Careers360 Logo
NCERT Solutions for Exercise 2.2 Class 12 Maths Chapter 2 - Inverse Trigonometric Functions

NCERT Solutions for Exercise 2.2 Class 12 Maths Chapter 2 - Inverse Trigonometric Functions

Edited By Ramraj Saini | Updated on Dec 03, 2023 01:48 PM IST | #CBSE Class 12th

NCERT Solutions For Class 12 Maths Chapter 2 Exercise 2.2

NCERT Solutions for Exercise 2.2 Class 12 Maths Chapter 2 Inverse Trigonometric Functions are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT Solutions for Class 12 Maths chapter 2 exercise 2.1 talks about the principal values in a given range of various trigonometric functions. Exercise 2.2 Class 12 Maths basically deals with questions in which a certain range of the angle is provided. NCERT Solutions for Class 12 Maths chapter 2 exercise 2.2 has some questions which are quite tricky. Silly mistake chances are quite high. So practice them well before the exam with precision. Also below is the list of other NCERT exercises which can be referred to for more understanding.

12th class Maths exercise 2.1 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Apply to Aakash iACST Scholarship Test 2024

Applications for Admissions are open.
Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

ALLEN Digital Scholarship Admission Test (ADSAT)

Register FREE for ALLEN Digital Scholarship Admission Test (ADSAT)

Assess NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2

Download PDF


NCERT Solutions For Class 12 Maths Chapter 2 Inverse Trigonometric Functions: Exercise 2.2

Question:1 Prove the following: 3\sin^{-1}x = \sin^{-1}(3x - 4x^3),\;\;x\in\left[-\frac{1}{2},\frac{1}{2} \right ]

Answer:

Given to prove: 3\sin^{-1}x = \sin^{-1}(3x - 4x^3)

where, x\:\epsilon \left[-\frac{1}{2},\frac{1}{2} \right ] .

Take \theta= \sin ^{-1}x or x = \sin \theta

Take R.H.S value

\sin^{-1}(3x - 4x^3)

= \sin^{-1}(3\sin \theta - 4\sin^3 \theta)

= \sin^{-1}(\sin 3\theta)

= 3\theta

= 3\sin^{-1}x = L.H.S

Question:2 Prove the following: 3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ]

Answer:

Given to prove 3\cos^{-1} x = \cos^{-1}(4x^3 - 3x), \;\;x\in\left[\frac{1}{2},1 \right ] .

Take \cos^{-1}x = \theta or \cos \theta = x ;

Then we have;

R.H.S.

\cos^{-1}(4x^3 - 3x)

= \cos^{-1}(4\cos^3 \theta - 3\cos\theta) \left [ \because 4\cos^3 \theta - 3\cos\theta = \cos3 \theta \right ]

= \cos^{-1}(\cos3\theta)

= 3\theta

= 3\cos^{-1}x = L.H.S

Hence Proved.

Question:3 Prove the following: \tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}

Answer:

Given to prove \tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}

We have L.H.S

\tan^{-1}\frac{2}{11} + \tan^{-1}\frac{7}{24}

=\tan^{-1}\frac{\frac{2}{11} + \frac{7}{24} }{1 - \left ( \frac{2}{11}\times\frac{7}{24} \right ) } \left [ \because \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x +y}{1 - xy} \right ]

=\tan^{-1}\frac{11\times 24 }{\frac{11\times24 -14}{11\times 24} }

=\tan^{-1}\frac{48 + 77}{264 -14}

=\tan^{-1}\left ( \frac{125}{250}\right ) = \tan^{-1}\left ( \frac{1}{2} \right )

= R.H.S

Hence proved.

Question:4 Prove the following: 2\tan^{-1} \frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}

Answer:

Given to prove 2\tan^{-1} \frac{1}{2} + \tan^{-1}\frac{1}{7} = \tan^{-1}\frac{31}{17}

Then taking L.H.S.

