Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
As a trigonometric function transforms angles into values, an inverse trigonometric function can rewind the process and bring back the angles from the values. Many of the students, when trying to apply inverse trigonometric functions in any maths problem, feel confused and puzzled as they don’t have a clear understanding of the properties of the inverse trigonometric functions. Well, exercise 2.2 from the inverse trigonometric functions chapter can help the students in this regard. This part of the chapter contains the important properties and formulas of inverse trigonometric functions. This article on NCERT solutions for Exercise 2.2 Class 12 Maths Chapter 2 - Inverse Trigonometric Functions, offers clear and step-by-step solutions for the exercise problems, so that students can clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question:1 Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$
Answer:
Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$
where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$ .
Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$
Take R.H.S value
$\sin^{-1}(3x - 4x^3)$
= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$
= $\sin^{-1}(\sin 3\theta)$
= $3\theta$
= $3\sin^{-1}x$ = L.H.S
Question:2 Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$
Answer:
Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .
Take $\cos^{-1}x = \theta$ or $\cos \theta = x$ ;
Then we have;
R.H.S.
$\cos^{-1}(4x^3 - 3x)$
= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$
= $\cos^{-1}(\cos3\theta)$
= $3\theta$
= $3\cos^{-1}x$ = L.H.S
Hence Proved.
Question:3 Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$
Answer:
We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$
Take
$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$
$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$
$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$
$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$
$=\frac{1}{2}\tan^{-1}x$ is the simplified form.
Question:4 Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
Answer:
Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$
We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$
Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,
Then we have,
$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$
$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$
$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$
Hence the simplest form is $\frac{x}{2}$
Question: 5 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$
Answer:
Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$
So,
$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$
Taking $\cos x$ common from numerator and denominator.
We get:
$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$
$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$
= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$
= $\frac{\pi}{4} - x$ is the simplest form.
Question:6 Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Answer:
Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$
Take $x = a\sin \theta$ or
$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;
$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$
$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$
$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$
$=\tan^{-1}\left ( \tan \theta \right )$
$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.
Question:7 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$
Answer:
Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$
Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$
So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$
$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;
$= \tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right) = \tan^{-1}\left(\frac{3a^3\tan \theta - a^3\tan^3 \theta}{a^3 - 3a^3\tan^2 \theta} \right)$
and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;
$=3 \theta$
$=3 \tan^{-1}(\frac{x}{a})$
hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$ .
Question:8 Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
Answer:
Given equation:
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$
So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$
Then we have,
$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$
Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .
$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$
$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .
Question:9 Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$
Answer:
Taking the value $x = \tan \Theta$ or $\tan^{-1}x = \Theta$ and $y = \tan \Theta$ or $\tan^{-1} y = \Theta$ then we have,
= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,
= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$
$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$
$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$
Then,
$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$
$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$
$=\frac{x+y}{1-xy}$ Ans.
Question:10 Find the values of each of the expressions in Exercises 16 to 18. $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$
Answer:
Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;
We know that $\sin^{-1}(\sin x) = x$
If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .
Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$
We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:
= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$
= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$
$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$
Question:11 Find the values of each of the expressions in Exercises 16 to 18. $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$
Answer:
As we know $\tan^{-1}\left ( \tan x \right ) =x$
If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .
So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;
$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :
$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$
Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$
and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$
Question:12 Find the values of each of the expressions in Exercises 16 to 18. $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
Answer:
Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
we can take $\sin^{-1}\frac{3}{5} = x$ ,
then $\sin x = \frac{3}{5}$
or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$
$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$
$\Rightarrow \tan^{-1}\frac{3}{4}= x$
We have similarly;
$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$
Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$
$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$
$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from As, $\left[ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \left( \frac{x+y}{1 - xy} \right) \right]$
$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$
Question:13 $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to
(A) $\frac{7\pi}{6}$
(B) $\frac{5\pi}{6}$
(C) $\frac{\pi}{3}$
(D) $\frac{\pi}{6}$
Answer:
As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .
In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,
$\frac{7\pi}{6} \notin [0,\pi]$
hence we have then,
$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$
$\left [ \because \cos (2\pi + x) = \cos x \right ]$
Therefore we have $\cos^{-1}\left( \cos \frac{7\pi}{6} \right) = \cos^{-1}\left( \cos \frac{5\pi}{6} \right) = \frac{5\pi}{6}$
Hence the correct answer is $\frac{5\pi}{6}$ (B).
Question:14 $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $1$
Answer:
Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;
$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or
Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,
$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$
Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .
Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$
Hence the correct answer is D.
Question:15 $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to
(A) $\pi$
(B) $-\frac{\pi}{2}$
(C) 0
(D) $2\sqrt3$
Answer:
We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;
finding the value of $\cot^{-1}(-\sqrt3)$ :
Assume $\cot^{-1}(-\sqrt3) =y$ then,
$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .
Hence, principal value is $\frac{5\pi}{6}$
Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$
and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$
so, we have now,
$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$
$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$
or, $= \frac{ -\pi}{2}$
Hence the answer is option (B).
Also Read,
The main topic covered in NCERT Class 12 Chapter 2, Inverse Trigonometric Functions: Exercise 2.2 is:
Properties of Inverse Trigonometric Functions: Some basic properties of trigonometric functions are given as:
Take Aakash iACST and get instant scholarship on coaching programs.
Also, read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
Yes, just like integration, it is quite useful in Physics as well as Chemistry. These concepts are discussed in ex 2.2 class 12 comprehensively. To find the value of angles its quite useful. NCERT syllabus can be followed for the preparation of CBSE board exam.
Inverse trigonometric functions
It is used to find angles from a given angle’s trigonometric ratios.
Make short notes and revise them multiple times. Practice questions so the brain retains it. For more questions use NCERT exemplar.
No, It is not mandatory but solving questions becomes easy if values are by heart.
Take step by step method to reach what is asked starting from the given conditions.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE