is a singular matrix.
So, we will then check $(adjA)B,$
$(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}$
$\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0$
As, $(adjA)B$ is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.
Question:6 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small 5x-y+4z=5$
$\small 2x+3y+5z=2$
$\small 5x-2y+6z=-1$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A = \begin{bmatrix} 5& -1&4 \\ 2& 3& 5\\ 5& -2 &6 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\2 \\ -1 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 5(18+10) +1(12-25)+4(-4-15)$
$= 140-13-76 = 51 \neq 0$
Here A is non- singular matrix therefore there exist $A^{-1}$.
Hence, the given system of equations is consistent.
Question:7 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 5x+2y=4$
$\small 7x+3y=5$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 5 &4 \\ 7& 3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 4\\5 \end{bmatrix}$
we have,
$|A| = 15-14=1 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = (adjA) = \begin{bmatrix} 3 &-2 \\ -7& 5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 3 &-2 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 4\\5 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 12-10\\ -28+25 \end{bmatrix} = \begin{bmatrix} 2\\-3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2 and y =-3.
Question:8 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$2x-y=-2$
$3x+4y=3$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$
we have,
$|A| = 8+3=11 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -5/11 and y = 12/11.
Question:9 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 4x-3y=3$
$\small 3x-5y=7$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 4 &-3 \\ 3& -5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\7 \end{bmatrix}$
we have,
$|A| = -20+9=-11 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{-1}{11}\begin{bmatrix} -5 &3 \\ -3& 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 &-3 \\ 3& -4 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 5 &-3 \\ 3 & -4 \end{bmatrix}\begin{bmatrix} 3\\7 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 15-21\\ 9-28 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -6\\-19 \end{bmatrix}= \begin{bmatrix} -\frac{6}{11}\\ \\-\frac{19}{11} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -6/11 and y = -19/11.
Question:10 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 5x+2y=3$
$\small 3x+2y=5$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$
we have,
$|A| = 10-6=4 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -1 and y = 4
Question:11 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 2x+y+z=1$
$\small x-2y-z= \frac{3}{2}$
$\small 3y-5z=9$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &1 &1 \\ 1 & -2 &-1 \\ 0& 3 &-5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ and $B =\begin{bmatrix} 1\\ \\ \frac{3}{2} \\ \\ 9 \end{bmatrix}$
we have,
$|A| =2(10+3)-1(-5-0)+1(3-0) = 26+5+3 = 34 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(10+3) = 13$ $A_{12} =(-1)^{1+2}(-5-0) = 5$
$A_{13} =(-1)^{1+3}(3-0) = 3$ $A_{21} =(-1)^{2+1}(-5-3) = 8$
$A_{22} =(-1)^{2+2}(-10-0) = -10$ $A_{23} =(-1)^{2+3}(6-0) = -6$
$A_{31} =(-1)^{3+1}(-1+2) = 1$ $A_{32} =(-1)^{3+2}(-2-1) = 3$
$A_{33} =(-1)^{3+3}(-4-1) = -5$
$(adjA) =\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}\begin{bmatrix} 1\\\frac{3}{2} \\ 9 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 13+12+9\\5-15+27 \\ 3-9-45 \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 34\\17 \\ -51 \end{bmatrix}= \begin{bmatrix} 1\\\frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 1/2, and z = -3/2.
Question:12 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small x-y+z=4$
$\small 2x+y-3z=0$
$\small x+y+z=2$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 1 &-1 &1 \\ 2 & 1 &-3 \\ 1& 1 &1 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 4\\ 0 \\ 2 \end{bmatrix}.$
we have,
$|A| =1(1+3)+1(2+3)+1(2-1) = 4+5+1= 10 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(1+3) = 4$ $A_{12} =(-1)^{1+2}(2+3) = -5$
$A_{13} =(-1)^{1+3}(2-1) = 1$ $A_{21} =(-1)^{2+1}(-1-1) = 2$
$A_{22} =(-1)^{2+2}(1-1) = 0$ $A_{23} =(-1)^{2+3}(1+1) = -2$
$A_{31} =(-1)^{3+1}(3-1) = 2$ $A_{32} =(-1)^{3+2}(-3-2) = 5$
$A_{33} =(-1)^{3+3}(1+2) = 3$
$(adjA) =\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}\begin{bmatrix} 4\\0 \\ 2 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 16+0+4\\-20+0+10 \\ 4+0+6 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 20\\-10 \\ 10 \end{bmatrix}= \begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2, y = -1, and z = 1.
Question:13 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 2x+3y+3z=5$
$\small x-2y+z=-4$
$\small 3x-y-2z=3$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &3 &3 \\ 1 & -2 &1 \\ 3& -1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 5\\ -4 \\ 3 \end{bmatrix}.$
we have,
$|A| =2(4+1) -3(-2-3)+3(-1+6) = 10+15+15 = 40$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(4+1) = 5$ $A_{12} =(-1)^{1+2}(-2-3) = 5$
$A_{13} =(-1)^{1+3}(-1+6) = 5$ $A_{21} =(-1)^{2+1}(-6+3) = 3$
$A_{22} =(-1)^{2+2}(-4-9) = -13$ $A_{23} =(-1)^{2+3}(-2-9) = 11$
$A_{31} =(-1)^{3+1}(3+6) = 9$ $A_{32} =(-1)^{3+2}(2-3) = 1$
$A_{33} =(-1)^{3+3}(-4-3) = -7$
$(adjA) =\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5&11 & -7 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}\begin{bmatrix} 5\\-4 \\ 3 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25-12+27\\25+52+3 \\ 25-44-21 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 40\\80 \\ -40 \end{bmatrix}= \begin{bmatrix} 1\\2 \\ -1 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 2, and z = -1.
