Careers360 Logo
NCERT Solutions for Class 12 Maths Chapter 3 Matrices

Access premium articles, webinars, resources to make the best decisions for career, course, exams, scholarships, study abroad and much more with

Plan, Prepare & Make the Best Career Choices

NCERT Solutions for Class 12 Maths Chapter 3 Matrices

Edited By Ramraj Saini | Updated on Sep 13, 2023 08:58 PM IST | #CBSE Class 12th

Matrices Class 12 Questions And Answers

NCERT Solutions for Class 12 Maths Chapter 3 Matrices are provided here. Matrices is an important and powerful tool in mathematics and it's basically introduced to solve simultaneous linear equations. maths chapter 3 class 12 includes the type of matrices, operations of matrices, and many more concepts. These concepts are used to solve challenging problems of 3d geometry, and determinants Therefore matrices class 12 solutions become important to get command of concepts. The NCERT Solutions are prepared by expert team according the latest syllabus of CBSE 2023. Also, Students can refer matrices class 12 NCERT solutions which covers all the questions of NCERT Books for Class 12 Maths.

The practice from NCERT solutions for class 12 maths Chapter 3 Matrices is very important to score well in academics as well as in competitive exams. Matrices class 12 also includes exercises you can also solve to build hold on the concepts. All the questions in NCERT maths class 12 chapter 3 are explained in a detailed manner. You can also refer to class 12 maths ncert solutions chapter 3 matrices by clicking on the link NCERT solutions for Class 12.

Apply to Aakash iACST Scholarship Test 2024

Applications for Admissions are open.

Also read:

Aakash iACST Scholarship Test 2024

Get up to 90% scholarship on NEET, JEE & Foundation courses

NEET previous year papers with solutions

Solve NEET previous years question papers & check your preparedness

Matrices Class 12 Questions And Answers PDF Free Download

Download PDF

NCERT Solutions for Class 12 Maths Chapter 3 Matrices - Important Formulae

Matrix Definition and Properties:

A matrix is an ordered rectangular array of numbers or functions.

A matrix of order m × n consists of m rows and n columns.

The order of a matrix is written as m × n, where m is the number of rows and n is the number of columns.

A matrix is called a square matrix when m = n.

A diagonal matrix A = [aij]m×m has aij = 0 when i ≠ j.

A scalar matrix A = [aij]n×n has aij = 0 when i ≠ j, aij = k (where k is a constant)

when i = j.

An identity matrix A = [aij]n×n has aij = 1 when i = j and aij = 0 when i ≠ j.

A zero matrix contains all its elements as zero.

A column matrix is of the form [A]n × 1.

A row matrix is of the form [A]1 × n.

Equality of Matrices:

Two matrices A and B are equal (A = B) if they have the same order and aij = bij for all the corresponding values of i and j.

Operations on Matrices:

Matrix Addition:

  • If A = [aij]m × n and B = [bij]m × n, then A + B = [aij + bij]m × n.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Matrix Subtraction:

  • If A = [aij]m × n and B = [bij]m × n, then A - B = [aij - bij]m × n.

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

JEE Main Important Physics formulas

As per latest 2024 syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters

Multiplication of a Matrix by Scalar:

  • Let A = [aij]m × n be a matrix and k is a scalar, then kA is obtained by multiplying each element of A by the scalar k, i.e., kA = [kaij]m × n.

Multiplication of Matrices:

  • Let A be an m × p matrix, and B be a p × n matrix. Their product AB is defined if the number of columns in A is equal to the number of rows in B. The resulting matrix is an m × n matrix, and the elements are calculated as follows: (AB)ij = Σ(ai * bj), where the sum is taken over all values of p.

Transpose of a Matrix:

The transpose of a matrix A, denoted as AT, is obtained by interchanging its rows and columns.

Symmetric and Skew-Symmetric Matrices:

A matrix A is symmetric if A = AT (i.e., it is equal to its transpose).

A matrix A is skew-symmetric if AT = -A (i.e., the transpose of A is equal to the negative of A).

Elementary Operation or Transformation of a Matrix:

Elementary row operations include:

  • Interchanging any two rows.

  • Multiplying a row by a non-zero scalar.

  • Adding or subtracting a multiple of one row from another row.

Inverse of a Matrix by Elementary Operations:

You can find the inverse of a matrix using elementary row operations. If the matrix A is invertible, you can transform it into the identity matrix I through row operations on an augmented matrix [A | I], where I is the identity matrix of the same order as A. If this process is successful, the resulting matrix on the left will be I, and the matrix on the right will be the inverse of A.

Free download Matrices Class 12 Questions And Answers for CBSE Exam.

Class 12 Maths Chapter 3 Question Answer (Intext Questions and Exercise)

Matrices Class 12 Questions And Answers: Exercise 3.1

Question:1(i). In the matrix A = \begin{bmatrix} 2& 5 &19 &-7 \\ 35 & -2 & \frac{5}{2} &12 \\ \sqrt3& 1 &-5 &17 \end{bmatrix} , write:

The order of the matrix

Answer:

A = \begin{bmatrix} 2& 5 &19 &-7 \\ 35 & -2 & \frac{5}{2} &12 \\ \sqrt3& 1 &-5 &17 \end{bmatrix}

(i) The order of the matrix = number of row \times number of columns = 3\times 4 .

Question 1(ii). In the matrix A = \begin{bmatrix}2&5&19&-7&\\ 35& -2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix} , write:

The number of elements

Answer:

A = \begin{bmatrix}2&5&19&-7&\\ 35& -2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}

(ii) The number of elements 3\times 4=12 .

Question 1(iii). In the matrix A = \begin{bmatrix}2&5&19&-7&\\35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix} , write:

Write the elements a 13 , a 21 , a 33 , a 24 , a 23

Answer:

A = \begin{bmatrix}2&5&19&-7&\\35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}

(iii) An element a_{ij} implies the element in raw number i and column number j.

a_1_3= 19 a_2_1= 35

a_3_3= -5 a_2_4= 12

a_2_3= \frac{5}{2}

Question 2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

Answer:

A matrix has 24 elements.

The possible orders are :

1\times 24,24\times 1,2\times 12,12\times 2,3\times 8,8\times 3,4\times 6 \, \, and\, \, 6\times 4 .

If it has 13 elements, then possible orders are :

1\times 13\, \, \, and \, \, \, \, 13\times 1 .

Question 3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

Answer:

A matrix has 18 elements.

The possible orders are as given below

1\times 18,18\times 1,2\times 9,9\times 2,3\times 6\, \, \, and\, \, \, \, 6\times 3

If it has 5 elements, then possible orders are :

1\times 5\, \, \, and \, \, \, \, 5\times 1 .

Question 4(i). Construct a 2 × 2 matrix, A = [a_{ij} ] whose elements are given by:

a_{ij} = \frac{(i + j)^2}{2}

Answer:

A = [a_{ij} ]

(i) a_{ij} = \frac{(i + j)^2}{2}

Each element of this matrix is calculated as follows

a_1_1 = \frac{(1+1)^{2}}{2} =\frac{2^{2}}{2}=\frac{4}{2}=2 a_2_2 = \frac{(2+2)^{2}}{2} =\frac{4^{2}}{2}=\frac{16}{2}=8

a_1_2 = \frac{(1+2)^{2}}{2} =\frac{3^{2}}{2}=\frac{9}{2}=4.5 a_2_1 = \frac{(2+1)^{2}}{2} =\frac{3^{2}}{2}=\frac{9}{2}=4.5

Matrix A is given by

A = \begin{bmatrix} 2&4.5 \\4.5 & 8 \end{bmatrix}

Question 4(ii). Construct a 2 × 2 matrix, A = [a_{ij} ] , whose elements are given by:

a_{ij} = \frac{i}{j}

Answer:

A 2 × 2 matrix, A = [a_{ij} ]

(ii) a_{ij} = \frac{i}{j}

a_1_1 = \frac{1}{1}=1 a_2_2 = \frac{2}{2}=1

a_1_2 = \frac{1}{2} a_2_1 = \frac{2}{1}=2

Hence, the matrix is

A = \begin{bmatrix} 1& \frac{1}{2} \\ 2 & 1 \end{bmatrix}

Question 4(iii). Construct a 2 × 2 matrix, A = [a_{ij} ] , whose elements are given by:

a_{ij} = \frac{(i+2j)^2}{2}

Answer:

(iii)

a_{ij} = \frac{(i+2j)^2}{2}

a_1_1 = \frac{(1+(2\times 1))^{2}}{2}= \frac{(1+2)^{2}}{2}=\frac{3^{2}}{2}=\frac{9}{2} a_2_2 = \frac{(2+(2\times 2))^{2}}{2}= \frac{(2+4)^{2}}{2}=\frac{6^{2}}{2}=\frac{36}{2}=18

a_2_1 = \frac{(2+(2\times 1))^{2}}{2}= \frac{(2+2)^{2}}{2}=\frac{4^{2}}{2}=\frac{16}{2}=8 a_1_2 = \frac{(1+(2\times 2))^{2}}{2}= \frac{(1+4)^{2}}{2}=\frac{5^{2}}{2}=\frac{25}{2}

Hence, the matrix is given by

A = \begin{bmatrix} \frac{9}{2}& \frac{25}{2} \\ 8 & 18 \end{bmatrix}

Question 5(i). Construct a 3 × 4 matrix, whose elements are given by:

a_{ij} = \frac{1}{2}|-3i + j|

Answer:

(i)

a_{ij} = \frac{1}{2}|-3i + j|

a_1_1 = \frac{\left | -3+1 \right |}{2}=\frac{2}{2}=1 a_1_2 = \frac{\left | (-3\times 1)+2 \right |}{2}=\frac{1}{2} a_1_3 = \frac{\left | (-3\times 1)+3 \right |}{2}=0

a_2_1 = \frac{\left | (-3\times 2)+1 \right |}{2}=\frac{5}{2} a_2_2 = \frac{\left | (-3\times 2)+2 \right |}{2}=\frac{4}{2}=2 a_2_3 = \frac{\left | (-3\times 2)+3 \right |}{2}=\frac{\left | -6+3 \right |}{2}=\frac{\left | -3 \right |}{2} =\frac{3}{2}

a_3_1 = \frac{\left | (-3\times 3)+1 \right |}{2}=\frac{8}{2}=4 a_3_2 = \frac{\left | (-3\times 3)+2 \right |}{2}=\frac{7}{2} a_3_3 = \frac{\left | (-3\times 3)+3 \right |}{2}=\frac{\left | -9+3 \right |}{2}=\frac{\left | -6 \right |}{2} =\frac{6}{2}=3

a_1_4 = \frac{\left | (-3\times 1)+4 \right |}{2}=\frac{\left | -3+4 \right |}{2}=\frac{\left | 1 \right |}{2} =\frac{1}{2} a_2_4 = \frac{\left | (-3\times 2)+4 \right |}{2}=\frac{\left | -6+4 \right |}{2}=\frac{\left | -2 \right |}{2} =\frac{2}{2}=1

a_3_4 = \frac{\left | (-3\times 3)+4 \right |}{2}=\frac{\left | -9+4 \right |}{2}=\frac{\left | -5 \right |}{2} =\frac{5}{2}

Hence, the required matrix of the given order is

A = \begin{bmatrix} 1& \frac{1}{2} & 0&\frac{1}{2} \\ \frac{5}{2} & 2&\frac{3}{2}&1 \\4&\frac{7}{2}&3&\frac{5}{2}\end{bmatrix}

Question 5(ii) Construct a 3 × 4 matrix, whose elements are given by:

a_{ij} = 2i - j

Answer:

A 3 × 4 matrix,

(ii) a_{ij} = 2i - j

a_1_1 = 2\times 1-1 =2-1=1 a_1_2 = 2\times 1-2 =2-2=0 a_1_3 = 2\times 1-3 =2-3=-1

a_2_1 = 2\times 2-1 =4-1=3 a_2_2= 2\times 2-2 =4-2=2 a_2_3 = 2\times 2-3 =4-3=1 a_3_1 = 2\times 3-1 =6-1=5 a_3_2 = 2\times 3-2 =6-2=4 a_3_3 = 2\times 3-3 =6-3=3

a_1_4 = 2\times 1-4 =2-4=-2 a_2_4= 2\times 2-4 =4-4=0 a_3_4= 2\times 3-4 =6-4=2

Hence, the matrix is

A = \begin{bmatrix} 1 & 0& -1& -2 \\ \ 3 & 2&1& 0 \\5&4&3&2\end{bmatrix}

Question 6(i). Find the values of x, y and z from the following equations:

\begin{bmatrix}4&3\\x&5 \end{bmatrix} = \begin{bmatrix}y&z\\1&5 \end{bmatrix}

Answer:

(i) \begin{bmatrix}4&3\\x&5 \end{bmatrix} = \begin{bmatrix}y&z\\1&5 \end{bmatrix}

If two matrices are equal, then their corresponding elements are also equal.

\therefore x=1\, \, \, ,\, \, \, y=4\, \, \, \, and\, \, \, \, z=3

Question 6(ii) Find the values of x, y and z from the following equations:

\begin{bmatrix} x +y & 2\\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 &2 \\ 5 & 8 \end{bmatrix}

Answer:

(ii)

\begin{bmatrix} x +y & 2\\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 &2 \\ 5 & 8 \end{bmatrix}

If two matrices are equal, then their corresponding elements are also equal.