We have 2\tan^{-1} \frac{1}{2} + \tan^{-1}\frac{1}{7}

=\tan^{-1} \frac{2.\frac{1}{2}}{1 - \left ( \frac{1}{2} \right )^2} + \tan^{-1} \frac{1}{7} \because 2\tan^{-1} x = \tan^{-1} \frac{2x}{1- x^2}

=\tan^{-1} \frac{1}{(\frac{3}{4})} + \tan^{-1} \frac{1}{7}

=\tan^{-1} \frac{4}{3} + \tan^{-1} \frac{1}{7}

=\tan^{-1} \frac{\frac{4}{3} + \frac{1}{7}}{1 - \frac{4}{3}.\frac{1}{7}} \left [ \because \tan^{-1}x + \tan^{-1} y = \tan^{-1} \frac{x +y}{1- xy}\right ]

=\tan^{-1} \left ( \frac{\frac{28+3}{21}}{\frac{21-4}{21}} \right )

=\tan^{-1} \frac{31}{17}

= R.H.S.

Hence proved.

Question:5 Write the following functions in the simplest form: \tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x},\;\;x\neq 0

Answer:

We have \tan^{-1}\frac{\sqrt{1 + x^2}- 1}{x}

Take

\therefore \tan^{-1} \frac {\sqrt{1+x^2} - 1}{x} = \tan^{-1}\frac{\sqrt{1+\tan^2 \Theta - 1}}{\tan \Theta}

=\tan^{-1}(\frac{sec \Theta-1}{tan \Theta}) = \tan^{-1}\left ( \frac{1-cos \Theta}{sin \Theta} \right )

=\tan^{-1}\left ( \frac {2sin^2\left ( \frac{\Theta}{2} \right )}{2sin\frac{\Theta}{2}cos\frac{\Theta}{2}} \right )

=\tan^{-1}\left ( \tan\frac{\Theta}{2} \right ) = \frac{\Theta}{2} =\frac{1}{2}\tan^{-1}x

=\frac{1}{2}\tan^{-1}x is the simplified form.

Question:6 Write the following functions in the simplest form : \tan^{-1} \frac{1}{\sqrt{x^2 -1}},\;\; |x| > 1

Answer:

Given that \tan^{-1} \frac{1}{\sqrt{x^2 -1}},\;\; |x| > 1

Take x =cosec\ \Theta or \Theta = cosec ^{-1}x

\therefore tan^{-1}\frac{1}{\sqrt{x^2-1}}

=tan^{-1} \frac{1}{\sqrt{cosec^2 \Theta -1}}

=tan^{-1}(\frac{1}{\cot \Theta})

=tan^{-1}(\tan \Theta) = \Theta

= cosec^{-1}x

=\frac{\pi}{2}- \sec^{-1}x [\because cosec^{-1}x + \sec^{-1}x = \frac{\pi}{2}]

Question:7 Write the following functions in the simplest form: \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi

Answer:

Given that \tan^{-1}\left(\sqrt{\frac{1-\cos x}{1 + \cos x}} \right ),\;\; 0< x < \pi

We have in inside the root the term : \frac{1-\cos x}{1 + \cos x}

Put 1-\cos x = 2\sin^2\frac{x}{2} and 1+\cos x = 2\cos^2\frac{x}{2} ,

Then we have,

=\tan^{-1}\left(\sqrt{\frac{2\sin^2\frac{x}{2}}{2\cos^2\frac{x}{2}}} \right )

=\tan^{-1}\left( \frac{\sin \frac{x}{2}}{\cos\frac{x}{2}} \right )

=\tan^{-1}(\tan\frac{x}{2}) = \frac{x}{2}

Hence the simplest form is \frac{x}{2}

Question:8 Write the following functions in the simplest form: \tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ),\;\; \frac{-\pi}{4} < x < \frac{3\pi}{4}

Answer:

Given \tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right ) where x\:\epsilon\:( \frac{-\pi}{4} < x < \frac{3\pi}{4})

So,

=\tan^{-1}\left(\frac{\cos x -\sin x }{\cos x + \sin x} \right )

Taking \cos x common from numerator and denominator.

We get:

=\tan^{-1}\left(\frac{1 -(\frac{\sin x}{\cos x}) }{1+(\frac{\sin x}{\cos x}) } \right )

=\tan^{-1}\left(\frac{1 - \tan x }{1+\tan x } \right )

= \tan^{-1}(1) - \tan^{-1}(\tan x) as, \left [ \because \tan^{-1}x - \tan^{-1}y = \frac{x - y}{1 + xy} \right ]

= \frac{\pi}{4} - x is the simplest form.

Question:9 Write the following functions in the simplest form: \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a

Answer:

Given that \tan^{-1} \frac{x}{\sqrt{a^2 - x^2}}, \;\; |x| < a

Take x = a\sin \theta or

\theta = \sin^{-1}\left ( \frac{x}{a} \right ) and putting it in the equation above;

\tan^{-1} \frac{a\sin \theta}{\sqrt{a^2 - (a\sin \theta)^2}}

=\tan^{-1} \frac{a\sin \theta}{a\sqrt{1 - \sin^2 \theta}}

=\tan^{-1} \left ( \frac{\sin \theta}{\sqrt{\cos^2 \theta}} \right ) = \tan^{-1} \left ( \frac{\sin \theta}{{\cos \theta}} \right )

=\tan^{-1}\left ( \tan \theta \right )

=\theta = \sin^{-1}\left ( \frac{x}{a} \right ) is the simplest form.

Question:10 Write the following functions in the simplest form: \tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ),\;\;a>0\;\;;\;\;\frac{-a}{\sqrt3} < x < \frac{a}{\sqrt3}

Answer:

Given \tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right )

Here we can take x = a\tan \theta \Rightarrow \frac{x}{a} = \tan \theta

So, \theta = \tan^{-1}\left ( \frac{x}{a} \right )

\tan^{-1}\left(\frac{3a^2x -x^3}{a^3 - 3ax^2} \right ) will become;

=\tan^{-1}\left(\frac{3a^2a\tan \theta -(a\tan \theta)^3}{a^3 - 3a(a\tan \theta)^2} \right ) = \tan^{-1}\left(\frac{3a^3\tan \theta -a^3\tan ^3 \theta}{a^3 - 3a^3\tan ^2 \theta} \right )

and as \left [ \because \left(\frac{3\tan \theta -\tan ^3 \theta}{ 1- 3\tan ^2 \theta} \right) =\tan 3\theta \right ] ;

=3 \theta

=3 \tan^{-1}(\frac{x}{a})

hence the simplest form is 3 \tan^{-1}(\frac{x}{a}) .

Question:11 Find the values of each of the following: \tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]

Answer:

Given equation:

\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ]

So, solving the inner bracket first, we take the value of \sin x^{-1} \frac{1}{2} = x.

Then we have,

\sin x = \frac{1}{2} = \sin \left ( \frac{\pi}{6} \right )

Therefore, we can write \sin^{-1} \frac{1}{2} = \frac{\pi}{6} .

\tan^{-1}\left[2\cos\left(2\sin^{-1}\frac{1}{2} \right ) \right ] = \tan^{-1}\left[2\cos\left(2\times\frac{\pi}{6} \right ) \right ]

= \tan^{-1}\left[2\cos\left(\frac{\pi}{3} \right ) \right ] = \tan^{-1}\left[2\times\left(\frac{1}{2} \right ) \right ] = \tan^{-1}1 = \frac{\pi}{4} .

Question:12 Find the values of each of the following: \cot(\tan^{-1}a + \cot^{-1}a)

Answer:

We have to find the value of \cot(\tan^{-1}a + \cot^{-1}a)

As we know \left [\because \tan^{-1}x + \cot^{-1} x = \frac{\pi}{2} \right ] so,

Equation reduces to \cot(\frac{\pi}{2}) = 0 .

Question:13 Find the values of each of the following: \tan \frac{1}{2}\left[\sin^{-1}\frac{2x}{1+x^2} + cos^{-1}\frac{1-y^2}{1+y^2} \right ],\;\;|x|<1,\;y>0 and xy<1

Answer:

Taking the value x = \tan \Theta or \tan^{-1}x = \Theta and y = \tan \Theta or \tan^{-1} y = \Theta then we have,

= \tan \frac{1}{2}\left[\sin^{-1}\frac{2\tan \Theta}{1+(\tan \Theta)^2} + cos^{-1}\frac{1-\tan^2 \Theta}{1+(\tan \Theta)^2} \right ] ,

= \tan \frac{1}{2}\left[\sin^{-1}(\sin2\Theta) + cos^{-1} (\cos 2\Theta) \right ]

\because \left[\cos^{-1}(\frac{1-\tan^2 \Theta}{1+ \tan^2\Theta}) = \cos^{-1} (\cos2 \Theta) , \right ]

\because \left[\sin^{-1}(\frac{2\tan\Theta}{1+ \tan^2\Theta}) = \sin^{-1} (\sin2 \Theta) \right ]

Then,

=\tan \frac{1}{2}\left[2\tan^{-1}x + 2\tan^{-1}y \right ] \because \left[\tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right]

=\tan \left [ \tan^{-1}\frac{x+y}{1-xy} \right ]

=\frac{x+y}{1-xy} Ans.

Question:14 If \sin\left(\sin^{-1}\frac{1}{5} + \cos ^{-1}x \right ) =1 , then find the value of x .

Answer:

As we know the identity;

sin^{-1} x + cos^{-1} x = \frac {\pi}{2},\ x\ \epsilon\ [-1,1] . it will just hit you by practice to apply this.

So, \sin\left(\sin^{-1}\frac{1}{5} + \cos ^{-1}x \right ) =1 or \sin^{-1}\frac{1}{5} + \cos ^{-1}x =\sin^{-1}(1) ,

we can then write \cos^{-1}x = \frac{\pi}{2} - \sin^{-1}x ,

putting in above equation we get;

\sin^{-1}\frac{1}{5} + \frac{\pi}{2} - \sin^{-1}x =\frac{\pi}{2} \because \left [ \sin^{-1}(1)=\frac{\pi}{2} \right ]

= \sin^{-1}x = \sin^{-1} \frac{1}{5}

Ans. x = \frac{1}{5}

Question:15 If \tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4} , then find the value of x .

Answer:

Using the identity \tan^{-1}x+\tan^{-1} y = \tan^{-1}{\frac{x+y}{1-xy}} ,

We can find the value of x;

So, \tan^{-1}\frac{x-1}{x-2} + \tan^{-1}\frac{x+1}{x+2} =\frac{\pi}{4}

on applying,

= \tan^{-1}{\frac{\frac{x-1}{x-2}+\frac{x+1}{x+2}}{1- \left ( \frac{x-1}{x-2} \right )\left ( \frac{x+1}{x+2} \right )}}

=\tan^{-1}\frac{\frac{(x-1)(x+2)+(x-2)(x+1)}{x^2-4}}{1-\frac{x^2-1}{x^2-4}} = \tan^{-1} \left [ \frac{2x^2-4}{-3} \right ] = \frac{\pi}{4}

=\frac{2x^2-4}{-3} = \tan (\frac{\pi}{4})=1

= 2x^2=1 or x = \pm \frac{1}{\sqrt{2}} ,

Hence, the possible values of x are \pm \frac{1}{\sqrt{2}} .

Question:16 Find the values of each of the expressions in Exercises 16 to 18. \sin^{-1}\left (\sin\frac{2\pi}{3} \right )

Answer:

Given \sin^{-1}\left (\sin\frac{2\pi}{3} \right ) ;

We know that \sin^{-1}(\sin x) = x

If the value of x belongs to \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ] then we get the principal values of \sin^{-1}x .

Here, \frac{2\pi}{3} \notin \left [ \frac{-\pi}{2},\frac{\pi}{2} \right ]

We can write \sin^{-1}\left (\sin\frac{2\pi}{3} \right ) is as:

= \sin^{-1}\left [ \sin\left ( \pi-\frac{2\pi}{3} \right ) \right ]

= \sin^{-1}\left [ \sin \frac{\pi}{3} \right ] where \frac{\pi}{3} \epsilon \left [ \frac{-\pi}{2}, \frac{\pi}{2} \right ]

\therefore \sin^{-1}\left (\sin\frac{2\pi}{3} \right )=\sin^{-1}\left [ \sin \frac{\pi}{3} \right ]=\frac{\pi}{3}

Question:17 Find the values of each of the expressions in Exercises 16 to 18. \tan^{-1}\left (\tan\frac{3\pi}{4} \right )

Answer:

As we know \tan^{-1}\left ( \tan x \right ) =x

If x \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right ). which is the principal value range of \tan^{-1}x .

So, as in \tan^{-1}\left (\tan\frac{3\pi}{4} \right ) ;

\frac{3\pi}{4}\notin \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )

Hence we can write \tan^{-1}\left (\tan\frac{3\pi}{4} \right ) as :

\tan^{-1}\left (\tan\frac{3\pi}{4} \right ) = \tan^{-1}\left (\tan\frac{3\pi}{4} \right) = \tan^{-1}\left [ \tan(\pi - \frac{\pi}{4}) \right ] = \tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]

Where -\frac{\pi}{4} \epsilon \left ( -\frac{\pi}{2}, \frac{\pi}{2} \right )

and \therefore \tan^{-1}\left (\tan\frac{3\pi}{4} \right )=\tan^{-1}\left [ \tan (\frac{-\pi}{4}) \right ]=-\frac{\pi}{4}

Question:18 Find the values of each of the expressions in Exercises 16 to 18. \tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )

Answer:

Given that \tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )

we can take \sin^{-1}\frac{3}{5} = x ,

then \sin x = \frac{3}{5}

or \cos x = \sqrt{1-\sin^{2}x}= \frac{4}{5}

\Rightarrow \tan x = \frac{\frac{3}{5}}{\frac{4}{5}} = \frac{3}{4}

\Rightarrow \tan^{-1}\frac{3}{4}= x

We have similarly;

\cot^{-1} \frac{3}{2} = \tan^{-1} \frac{2}{3}

Therefore we can write \tan\left(\sin^{-1}\frac{3}{5}+\cot^{-1}\frac{3}{2} \right )

=\tan\left(\tan^{-1}\frac{3}{4}+\tan^{-1}\frac{2}{3} \right )

=\tan\left[\tan^{-1}\left ( \frac{\frac{3}{4}+\frac{2}{3}}{1- \frac{3}{4}.\frac{2}{3}} \right ) \right ] from As, \left [ \tan^{-1}x + \tan^{-1}y = \tan^{-1} \frac{x+y}{1- xy} \right ]

=\tan \left (\tan^{-1} \frac{9+8}{12-6} \right ) = \tan \left (\tan^{-1} \frac{17}{6} \right )= \frac{17}{6}

Question:19 \cos^{-1}\left(\cos\frac{7\pi}{6} \right ) is equal to

(A) \frac{7\pi}{6}

(B) \frac{5\pi}{6}

(C) \frac{\pi}{3}

(D) \frac{\pi}{6}

Answer:

As we know that \cos^{-1} (cos x ) = x if x\epsilon [0,\pi] and is principal value range of \cos^{-1}x .

In this case \cos^{-1}\left(\cos\frac{7\pi}{6} \right ) ,

\frac{7\pi}{6} \notin [0,\pi]

hence we have then,

\cos^{-1}\left(\cos\frac{7\pi}{6} \right ) = \cos^{-1} \left ( \cos \frac{-7\pi}{6} \right ) = \cos^{-1}\left [ \cos\left ( 2\pi - \frac{7\pi}{6} \right ) \right ]

\left [ \because \cos (2\pi + x) = \cos x \right ]

\therefore\ we\ have \cos^{-1}\left ( \cos \frac{7\pi}{6} \right ) = \cos^{-1}\left ( \cos \frac{5\pi}{6} \right ) = \frac{5\pi}{6}

Hence the correct answer is \frac{5\pi}{6} (B).

Question:20 \sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) is equal to

(A) \frac{1}{2}

(B)

(C) \frac{1}{4}

(D) 1

Answer:

Solving the inner bracket of \sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) ;

\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) or

Take \sin^{-1}\left(-\frac{1}{2} \right ) = x then,

\sin x =-\frac{1}{2} and we know the range of principal value of \sin^{-1}x\ is\ \left [ -\frac{\pi}{2}, \frac{\pi}{2} \right ].

Therefore we have \sin^{-1}\left ( -\frac{1}{2} \right ) = -\frac{\pi}{6} .