Question:14 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small x-y+2z=7$
$\small 3x+4y-5z=-5$
$\small 2x-y+3z=12$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 1 &-1 &2 \\ 3 & 4 &-5 \\ 2& -1 &3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 7\\ -5 \\ 12 \end{bmatrix}.$
we have,
$|A| =1(12-5) +1(9+10)+2(-3-8) = 7+19-22 = 4 \neq0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{12-5} = 7$ $A_{12} =(-1)^{1+2}(9+10) = -19$
$A_{13} =(-1)^{1+3}(-3-8) = -11$ $A_{21} =(-1)^{2+1}(-3+2) = 1$
$A_{22} =(-1)^{2+2}(3-4) = -1$ $A_{23} =(-1)^{2+3}(-1+2) = -1$
$A_{31} =(-1)^{3+1}(5-8) = -3$ $A_{32} =(-1)^{3+2}(-5-6) = 11$
$A_{33} =(-1)^{3+3}(4+3) = 7$
$(adjA) =\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}\begin{bmatrix} 7\\-5 \\ 12 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 49-5-36\\-133+5+132 \\ -77+5+84 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 8\\4 \\ 12 \end{bmatrix}= \begin{bmatrix} 2\\1 \\ 3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2, y = 1, and z = 3.
Answer:
The given system of equations
$2x-3y+5z=11$
$3x+2y-4z=-5$
$x+y-2z=-3$
can be written in the matrix form of AX =B, where
$A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 11\\ -5 \\ -3 \end{bmatrix}.$
we have,
$|A| =2(-4+4) +3(-6+4)+5(3-2) = 0-6+5 = -1 \neq0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{-4+4} = 0$ $A_{12} =(-1)^{1+2}(-6+4) = 2$
$A_{13} =(-1)^{1+3}(3-2) = 1$ $A_{21} =(-1)^{2+1}(6-5) = -1$
$A_{22} =(-1)^{2+2}(-4-5) = -9$ $A_{23} =(-1)^{2+3}(2+3) = -5$
$A_{31} =(-1)^{3+1}(12-10) = 2$ $A_{32} =(-1)^{3+2}(-8-15) = 23$
$A_{33} =(-1)^{3+3}(4+9) = 13$
$(adjA) =\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = -1\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix} = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}\begin{bmatrix} 11\\-5 \\ -3 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-5+6\\-22-45+69 \\ -11-25+39 \end{bmatrix} = \begin{bmatrix} 1\\2 \\ 3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 2, and z = 3.
Answer:
So, let us assume the cost of onion, wheat, and rice be x, y and z respectively.
Then we have the equations for the given situation :
$4x+3y+2z = 60$
$2x+4y+6z = 90$
$6x+2y+3y = 70$
We can find the cost of each item per Kg by the matrix method as follows;
Taking the coefficients of x, y, and z as a matrix $A$.
We have;
$A = \begin{bmatrix} 4 &3 &2 \\ 2& 4 &6 \\ 6 & 2 & 3 \end{bmatrix},$ $X= \begin{bmatrix} x\\y \\ z \end{bmatrix}$ $and\ B = \begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}.$
$|A| = 4(12-12) -3(6-36)+2(4-24) = 0 +90-40 = 50 \neq 0$
Now, we will find the cofactors of A;
$A_{11} = (-1)^{1+1}(12-12) = 0$ $A_{12} = (-1)^{1+2}(6-36) = 30$
$A_{13} = (-1)^{1+3}(4-24) = -20$ $A_{21} = (-1)^{2+1}(9-4) = -5$
$A_{22} = (-1)^{2+2}(12-12) = 0$ $A_{23} = (-1)^{2+3}(8-18) = 10$
$A_{31} = (-1)^{3+1}(18-8) = 10$ $A_{32} = (-1)^{3+2}(24-4) = -20$
$A_{33} = (-1)^{3+3}(16-6) = 10$
Now we have adjA;
$adjA = \begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$s
So, the solutions can be found by $X = A^{-1}B = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}\begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-450+700\\1800+0-1400 \\ -1200+900+700 \end{bmatrix} =\frac{1}{50} \begin{bmatrix} 250\\400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5\\8 \\ 8 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 5, y = 8, and z = 8
Therefore, we have the cost of onions is Rs. 5 per Kg, the cost of wheat is Rs. 8 per Kg, and the cost of rice is Rs. 8 per kg.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.5.
1. System of Linear Equations in Matrix Form: A system like
$\begin{aligned} & a_1 x+b_1 y+c_1 z=d_1 \\ & a_2 x+b_2 y+c_2 z=d_2 \\ & a_3 x+b_3 y+c_3 z=d_3\end{aligned}$
is written in matrix form as: $AX=B$
Where:
- $A$ is the coefficient matrix,
- $X$ is the variable matrix,
- $B$ is the constant matrix.
2. Solution Using Matrix Inverse: If $A^{-1}$ exists, then the unique solution of the system is given by: $X=A^{-1} B$
3. Consistency Conditions:
- Consistent System (Unique Solution): $\operatorname{det} A \neq 0$
- Inconsistent or Dependent System: Requires further analysis when $\operatorname{det} A=0$
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
If the solution of a system of equations doesn't exist then it is called a inconsistent system.
There are 16 questions in the exercise 4.6 Class 12 Maths. The questions are solved with all the necessary steps. Students can follow the NCERT syllabus to get a good score in the board exam.
The transpose of the row matrix is the column matrix.
The transpose of the column matrix is the row matrix.
If the determinant of matrix A is zero then matrix A is called singular matrix.
|A^T| = |A| = 2
If three-point are collinear then the area of triangle formed by these points is zero.
If solutions of a system of equations exist then it is called a consistent system.
On Question asked by student community
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters