VMC VIQ Scholarship Test
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
NCERT Solutions for Exercise 5.8 Class 12 Maths Chapter 5 Continuity and Differentiability are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. In the previous exercises of this Class 12 NCERT syllabuschapter, you have already learned about the first-order derivatives and second-order derivatives. In NCERT solutions for Class 12 Maths chapter 5 exercise 5.8, you will learn about the two important theorems called Rolle's theorem and the Mean value theorem. These theorems are used to prove the inequality of derivatives, study the properties of the derivatives. The proof of these theorems also given in the Class 12 Maths ch 5 ex 5.8. You can go through the proof to get in-depth knowledge of these theorems.
There are some examples given in the NCERT book before the Class 12th Maths chapter 5 exercise 5.8. You should be thorough with the exercise 5.8 Class 12 Maths as one question from this exercise is generally asked in the board exams. 12th class Maths exercise 5.1 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.
Also, see
Question:1 Verify Rolle’s theorem for the function
Answer:
According to Rolle's theorem function must be
a ) continuous in given closed interval say [x,y]
b ) differentiable in given open interval say (x,y)
c ) f(x) = f(y)
Then their exist a such that
If all these conditions are satisfies then we can verify Rolle's theorem
Given function is
Now, being a polynomial function, is both continuous in [-4,2] and differentiable in (-4,2)
Now,
Similalrly,
Therefore, value of and value of f(x) at -4 and 2 are equal
Now,
According to roll's theorem their is point c , such that
Now,
And
Hence, Rolle's theorem is verified for the given function
Answer:
According to Rolle's theorem function must be
a ) continuous in given closed interval say [x,y]
b ) differentiable in given open interval say (x,y)
c ) f(x) = f(y)
Then their exist a such that
If all these conditions are satisfied then we can verify Rolle's theorem
Given function is
It is clear that Given function is not continuous for each and every point in [5,9]
Now, lets check differentiability of f(x)
L.H.L. at x = n ,
Now,
R.H.L. at x = n ,
We can clearly see that R.H.L. is not equal to L.H.L.
Therefore, the function is not differential in (5,9)
Hence, Rolle's theorem is not applicable for given function ,
Answer:
According to Rolle's theorem function must be
a ) continuous in given closed interval say [x,y]
b ) differentiable in given open interval say (x,y)
c ) f(x) = f(y)
Then their exist a such that
If all these conditions are satisfies then we can verify Rolle's theorem
Given function is
It is clear that Given function is not continuous for each and every point in [-2,2]
Now, lets check differentiability of f(x)
L.H.L. at x = n ,
Now,
R.H.L. at x = n ,
We can clearly see that R.H.L. is not equal to L.H.L.
Therefore, function is not differential in (-2,2)
Hence, Rolle's theorem is not applicable for given function ,
Answer:
According to Rolle's theorem function must be
a ) continuous in given closed interval say [x,y]
b ) differentiable in given open interval say (x,y)
c ) f(x) = f(y)
Then there exist a such that
If all these conditions are satisfied then we can verify Rolle's theorem
Given function is
Now, being a polynomial , function is continuous in [1,2] and differentiable in(1,2)
Now,
And
Therefore,
Therefore, All conditions are not satisfied
Hence, Rolle's theorem is not applicable for given function ,
Question:3 If is a differentiable function and if does not vanish
anywhere, then prove that
Answer:
It is given that
is a differentiable function
Now, f is a differential function. So, f is also a continuous function
We obtain the following results
a ) f is continuous in [-5,5]
b ) f is differentiable in (-5,5)
Then, by Mean value theorem we can say that there exist a c in (-5,5) such that
Now, it is given that does not vanish anywhere
Therefore,
Hence proved
Question:4 Verify Mean Value Theorem, if in the interval [a, b], where
a = 1 and b = 4.
Answer:
Condition for M.V.T.
If
a ) f is continuous in [a,b]
b ) f is differentiable in (a,b)
Then, there exist a c in (a,b) such that
It is given that
and interval is [1,4]
Now, f is a polynomial function , is continuous in[1,4] and differentiable in (1,4)
And
and
Then, by Mean value theorem we can say that their exist a c in (1,4) such that
Now,
And
Hence, mean value theorem is verified for the function
Answer:
Condition for M.V.T.
If
a ) f is continuous in [a,b]
b ) f is differentiable in (a,b)
Then, their exist a c in (a,b) such that
It is given that
and interval is [1,3]
Now, f being a polynomial function , is continuous in[1,3] and differentiable in (1,3)
And
and
Then, by Mean value theorem we can say that their exist a c in (1,4) such that
Now,
And
Hence, mean value theorem is varified for following function and is the only point where f '(c) = 0
Answer:
According to Mean value theorem function
must be
a ) continuous in given closed interval say [a,b]
b ) differentiable in given open interval say (a,b)
Then their exist a such that
If all these conditions are satisfies then we can verify mean value theorem
Given function is
It is clear that Given function is not continuous for each and every point in [5,9]
Now, lets check differentiability of f(x)
L.H.L. at x = n ,
Now,
R.H.L. at x = n ,
We can clearly see that R.H.L. is not equal to L.H.L.
Therefore, function is not differential in (5,9)
Hence, Mean value theorem is not applicable for given function ,
Similaly,
Given function is
It is clear that Given function is not continuous for each and every point in [-2,2]
Now, lets check differentiability of f(x)
L.H.L. at x = n ,
Now,
R.H.L. at x = n ,
We can clearly see that R.H.L. is not equal to L.H.L.
Therefore, function is not differential in (-2,2)
Hence, Mean value theorem is not applicable for given function ,
Similarly,
Given function is
Now, being a polynomial , function is continuous in [1,2] and differentiable in(1,2)
Now,
And
Now,
Now,
And
Therefore, mean value theorem is applicable for the function
In Class 12 Maths chapter 5 exercise 5.8 solutions, you will get 6 questions related to verifying the two theorems called the mean value theorem and Rolle's theorem. The three examples given before this exercise are also related to the same also. All the questions in the Class 12th Maths chapter 5 exercise 5.8 are very similar but you must solve all the problems by yourself to get familiar with these types of questions.
Also Read| Continuity and Differentiability Class 12th Chapter 5 Notes
As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters
Also see-
Happy learning!!!
No, you don't need to buy the NCERT solution book for Class 12. NCERT solutions can be easily downloaded from careers360 website. Chapter wise solutions for Class 6 to 10 Mathematics and Science are given. Also solutions to Class 11 and 12 Mathematics, Physics, Chemistry and Biology are given.
Yes, Click here to get NCERT Solutions for Class 12 Maths.
No, the f(x) needs to be a continuous function at point ‘a’ to be a differentiable at the given point ‘a’.
CBSE provides an additional question book for practice which is called NCERT exemplar book.
CBSE only provides the NCERT exemplar book which you can solve but it doesn't provide NCERT exemplar solutions.
Yes, click on the link to download NCERT Exemplar Solutions for Class 11 and Class 12.
By clicking on the link, you will get Chapter-Wise NCERT Exemplar Solutions for Class 12 physics.
NCERT Solutions for Class 12 maths are very useful when you are facing problems while NCERT problems. You can go through these solutions to get conceptual clarity.
Application Date:05 September,2024 - 20 September,2024
Admit Card Date:13 September,2024 - 07 October,2024
Admit Card Date:13 September,2024 - 07 October,2024
Application Date:17 September,2024 - 30 September,2024
hello mahima,
If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.
hope this helps.
Hello Akash,
If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.
You can get the Previous Year Questions (PYQs) on the official website of the respective board.
I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.
Thank you and wishing you all the best for your bright future.
Hello student,
If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:
Remember
, these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.
I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.
Good luck with your studies!
Hello Aspirant , Hope your doing great . As per your query , your eligible for JEE mains in the year of 2025 , Every candidate can appear for the JEE Main exam 6 times over three consecutive years . The JEE Main exam is held two times every year, in January and April.
Hi there,
Hope you are doing fine
Yes you are certainly eligible for giving the jee exam in the year 2025. You must pass the maths exam with at least 75% criteria as required by jee and provide the marksheet and the passing certificate while registering for the exam.
Pursuing maths as an additional subject while taking biology as your main subject does not offer any hindrance in you appearing for the jee examination. It is indeed an privilege to pursue both maths and biology as the subjects and prepare for the same.
There will be no issue in filling the form while registering for the exam as it will only require your basic details and marksheet which you can provide by attaching the marksheet of maths also. Also, a detailed roadmap is also available on the official websites on how to fill the registration form. So you can fill the form easily.
Hope this resolves your query.
Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.
Register for Tallentex '25 - One of The Biggest Talent Encouragement Exam
As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
Accepted by more than 11,000 universities in over 150 countries worldwide
Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer! Trusted by 3,500+ universities globally