NCERT Solutions for Exercise 4.6 Class 12 Maths Chapter 4 - Determinants

NCERT Solutions for Exercise 4.6 Class 12 Maths Chapter 4 - Determinants

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Komal MiglaniUpdated on 25 Apr 2025, 08:52 AM IST

A system of linear equations has two types of solutions in general, ie, consistent (unique solution and infinitely many solutions) and inconsistent (No solutions). Earlier in class 10, we had solved these using algebraic methods, but in class 12, we will learn to solve these using matrices and determinants. NCERT Class 12 Maths Chapter 4 – Determinants, Exercise 4.5 introduces the concept of solving a system of linear equations using the inverse of a matrix and explains how to determine whether the system is consistent or inconsistent. This article on the NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 4 Exercise 4.5 Solutions: Download PDF

Download PDF

Determinants Exercise: 4.5

Question:1 Examine the consistency of the system of equations.

$\small x+2y=2$

$\small 2x+3y=3$

Answer:

We have given the system of equations:

$\small x+2y=2$

$\small 2x+3y=3$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A= \begin{bmatrix} 1 &2 \\ 2&3 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 2\\3 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(3) -2(2) = -1 \neq 0$

Here A is non -singular therefore there exists $A^{-1}$.

Hence, the given system of equations is consistent.

Question:2 Examine the consistency of the system of equations

$\small 2x-y=5$

$\small x+y=4$

Answer:

We have given the system of equations:

$\small 2x-y=5$

$\small x+y=4$

The given system of equations can be written in the form of matrix; $AX =B$

where $A= \begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 5\\4 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 2(1) -1(-1) = 3 \neq 0$

Here A is non -singular therefore there exists $A^{-1}$.

Hence, the given system of equations is consistent.

Question:3 Examine the consistency of the system of equations.

$\small x+3y=5$

$\small 2x+6y=8$

Answer:

We have given the system of equations:

$\small x+3y=5$

$\small 2x+6y=8$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A= \begin{bmatrix} 1 &3 \\ 2&6 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 5\\8 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(6) -2(3) = 0$

Here A is singular matrix therefore now we will check whether the $(adjA)B$ is zero or non-zero.

$adjA= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}$

So, $(adjA)B= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 30-24\\-10+8 \end{bmatrix}=\begin{bmatrix} 6\\-2 \end{bmatrix} \neq 0$

As, $(adjA)B \neq 0$ , the solution of the given system of equations does not exist.

Hence, the given system of equations is inconsistent.

Question:4 Examine the consistency of the system of equations.

$\small x+y+z=1$

$\small 2x+3y+2z=2$

$\small ax+ay+2az=4$

Answer:

We have given the system of equations:

$\small x+y+z=1$

$\small 2x+3y+2z=2$

$\small ax+ay+2az=4$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A = \begin{bmatrix} 1& 1&1 \\ 2& 3& 2\\ a& a &2a \end{bmatrix}$,

$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and

$B = \begin{bmatrix} 1\\2 \\ 4 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(6a-2a) -1(4a-2a)+1(2a-3a)$

$= 4a -2a-a = 4a -3a =a \neq 0$

[If zero then it won't satisfy the third equation]

Here A is non- singular matrix therefore there exist $A^{-1}$.

Hence, the given system of equations is consistent.

Question:5 Examine the consistency of the system of equations.

$\small 3x-y-2z=2$

$\small 2y-z=-1$

$\small 3x-5y=3$

Answer:

We have given the system of equations:

$\small 3x-y-2z=2$

$\small 2y-z=-1$

$\small 3x-5y=3$

The given system of equations can be written in the form of matrix; $AX =B$

where $A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix}$,

$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and

$B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 3(0-5) -(-1)(0+3)-2(0-6)$

$= -15 +3+12 = 0$

Therefore matrix A is a singular matrix.

So, we will then check $(adjA)B,$

$(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}$

$\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0$

As, $(adjA)B$ is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.

Question:6 Examine the consistency of the system of equations.

$\small 5x-y+4z=5$

$\small 2x+3y+5z=2$

$\small 5x-2y+6z=-1$

Answer:

We have given the system of equations:

$\small 5x-y+4z=5$

$\small 2x+3y+5z=2$

$\small 5x-2y+6z=-1$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A = \begin{bmatrix} 5& -1&4 \\ 2& 3& 5\\ 5& -2 &6 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\2 \\ -1 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 5(18+10) +1(12-25)+4(-4-15)$

$= 140-13-76 = 51 \neq 0$

Here A is non- singular matrix therefore there exist $A^{-1}$.

Hence, the given system of equations is consistent.

Question:7 Solve system of linear equations, using matrix method.

$\small 5x+2y=4$

$\small 7x+3y=5$

Answer:

The given system of equations

$\small 5x+2y=4$

$\small 7x+3y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &4 \\ 7& 3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 4\\5 \end{bmatrix}$

we have,

$|A| = 15-14=1 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = (adjA) = \begin{bmatrix} 3 &-2 \\ -7& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 3 &-2 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 4\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 12-10\\ -28+25 \end{bmatrix} = \begin{bmatrix} 2\\-3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2 and y =-3.

Question:8 Solve system of linear equations, using matrix method.

$2x-y=-2$

$3x+4y=3$

Answer:

The given system of equations

$2x-y=-2$

$3x+4y=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$

we have,

$|A| = 8+3=11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -5/11 and y = 12/11.

Question:9 Solve system of linear equations, using matrix method.

$\small 4x-3y=3$

$\small 3x-5y=7$

Answer:

The given system of equations

$\small 4x-3y=3$

$\small 3x-5y=7$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 4 &-3 \\ 3& -5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\7 \end{bmatrix}$

we have,

$|A| = -20+9=-11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{-1}{11}\begin{bmatrix} -5 &3 \\ -3& 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 &-3 \\ 3& -4 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 5 &-3 \\ 3 & -4 \end{bmatrix}\begin{bmatrix} 3\\7 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 15-21\\ 9-28 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -6\\-19 \end{bmatrix}= \begin{bmatrix} -\frac{6}{11}\\ \\-\frac{19}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -6/11 and y = -19/11.

Question:10 Solve system of linear equations, using matrix method.

$\small 5x+2y=3$

$\small 3x+2y=5$

Answer:

The given system of equations

$\small 5x+2y=3$

$\small 3x+2y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$

we have,

$|A| = 10-6=4 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -1 and y = 4

Question:11 Solve system of linear equations, using matrix method.

$\small 2x+y+z=1$

$\small x-2y-z= \frac{3}{2}$

$\small 3y-5z=9$

Answer:

The given system of equations

$\small 2x+y+z=1$

$\small x-2y-z= \frac{3}{2}$

$\small 3y-5z=9$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &1 &1 \\ 1 & -2 &-1 \\ 0& 3 &-5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ and $B =\begin{bmatrix} 1\\ \\ \frac{3}{2} \\ \\ 9 \end{bmatrix}$

we have,

$|A| =2(10+3)-1(-5-0)+1(3-0) = 26+5+3 = 34 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(10+3) = 13$ $A_{12} =(-1)^{1+2}(-5-0) = 5$

$A_{13} =(-1)^{1+3}(3-0) = 3$ $A_{21} =(-1)^{2+1}(-5-3) = 8$

$A_{22} =(-1)^{2+2}(-10-0) = -10$ $A_{23} =(-1)^{2+3}(6-0) = -6$

$A_{31} =(-1)^{3+1}(-1+2) = 1$ $A_{32} =(-1)^{3+2}(-2-1) = 3$

$A_{33} =(-1)^{3+3}(-4-1) = -5$

$(adjA) =\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}\begin{bmatrix} 1\\\frac{3}{2} \\ 9 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 13+12+9\\5-15+27 \\ 3-9-45 \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 34\\17 \\ -51 \end{bmatrix}= \begin{bmatrix} 1\\\frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 1/2, and z = -3/2.

Question:12 Solve system of linear equations, using matrix method.

$\small x-y+z=4$

$\small 2x+y-3z=0$

$\small x+y+z=2$

Answer:

The given system of equations

$\small x-y+z=4$

$\small 2x+y-3z=0$

$\small x+y+z=2$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 1 &-1 &1 \\ 2 & 1 &-3 \\ 1& 1 &1 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 4\\ 0 \\ 2 \end{bmatrix}.$

we have,

$|A| =1(1+3)+1(2+3)+1(2-1) = 4+5+1= 10 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(1+3) = 4$ $A_{12} =(-1)^{1+2}(2+3) = -5$

$A_{13} =(-1)^{1+3}(2-1) = 1$ $A_{21} =(-1)^{2+1}(-1-1) = 2$

$A_{22} =(-1)^{2+2}(1-1) = 0$ $A_{23} =(-1)^{2+3}(1+1) = -2$

$A_{31} =(-1)^{3+1}(3-1) = 2$ $A_{32} =(-1)^{3+2}(-3-2) = 5$

$A_{33} =(-1)^{3+3}(1+2) = 3$

$(adjA) =\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}\begin{bmatrix} 4\\0 \\ 2 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 16+0+4\\-20+0+10 \\ 4+0+6 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 20\\-10 \\ 10 \end{bmatrix}= \begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2, y = -1, and z = 1.

Question:13 Solve system of linear equations, using matrix method.

$\small 2x+3y+3z=5$

$\small x-2y+z=-4$

$\small 3x-y-2z=3$

Answer:

The given system of equations

$\small 2x+3y+3z=5$

$\small x-2y+z=-4$

$\small 3x-y-2z=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &3 &3 \\ 1 & -2 &1 \\ 3& -1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 5\\ -4 \\ 3 \end{bmatrix}.$

we have,

$|A| =2(4+1) -3(-2-3)+3(-1+6) = 10+15+15 = 40$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(4+1) = 5$ $A_{12} =(-1)^{1+2}(-2-3) = 5$

$A_{13} =(-1)^{1+3}(-1+6) = 5$ $A_{21} =(-1)^{2+1}(-6+3) = 3$

$A_{22} =(-1)^{2+2}(-4-9) = -13$ $A_{23} =(-1)^{2+3}(-2-9) = 11$

$A_{31} =(-1)^{3+1}(3+6) = 9$ $A_{32} =(-1)^{3+2}(2-3) = 1$

$A_{33} =(-1)^{3+3}(-4-3) = -7$

$(adjA) =\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5&11 & -7 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}\begin{bmatrix} 5\\-4 \\ 3 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25-12+27\\25+52+3 \\ 25-44-21 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 40\\80 \\ -40 \end{bmatrix}= \begin{bmatrix} 1\\2 \\ -1 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 2, and z = -1.

Question:14 Solve system of linear equations, using matrix method.

$\small x-y+2z=7$

$\small 3x+4y-5z=-5$

$\small 2x-y+3z=12$

Answer:

The given system of equations

$\small x-y+2z=7$

$\small 3x+4y-5z=-5$

$\small 2x-y+3z=12$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 1 &-1 &2 \\ 3 & 4 &-5 \\ 2& -1 &3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 7\\ -5 \\ 12 \end{bmatrix}.$

we have,

$|A| =1(12-5) +1(9+10)+2(-3-8) = 7+19-22 = 4 \neq0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{12-5} = 7$ $A_{12} =(-1)^{1+2}(9+10) = -19$

$A_{13} =(-1)^{1+3}(-3-8) = -11$ $A_{21} =(-1)^{2+1}(-3+2) = 1$

$A_{22} =(-1)^{2+2}(3-4) = -1$ $A_{23} =(-1)^{2+3}(-1+2) = -1$

$A_{31} =(-1)^{3+1}(5-8) = -3$ $A_{32} =(-1)^{3+2}(-5-6) = 11$

$A_{33} =(-1)^{3+3}(4+3) = 7$

$(adjA) =\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}\begin{bmatrix} 7\\-5 \\ 12 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 49-5-36\\-133+5+132 \\ -77+5+84 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 8\\4 \\ 12 \end{bmatrix}= \begin{bmatrix} 2\\1 \\ 3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2, y = 1, and z = 3.

Question:15 If $A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$ , find $A^{-1}$. Using $A^{-1}$ solve the system of equations

$2x-3y+5z=11$

$3x+2y-4z=-5$

$x+y-2z=-3$

Answer:

The given system of equations

$2x-3y+5z=11$

$3x+2y-4z=-5$

$x+y-2z=-3$

can be written in the matrix form of AX =B, where

$A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 11\\ -5 \\ -3 \end{bmatrix}.$

we have,

$|A| =2(-4+4) +3(-6+4)+5(3-2) = 0-6+5 = -1 \neq0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{-4+4} = 0$ $A_{12} =(-1)^{1+2}(-6+4) = 2$

$A_{13} =(-1)^{1+3}(3-2) = 1$ $A_{21} =(-1)^{2+1}(6-5) = -1$

$A_{22} =(-1)^{2+2}(-4-5) = -9$ $A_{23} =(-1)^{2+3}(2+3) = -5$

$A_{31} =(-1)^{3+1}(12-10) = 2$ $A_{32} =(-1)^{3+2}(-8-15) = 23$

$A_{33} =(-1)^{3+3}(4+9) = 13$

$(adjA) =\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = -1\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix} = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}\begin{bmatrix} 11\\-5 \\ -3 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-5+6\\-22-45+69 \\ -11-25+39 \end{bmatrix} = \begin{bmatrix} 1\\2 \\ 3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 2, and z = 3.

Question:16 The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer:

So, let us assume the cost of onion, wheat, and rice be x, y and z respectively.

Then we have the equations for the given situation :

$4x+3y+2z = 60$

$2x+4y+6z = 90$

$6x+2y+3y = 70$

We can find the cost of each item per Kg by the matrix method as follows;

Taking the coefficients of x, y, and z as a matrix $A$.

We have;

$A = \begin{bmatrix} 4 &3 &2 \\ 2& 4 &6 \\ 6 & 2 & 3 \end{bmatrix},$ $X= \begin{bmatrix} x\\y \\ z \end{bmatrix}$ $and\ B = \begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}.$

$|A| = 4(12-12) -3(6-36)+2(4-24) = 0 +90-40 = 50 \neq 0$

Now, we will find the cofactors of A;

$A_{11} = (-1)^{1+1}(12-12) = 0$ $A_{12} = (-1)^{1+2}(6-36) = 30$

$A_{13} = (-1)^{1+3}(4-24) = -20$ $A_{21} = (-1)^{2+1}(9-4) = -5$

$A_{22} = (-1)^{2+2}(12-12) = 0$ $A_{23} = (-1)^{2+3}(8-18) = 10$

$A_{31} = (-1)^{3+1}(18-8) = 10$ $A_{32} = (-1)^{3+2}(24-4) = -20$

$A_{33} = (-1)^{3+3}(16-6) = 10$

Now we have adjA;

$adjA = \begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$s

So, the solutions can be found by $X = A^{-1}B = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}\begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-450+700\\1800+0-1400 \\ -1200+900+700 \end{bmatrix} =\frac{1}{50} \begin{bmatrix} 250\\400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5\\8 \\ 8 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 5, y = 8, and z = 8

Therefore, we have the cost of onions is Rs. 5 per Kg, the cost of wheat is Rs. 8 per Kg, and the cost of rice is Rs. 8 per kg.


Also read,

Topics Covered in Chapter 4, Determinants: Exercise 4.5

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.5.

1. System of Linear Equations in Matrix Form: A system like

$\begin{aligned} & a_1 x+b_1 y+c_1 z=d_1 \\ & a_2 x+b_2 y+c_2 z=d_2 \\ & a_3 x+b_3 y+c_3 z=d_3\end{aligned}$

is written in matrix form as: $AX=B$

Where:

- $A$ is the coefficient matrix,

- $X$ is the variable matrix,

- $B$ is the constant matrix.

2. Solution Using Matrix Inverse: If $A^{-1}$ exists, then the unique solution of the system is given by: $X=A^{-1} B$

3. Consistency Conditions:

- Consistent System (Unique Solution): $\operatorname{det} A \neq 0$

- Inconsistent or Dependent System: Requires further analysis when $\operatorname{det} A=0$

Also, read,

Frequently Asked Questions (FAQs)

Q: What is the definition of inconsistent system ?
A:

If the solution of a system of equations doesn't exist then it is called a inconsistent system.

Q: How many questions are there in the exercise 4.6 Class 12 Maths?
A:

There are 16 questions in the exercise 4.6 Class 12 Maths. The questions are solved with all the necessary steps. Students can follow the NCERT syllabus to get a good score in the board exam.

Q: The transpose of the row matrix is ?
A:

The transpose of the row matrix is the column matrix.

Q: The transpose of the column matrix is ?
A:

The transpose of the column matrix is the row matrix.

Q: If the determinant of matrix A is zero then matrix A is called ?
A:

If the determinant of matrix A is zero then matrix A is called singular matrix.

Q: If A is a square matrix of order 2 and |A| = 2 then det( transpose(A)) ?​
A:

|A^T| = |A| = 2

Q: If three-point are collinear then find area of triangle formed by these points ?
A:

If three-point are collinear then the area of triangle formed by these points is zero.

Q: What is the definition of consistent system ?
A:

If solutions of a system of equations exist then it is called a consistent system.

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Application Date

1 Aug'25 - 31 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

1 Aug'25 - 31 Oct'25 (Online)

Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 21 Oct'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.

Hope this information is useful to you.

Hello,

Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.

Hope this information is useful to you.

Hello Pruthvi,

Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.

The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.

For more details about the KCET Exam preparation, CLICK HERE.

I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.

Thank you, and I wish you all the best in your bright future.

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.