NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 - Inverse Trigonometric Functions

NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2 - Inverse Trigonometric Functions

Komal MiglaniUpdated on 30 Apr 2025, 03:25 PM IST

As a trigonometric function transforms angles into values, an inverse trigonometric function can rewind the process and bring back the angles from the values. Many of the students, when trying to apply inverse trigonometric functions in any maths problem, feel confused and puzzled as they don’t have a clear understanding of the properties of the inverse trigonometric functions. Well, exercise 2.2 from the inverse trigonometric functions chapter can help the students in this regard. This part of the chapter contains the important properties and formulas of inverse trigonometric functions. This article on NCERT solutions for Exercise 2.2 Class 12 Maths Chapter 2 - Inverse Trigonometric Functions, offers clear and step-by-step solutions for the exercise problems, so that students can clear their doubts and understand the logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

LiveCBSE 2026 Admit Card LIVE: CBSE Class 10, 12 hall ticket soon at cbse.gov.in; direct link, datesheet, updatesJan 23, 2026 | 6:41 PM IST

The general exam day criteria listed in the Class 10th date sheet 2025–2026 must be followed by students:

  • At least thirty minutes before the reporting time, arrive at the examination location.
  • For every exam day, bring your Class 10 admit card or hall pass.
  • During the exam, refrain from any malpractice.
  • Pens, pencils, erasers, and rulers are examples of necessary stationery.
  • Electronic devices and gadgets are not permitted inside the examination centre, so leave them at home.
Read More

This Story also Contains

  1. Class 12 Maths Chapter 2 Exercise 2.2 Solutions: Download PDF
  2. NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Exercise 2.2
  3. Topics covered in Chapter 2, Inverse Trigonometric Functions: Exercise 2.2
  4. NCERT Solutions Subject Wise
  5. NCERT Exemplar Solutions Subject Wise

Class 12 Maths Chapter 2 Exercise 2.2 Solutions: Download PDF

Download PDF

NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Exercise 2.2

Question:1 Prove the following: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]$

Answer:

Given to prove: $3\sin^{-1}x = \sin^{-1}(3x - 4x^3)$

where, $x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ]$ .

Take $\theta= \sin ^{-1}x$ or $x = \sin \theta$

Take R.H.S value

$\sin^{-1}(3x - 4x^3)$

= $\sin^{-1}(3\sin \theta - 4\sin^3 \theta)$

= $\sin^{-1}(\sin 3\theta)$

= $3\theta$

= $3\sin^{-1}x$ = L.H.S

Question:2 Prove the following: $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$

Answer:

Given to prove $3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]$ .

Take $\cos^{-1}x = \theta$ or $\cos \theta = x$ ;

Then we have;

R.H.S.

$\cos^{-1}(4x^3 - 3x)$

= $\cos^{-1}(4\cos^3 \theta - 3\cos\theta)$ $\left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]$

= $\cos^{-1}(\cos3\theta)$

= $3\theta$

= $3\cos^{-1}x$ = L.H.S

Hence Proved.

Question:3 Write the following functions in the simplest form: $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0$

Answer:

We have $\tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}$

Take

$\therefore$ $\tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}$

$=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )$

$=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )$

$=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x$

$=\frac{1}{2}\tan^{-1}x$ is the simplified form.

Question:4 Write the following functions in the simplest form: $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$

Answer:

Given that $\tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi$

We have in inside the root the term : $\frac{1-\cos x}{1 + \cos x}$

Put $1-\cos x = 2\sin^2\frac{x}{2}$ and $1+\cos x = 2\cos^2\frac{x}{2}$ ,

Then we have,

$=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )$

$=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )$

$=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}$

Hence the simplest form is $\frac{x}{2}$

Question: 5 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}$

Answer:

Given $\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$ where $x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})$

So,

$=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )$

Taking $\cos x$ common from numerator and denominator.

We get:

$=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )$

$=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )$

= $\tan^{-1}(1) - \tan^{-1}(\tan x)$ as, $\left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]$

= $\frac{\pi}{4} - x$ is the simplest form.

Question:6 Write the following functions in the simplest form: $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$

Answer:

Given that $\tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a$

Take $x = a\sin \theta$ or

$\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ and putting it in the equation above;

$\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}$

$=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}$

$=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )$

$=\tan^{-1}\left ( \tan \theta \right )$

$=\theta = \sin^{-1}\left ( \frac{x}{a} \right )$ is the simplest form.

Question:7 Write the following functions in the simplest form: $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}$

Answer:

Given $\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$

Here we can take $x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta$

So, $\theta = \tan^{-1}\left ( \frac{x}{a} \right )$

$\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )$ will become;

$= \tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right) = \tan^{-1}\left(\frac{3a^3\tan \theta - a^3\tan^3 \theta}{a^3 - 3a^3\tan^2 \theta} \right)$

and as $\left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ]$ ;

$=3 \theta$

$=3 \tan^{-1}(\frac{x}{a})$

hence the simplest form is $3 \tan^{-1}(\frac{x}{a})$ .

Question:8 Find the values of each of the following: $\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$

Answer:

Given equation:

$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]$

So, solving the inner bracket first, we take the value of $\sin x^{-1} \frac{1}{2} = x.$

Then we have,

$\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )$

Therefore, we can write $\sin^{-1} \frac{1}{2} = \frac{\pi}{6}$ .

$\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]$

$= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4}$ .

Question:9 Find the values of each of the following: $\tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0$ and $xy<1$

Answer:

Taking the value $x = \tan \Theta$ or $\tan^{-1}x = \Theta$ and $y = \tan \Theta$ or $\tan^{-1} y = \Theta$ then we have,

= $\tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ]$ ,

= $\tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]$

$\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]$

$\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]$

Then,

$=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ]$ $\because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]$

$=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]$

$=\frac{x+y}{1-xy}$ Ans.