\therefore x+y=6 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)

x=6-y

xy=8 \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (ii)

Solving equation (i) and (ii) ,

(6-y)y =8

6y-y^{2}=8

y^{2}-6y+8=0

solving this equation we get,

y=4 \, \, and\, \, y=2

Putting the values of y, we get

x=2 \, \, and\, \, x=4

And also equating the first element of the second raw

5+z = 5 , z=0

Hence,

x=2,y=4,z=0\, \, \, \, \, and\, \, \, \, \, \, x=4,y=2,z=0

Question 6(iii) Find the values of x, y and z from the following equations

\begin{bmatrix} x + y + z\\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9\\5 \\7 \end{bmatrix}

Answer:

(iii)

\begin{bmatrix} x + y + z\\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9\\5 \\7 \end{bmatrix}

If two matrices are equal, then their corresponding elements are also equal

x+y+z=9........(1)

x+z=5..............(2)

y+z=7..............(3)

subtracting (2) from (1) we will get y=4

substituting the value of y in equation (3) we will get z=3

now substituting the value of z in equation (2) we will get x=2

therefore,

x=2 , y=4 and z=3

Question 7. Find the value of a, b, c and d from the equation:

\begin{bmatrix} a -b & 2a + c\\ 2a - b & 3c + d \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 0 & 13 \end{bmatrix}

Answer:

\begin{bmatrix} a -b & 2a + c\\ 2a - b & 3c + d \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 0 & 13 \end{bmatrix}

If two matrices are equal, then their corresponding elements are also equal

a-b=-1 .............................1

2a+c=5 .............................2

2a-b=0 .............................3

3c+d=13 .............................4

Solving equation 1 and 3 , we get

a=1 \, \, \, \, and \, \, \, \, b=2

Putting the value of a in equation 2, we get

c=3

Putting the value of c in equation 4 , we get

d=4

Question 8. A = [a_{ij}]_{m\times n} is a square matrix, if

(A) m <n

(B) m >n

(C) m =n

(D) None of these

Answer:

A square matrix has the number of rows and columns equal.

Thus, for A = [a_{ij}]_{m\times n} to be a square matrix m and n should be equal.

Option (c) is .

Question 9. Which of the given values of x and y make the following pair of matrices equal

\begin{bmatrix} 3x + 7 &5 \\ y + 1 & 2 -3x \end{bmatrix} , \begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}

(A) x = \frac{-1}{3}, y = 7

(B) Not possible to find

(C) y =7, x = \frac{-2}{3}

(D) x = \frac{-1}{3}, y = \frac{-2}{3}

Answer:

Given, \begin{bmatrix} 3x + 7 &5 \\ y + 1 & 2 -3x \end{bmatrix} =\begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}

If two matrices are equal, then their corresponding elements are also equal

3x+7=0\Rightarrow x=\frac{-7}{3}

y-2=5 \Rightarrow y=5+2=7

y+1=8\Rightarrow y=8-1=7

2-3x=4\Rightarrow 3x=2-4\Rightarrow 3x=-2\Rightarrow x=\frac{-2}{3}

Here, the value of x is not unique, so option B is correct.

Question 10. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:

(A) 27
(B) 18
(C) 81
(D) 512

Answer:

Total number of elements in a 3 × 3 matrix

=3\times 3=9

If each entry is 0 or 1 then for every entry there are 2 permutations.

The total permutations for 9 elements

=2^{9}=512

Thus, option (D) is correct.


Class 12 Maths Chapter 3 Question Answer: Exercise 3.2

Question 1(i) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} , B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} , C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

A + B

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(i) A + B

The addition of matrix can be done as follows

A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}

A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}

Question 1(ii) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} , B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} , C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

A - B

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(ii) A - B

A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}

A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}

Question 1(iii) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} , B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} , C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

3A - C

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

(iii) 3A - C

First multiply each element of A with 3 and then subtract C

3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix} - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}

3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}

Question 1(v) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} , B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} , C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

BA

Answer:

The multiplication is performed as follows

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} , B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}

BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}

BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}

Question 2(i). Compute the following:

\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}

Answer:

(i) \begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}

= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}

= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}

Question 2(ii). Compute the following:

\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}

Answer:

(ii) The addition operation can be performed as follows

\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}

=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}

=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}

Question 2(iii). Compute the following:

\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}

Answer:

(iii) The addition of given three by three matrix is performed as follows

\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}

=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}

=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}

Question 2(iv). Compute the following:

\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}

Answer:

(iv) the addition is done as follows

\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}

=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix} since sin^2x+cos^2x=1

=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}

Question 3(i). Compute the indicated products.

