NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 - Inverse Trigonometric Functions

NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 - Inverse Trigonometric Functions

Komal MiglaniUpdated on 30 Apr 2025, 03:25 PM IST

As a trigonometric function transforms angles into values, an inverse trigonometric function can rewind the process and bring back the angles from the values. Many of the students, when trying to apply inverse trigonometric functions in any maths problem, feel confused and puzzled as they don’t have a clear understanding of the properties of the inverse trigonometric functions. Well, exercise 2.2 from the inverse trigonometric functions chapter can help the students in this regard. This part of the chapter contains the important properties and formulas of inverse trigonometric functions. This article on NCERT solutions for Exercise 2.2 Class 12 Maths Chapter 2 - Inverse Trigonometric Functions, offers clear and step-by-step solutions for the exercise problems, so that students can clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

This Story also Contains

  1. Class 12 Maths Chapter 2 Exercise 2.2 Solutions: Download PDF
  2. NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Exercise 2.2
  3. Topics covered in Chapter 2, Inverse Trigonometric Functions: Exercise 2.2
  4. NCERT Solutions Subject Wise
  5. NCERT Exemplar Solutions Subject Wise

Class 12 Maths Chapter 2 Exercise 2.2 Solutions: Download PDF

Download PDF

NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Exercise 2.2

Question:1 Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$

Answer:

Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$

where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$ .

Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$

Take R.H.S value

$\sin^{-1}(3x - 4x^3)$

= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$

= $\sin^{-1}(\sin 3\theta)$

= $3\theta$

= $3\sin^{-1}x$ = L.H.S

Question:2 Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$

Answer:

Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .

Take $\cos^{-1}x = \theta$ or $\cos \theta = x$ ;

Then we have;

R.H.S.

$\cos^{-1}(4x^3 - 3x)$

= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$

= $\cos^{-1}(\cos3\theta)$

= $3\theta$

= $3\cos^{-1}x$ = L.H.S

Hence Proved.

Question:3 Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$

Answer:

We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$

Take

$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$

$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$

$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$

$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$

$=\frac{1}{2}\tan^{-1}x$ is the simplified form.

Question:4 Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$

Answer:

Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$

We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$

Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,

Then we have,

$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$

$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$

$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$

Hence the simplest form is $\frac{x}{2}$

Question: 5 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$

Answer:

Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$

So,

$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$

Taking $\cos x$ common from numerator and denominator.

We get:

$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$

$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$

= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$

= $\frac{\pi}{4} - x$ is the simplest form.

Question:6 Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$

Answer:

Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$

Take $x = a\sin \theta$ or

$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;

$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$

$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$

$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$

$=\tan^{-1}\left ( \tan \theta \right )$

$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.

Question:7 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$

Answer:

Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$

Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$

So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$

$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;

$= \tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right) = \tan^{-1}\left(\frac{3a^3\tan \theta - a^3\tan^3 \theta}{a^3 - 3a^3\tan^2 \theta} \right)$

and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;

$=3 \theta$

$=3 \tan^{-1}(\frac{x}{a})$

hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$ .

Question:8 Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$

Answer:

Given equation:

$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$

So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$

Then we have,

$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$

Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .

$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$

$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .

Question:9 Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$

Answer:

Taking the value $x = \tan \Theta$ or $\tan^{-1}x = \Theta$ and $y = \tan \Theta$ or $\tan^{-1} y = \Theta$ then we have,

= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,

= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$

$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$

$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$

Then,

$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$

$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$

$=\frac{x+y}{1-xy}$ Ans.

Question:10 Find the values of each of the expressions in Exercises 16 to 18. $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$

Answer:

Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;

We know that $\sin^{-1}(\sin x) = x$

If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .

Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$

We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:

= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$

= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$

$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$

Question:11 Find the values of each of the expressions in Exercises 16 to 18. $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$

Answer:

As we know $\tan^{-1}\left ( \tan x \right ) =x$

If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .

So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;

$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :

$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$

Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$

Question:12 Find the values of each of the expressions in Exercises 16 to 18. $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

Answer:

Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

we can take $\sin^{-1}\frac{3}{5} = x$ ,

then $\sin x = \frac{3}{5}$

or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$

$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$

$\Rightarrow \tan^{-1}\frac{3}{4}= x$

We have similarly;

$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$

Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$

$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from As, $\left[ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \left( \frac{x+y}{1 - xy} \right) \right]$

$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$

Question:13 $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to

(A) $\frac{7\pi}{6}$

(B) $\frac{5\pi}{6}$

(C) $\frac{\pi}{3}$

(D) $\frac{\pi}{6}$

Answer:

As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .

In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,

$\frac{7\pi}{6} \notin [0,\pi]$

hence we have then,

$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$

$\left [ \because \cos (2\pi + x) = \cos x \right ]$

Therefore we have $\cos^{-1}\left( \cos \frac{7\pi}{6} \right) = \cos^{-1}\left( \cos \frac{5\pi}{6} \right) = \frac{5\pi}{6}$

Hence the correct answer is $\frac{5\pi}{6}$ (B).

Question:14 $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to

(A) $\frac{1}{2}$

(B) $\frac{1}{3}$

(C) $\frac{1}{4}$

(D) $1$

Answer:

Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;

$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or

Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,

$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$

Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .

Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$

Hence the correct answer is D.

Question:15 $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to

(A) $\pi$

(B) $-\frac{\pi}{2}$

(C) 0

(D) $2\sqrt3$

Answer:

We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;

finding the value of $\cot^{-1}(-\sqrt3)$ :

Assume $\cot^{-1}(-\sqrt3) =y$ then,

$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .

Hence, principal value is $\frac{5\pi}{6}$

Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$

and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$

so, we have now,

$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$

$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$

or, $= \frac{ -\pi}{2}$

Hence the answer is option (B).

Also Read,

Topics covered in Chapter 2, Inverse Trigonometric Functions: Exercise 2.2

The main topic covered in NCERT Class 12 Chapter 2, Inverse Trigonometric Functions: Exercise 2.2 is:

Properties of Inverse Trigonometric Functions: Some basic properties of trigonometric functions are given as:

  • $\sin(\sin^{-1}x)=x$ for all $x$ belongs to [$-1,1$]
  • $\sin^{-1}(\sin x)=x$ for all $x$ belongs to [$-\frac{\pi}{2},\frac{\pi}{2}$]

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Is inverse trigonometric functions used in Physics also ?
A:

Yes, just like integration, it is quite useful in Physics as well as Chemistry. These concepts are discussed in ex 2.2 class 12 comprehensively. To find the value of angles its quite useful. NCERT syllabus can be followed for the preparation of CBSE board exam.

Q: Inverse functions of the trigonometric functions are known as ……..?
A:

Inverse trigonometric functions

Q: What is the use of Inverse trigonometric functions?
A:

It is used to find angles from a given angle’s trigonometric ratios. 

Q: How to memorise principle values of basic inverse trigonometric functions ?
A:

Make short notes and revise them multiple times. Practice questions so the brain retains it. For more questions use NCERT exemplar.

Q: Is it required to memorise the principal value of basic inverse trigonometric functions ?
A:

No, It is not mandatory but solving questions becomes easy if values are by heart. 

Q: How to solve proof related questions ?
A:

Take step by step method to reach what is asked starting from the given conditions.

Articles
|
Upcoming School Exams
Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12