Question:10 Find the values of each of the expressions in Exercises 16 to 18. $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$

Answer:

Given $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ ;

We know that $\sin^{-1}(\sin x) = x$

If the value of x belongs to $\left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$ then we get the principal values of $\sin^{-1}x$ .

Here, $\frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]$

We can write $\sin^{-1}\left (\sin\frac{2\pi}{3} \right )$ is as:

= $\sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]$

= $\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]$ where $\frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]$

$\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}$

Question:11 Find the values of each of the expressions in Exercises 16 to 18. $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$

Answer:

As we know $\tan^{-1}\left ( \tan x \right ) =x$

If $x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ).$ which is the principal value range of $\tan^{-1}x$ .

So, as in $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ ;

$\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

Hence we can write $\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ as :

$\tan^{-1}\left (\tan\frac{3\pi}{4} \right )$ = $\tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]$

Where $-\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )$

and $\therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}$

Question:12 Find the values of each of the expressions in Exercises 16 to 18. $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

Answer:

Given that $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

we can take $\sin^{-1}\frac{3}{5} = x$ ,

then $\sin x = \frac{3}{5}$

or $\cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}$

$\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}$

$\Rightarrow \tan^{-1}\frac{3}{4}= x$

We have similarly;

$\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}$

Therefore we can write $\tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )$

$=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )$

$=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ]$ from As, $\left[ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \left( \frac{x+y}{1 - xy} \right) \right]$

$=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}$

Question:13 $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ is equal to

(A) $\frac{7\pi}{6}$

(B) $\frac{5\pi}{6}$

(C) $\frac{\pi}{3}$

(D) $\frac{\pi}{6}$

Answer:

As we know that $\cos^{-1} (cos x ) = x$ if $x\epsilon [0,\pi]$ and is principal value range of $\cos^{-1}x$ .

In this case $\cos^{-1}\left(\cos\frac{7\pi}{6} \right )$ ,

$\frac{7\pi}{6} \notin [0,\pi]$

hence we have then,

$\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) =$ $\cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]$

$\left [ \because \cos (2\pi + x) = \cos x \right ]$

Therefore we have $\cos^{-1}\left( \cos \frac{7\pi}{6} \right) = \cos^{-1}\left( \cos \frac{5\pi}{6} \right) = \frac{5\pi}{6}$

Hence the correct answer is $\frac{5\pi}{6}$ (B).

Question:14 $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ is equal to

(A) $\frac{1}{2}$

(B) $\frac{1}{3}$

(C) $\frac{1}{4}$

(D) $1$

Answer:

Solving the inner bracket of $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ ;

$\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right )$ or

Take $\sin^{-1}\left(-\frac{1}{2} \right ) = x$ then,

$\sin x =-\frac{1}{2}$ and we know the range of principal value of $\sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].$

Therefore we have $\sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6}$ .

Hence, $\sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1$

Hence the correct answer is D.

Question:15 $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ is equal to

(A) $\pi$

(B) $-\frac{\pi}{2}$

(C) 0

(D) $2\sqrt3$

Answer:

We have $\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)$ ;

finding the value of $\cot^{-1}(-\sqrt3)$ :

Assume $\cot^{-1}(-\sqrt3) =y$ then,

$\cot y = -\sqrt 3$ and the range of the principal value of $\cot^{-1}$ is $(0,\pi)$ .

Hence, principal value is $\frac{5\pi}{6}$

Therefore $\cot^{-1} (-\sqrt3) = \frac {5\pi}{6}$

and $\tan^{-1} \sqrt3 = \frac{\pi}{3}$

so, we have now,

$\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}$

$= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}$

or, $= \frac{ -\pi}{2}$

Hence the answer is option (B).

Also Read,

Topics covered in Chapter 2, Inverse Trigonometric Functions: Exercise 2.2

The main topic covered in NCERT Class 12 Chapter 2, Inverse Trigonometric Functions: Exercise 2.2 is:

Properties of Inverse Trigonometric Functions: Some basic properties of trigonometric functions are given as:

  • $\sin(\sin^{-1}x)=x$ for all $x$ belongs to [$-1,1$]
  • $\sin^{-1}(\sin x)=x$ for all $x$ belongs to [$-\frac{\pi}{2},\frac{\pi}{2}$]

Also, read,

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: Is inverse trigonometric functions used in Physics also ?
A:

Yes, just like integration, it is quite useful in Physics as well as Chemistry. These concepts are discussed in ex 2.2 class 12 comprehensively. To find the value of angles its quite useful. NCERT syllabus can be followed for the preparation of CBSE board exam.

Q: Inverse functions of the trigonometric functions are known as ……..?
A:

Inverse trigonometric functions

Q: What is the use of Inverse trigonometric functions?
A:

It is used to find angles from a given angle’s trigonometric ratios. 

Q: How to memorise principle values of basic inverse trigonometric functions ?
A:

Make short notes and revise them multiple times. Practice questions so the brain retains it. For more questions use NCERT exemplar.

Q: Is it required to memorise the principal value of basic inverse trigonometric functions ?
A:

No, It is not mandatory but solving questions becomes easy if values are by heart. 

Q: How to solve proof related questions ?
A:

Take step by step method to reach what is asked starting from the given conditions.

Articles
|
Upcoming School Exams
Ongoing Dates
Manipur board 12th Admit Card Date

17 Dec'25 - 20 Mar'26 (Online)

Ongoing Dates
Odisha CHSE Admit Card Date

19 Dec'25 - 25 Mar'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers

I hope this information helps you.

Thank you.

Hello

You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26

I hope this information helps you.

Thank you.

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Hello,

Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.

https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026

I hope it will help you. For any further query please let me know.

Thank you.