Hence, \sin\left(\frac{\pi}{3} -\sin^{-1}\left(-\frac{1}{2} \right ) \right ) = \sin \left ( \frac{\pi}{3}+ \frac{\pi}{6} \right )= \sin \left ( \frac{3\pi}{6} \right ) = \sin\left ( \frac{\pi}{2} \right ) = 1

Hence the correct answer is D.

Question:21 \tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3) is equal to

(A) \pi

(B) -\frac{\pi}{2}

(C) 0

(D) 2\sqrt3

Answer:

We have \tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3) ;

finding the value of \cot^{-1}(-\sqrt3) :

Assume \cot^{-1}(-\sqrt3) =y then,

\cot y = -\sqrt 3 and the range of the principal value of \cot^{-1} is (0,\pi) .

Hence, principal value is \frac{5\pi}{6}

Therefore \cot^{-1} (-\sqrt3) = \frac {5\pi}{6}

and \tan^{-1} \sqrt3 = \frac{\pi}{3}

so, we have now,

\tan^{-1}\sqrt3 - \cot^{-1}(-\sqrt3)=\frac{\pi}{3} - \frac{5\pi}{6}

= \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6}

or, = \frac{ -\pi}{2}

Hence the answer is option (B).

More About NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2

The NCERT class 12 maths chapter Inverse Trigonometric Functions deals with questions taking from basic to advanced level. Exercise 2.2 Class 12 Maths has some moderate level of questions which are important for the examination. NCERT Solutions for class 12 maths chapter 2 exercise 2.2 along with NCERT exemplar questions is sufficient for a good understanding.

Also Read| Inverse Trigonometric Functions NCERT Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 2 Exercise 2.2

  • The Class 12th maths chapter 2 exercise is described in a very easy manner. Students can comprehend by reading these notes.
  • Exercise 2.2 Class 12 Maths is the extension of NCERT syllabus Exercise 2.1, as it has some difficult questions.
  • NCERT book Class 12 Maths chapter 2 exercise 2.2 solutions has some questions which can take time, but one should make sure to complete them for better understanding.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 2.2 Class 12 Maths Chapter 2

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 2.2 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 2.2, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 2.2 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 2.2 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 2.2 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 2.2 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.
TOEFL ® Registrations 2024

Accepted by more than 11,000 universities in over 150 countries worldwide

PTE Exam 2024 Registrations

Register now for PTE & Save 5% on English Proficiency Tests with ApplyShop Gift Cards

Also see-

NCERT Solutions Subject Wise

Subject wise NCERT Exemplar solutions

Happy learning!!!

Frequently Asked Question (FAQs)

1. Is inverse trigonometric functions used in Physics also ?

Yes, just like integration, it is quite useful in Physics as well as Chemistry. These concepts are discussed in ex 2.2 class 12 comprehensively. To find the value of angles its quite useful. NCERT syllabus can be followed for the preparation of CBSE board exam.

2. Inverse functions of the trigonometric functions are known as ……..?

Inverse trigonometric functions

3. What is the use of Inverse trigonometric functions?

It is used to find angles from a given angle’s trigonometric ratios. 

4. How to memorise principle values of basic inverse trigonometric functions ?

Make short notes and revise them multiple times. Practice questions so the brain retains it. For more questions use NCERT exemplar.

5. Is it required to memorise the principal value of basic inverse trigonometric functions ?

No, It is not mandatory but solving questions becomes easy if values are by heart. 

6. How to solve proof related questions ?

Take step by step method to reach what is asked starting from the given conditions.

Articles

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD
Lancaster University, Lancaster
 Bailrigg, Lancaster LA1 4YW

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Here are some options you can explore to get admission in a good school even though admissions might be closed for many:

  • Waitlist: Many schools maintain waitlists after their initial application rounds close.  If a student who secured a seat decides not to join, the school might reach out to students on the waitlist.  So, even if the application deadline has passed,  it might be worth inquiring with schools you're interested in if they have a waitlist and if they would consider adding you to it.

  • Schools with ongoing admissions: Some schools, due to transfers or other reasons, might still have seats available even after the main admission rush.  Reach out to the schools directly to see if they have any open seats in 10th grade.

  • Consider other good schools: There might be other schools in your area that have a good reputation but weren't on your initial list. Research these schools and see if they have any seats available.

  • Focus on excelling in your current school: If you can't find a new school this year, focus on doing well in your current school. Maintain good grades and get involved in extracurricular activities. This will strengthen your application for next year if you decide to try transferring again.


Best CBSE schools in Delhi: Click Here


In India, the design and coding fields offer exciting career options that can leverage your interest in both. Here's how you can navigate this path:

Choosing Your Stream:

  • Graphic Design Focus: Consider a Bachelor's degree in Graphic Design or a design diploma. Build a strong portfolio showcasing your creative skills. Learn the basics of HTML, CSS, and JavaScript to understand web development better. Many online resources and bootcamps offer these introductory courses.

  • Coding Focus: Pursue a Computer Science degree or a coding bootcamp in India. These programs are intensive but can equip you with strong coding skills quickly. While building your coding prowess, take online courses in graphic design principles and UI/UX design.

Engineering Subjects (for a Degree):

  • Information Technology (IT): This offers a good mix of web development, networking, and database management, all valuable for web design/development roles.

  • Human-Computer Interaction (HCI): This is a specialized field that bridges the gap between design and computer science, focusing on how users interact with technology. It's a perfect choice if you're interested in both aspects.

  • Passing NIOS in October 2024 will make you eligible for NIT admissions in 2025 . NIT admissions are based on your performance in entrance exams like JEE Main, which typically happen in January and April. These exams consider the previous year's Class 12th board results (or equivalent exams like NIOS).

Here's why 2025 is more likely:

  • JEE Main 2024 Admissions: The application process for NITs through JEE Main 2024 is likely complete by now (May 2024). They consider your 2023 Class 12th marks (CBSE in this case).
  • NIOS Results: Since NIOS results typically come out after the NIT admission process, your October 2024 NIOS marks wouldn't be available for JEE Main 2024.

Looking Ahead (2025 Admissions):

  • Focus on JEE Main: Since you have a computer science background, focus on preparing for JEE Main 2025. This exam tests your knowledge in Physics, Chemistry, and Mathematics, crucial for engineering programs at NITs.
  • NIOS Preparation: Utilize the time between now and October 2024 to prepare for your NIOS exams.
  • Eligibility Criteria: Remember, NITs typically require a minimum of 75% marks in Class 12th (or equivalent) for general category students (65% for SC/ST). Ensure you meet this criteria in your NIOS exams.

Yes, scoring above 99.9 percentile in CAT significantly increases your chances of getting a call from IIM Bangalore,  with your academic background. Here's why:

  • High CAT Score: A score exceeding  99.9 percentile is exceptional and puts you amongst the top candidates vying for admission. IIM Bangalore prioritizes  CAT scores heavily in the shortlisting process.

  • Strong Academics: Your 96% in CBSE 12th and a B.Tech degree demonstrate a solid academic foundation, which IIM Bangalore also considers during shortlisting.

However, the shortlisting process is multifaceted:

  • Other Factors: IIM Bangalore considers other factors beyond CAT scores, such as your work experience (if any), XAT score (if you appear for it), academic diversity, gender diversity, and performance in the interview and Written Ability Test (WAT) stages (if shortlisted).

Here's what you can do to strengthen your application:

  • Focus on WAT and PI: If you receive a shortlist, prepare extensively for the Written Ability Test (WAT) and Personal Interview (PI). These stages assess your communication, soft skills, leadership potential, and suitability for the program.

  • Work Experience (if applicable): If you have work experience, highlight your achievements and how they align with your chosen IIM Bangalore program.

Overall, with a stellar CAT score and a strong academic background, you have a very good chance of getting a call from IIM Bangalore. But remember to prepare comprehensively for the other stages of the selection process.

hello,

Yes you can appear for the compartment paper again since CBSE gives three chances to a candidate to clear his/her exams so you still have two more attempts. However, you can appear for your improvement paper for all subjects but you cannot appear for the ones in which you have failed.

I hope this was helpful!

Good Luck

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top