\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

Answer:

(i) The multiplication is performed as follows

\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}

=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}

Question 3(ii). Compute the indicated products.

\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}

Answer:

(ii) the multiplication can be performed as follows

\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}

=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}

=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}

Question 3(iii). Compute the indicated products.

\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}

Answer:

(iii) The multiplication can be performed as follows

\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}

=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}

Question 3(iv). Compute the indicated products.

\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

Answer:

(iv) The multiplication is performed as follows

\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}

= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}

Question 3(v). Compute the indicated products.

\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

Answer:

(v) The product can be computed as follows

\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}

=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}

Question 3(vi). Compute the indicated products.

\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

Answer:

(vi) The given product can be computed as follows

\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}

=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}

Question 4. If A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} , B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} and C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix} , then compute (A+B) and (B-C). Also verify that A + (B - C) = (A + B) - C

Answer:

A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} , B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} and C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} + \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}

A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}

A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}

B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} -\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}

B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}

Now, to prove A + (B - C) = (A + B) - C

L.H.S\, \, :\, A+(B-C)

A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} + \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix} (Puting value of B-C from above)

A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}

A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

R.H.S\, \, :\, (A+B)-C

(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix} - \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}

(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

Hence, we can see L.H.S = R.H.S = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

Question 5. If A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} and B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix} , then compute 3A - 5B

Answer:

A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} and B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}

3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} -5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}

3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}

3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}

3A-5B = 0

Question 6. Simplify \cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix} .

Answer:

The simplification is explained in the following step

\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}

= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}

= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}

= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I

the final answer is an identity matrix of order 2

Question 7(i). Find X and Y, if

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} and X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

Answer:

(i) The given matrices are

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} and X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1

X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2

Adding equation 1 and 2, we get

2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} + \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}

2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}

X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}

Putting the value of X in equation 1, we get

\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix} +Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}

Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} - \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}

Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}

Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}

Question 7(ii). Find X and Y, if

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and 3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

Answer:

(ii) 2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and 3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1

3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2

Multiply equation 1 by 3 and equation 2 by 2 and subtract them,

3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix} - \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}

9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}

5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}

Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}

Putting value of Y in equation 1 , we get

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}

2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}

2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}

X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}

Question 8. Find X, if Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} and 2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

Answer:

Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}

2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

Substituting the value of Y in the above equation

2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}

2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}

2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}

X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}

Question 9. Find x and y, if 2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

Answer:

2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

Now equating LHS and RHS we can write the following equations

2+y=5 2x+2=8

y=5-2 2x=8-2

y=3 2x=6

x=3

Question 10. Solve the equation for x, y, z and t, if 2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}

Answer:

2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}

Multiplying with constant terms and rearranging we can rewrite the matrix as

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}

Dividing by 2 on both sides

\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}

x=3,y=6,z=9\, \, and\, \, t=6

Question 11. If x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix} , find the values of x and y.

Answer:

x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

Adding both the matrix in LHS and rewriting

\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

2x-y=10........................1

3x+y=5........................2

Adding equation 1 and 2, we get

5x=15

x=3

Put the value of x in equation 2, we have

3x+y=5

3\times 3+y=5

9+y=5

y=5-9

y=-4

Question 12. Given 3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix} , find the values of x, y, z and w.

Answer:

3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}

\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}

If two matrices are equal than corresponding elements are also equal.

Thus, we have

3x=x+4

3x-x=4

2x=4

x=2

3y=6+x+y

Put the value of x

3y-y=6+2

2y=8

y=4

3w=2w+3

3w-2w=3

w=3

3z=-1+z+w

3z-z=-1+3

2z=2

z=1

Hence, we have x=2,y=4,z=1\, \, and\, \, w=3.

Question 13. If F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix} , show that F(x) F(y) = F(x + y) .

Answer:

F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}

To prove : F(x) F(y) = F(x + y)

R.H.S : F(x + y)

F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}

L.H.S : F(x) F(y)

F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}

F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}


F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}

Hence, we have L.H.S. = R.H.S i.e. F(x) F(y) = F(x + y) .

Question 14(i). Show that

\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

Answer:

To prove:

\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}

= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}

= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}

R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}

= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}

Hence, the right-hand side not equal to the left-hand side, that is

Question 14(ii). Show that

\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

Answer:

To prove the following multiplication of three by three matrices are not equal

\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}

= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}

= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}


R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}

= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}

Hence, L.H.S \neq R.H.S i.e. \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} .

Question 15. Find A^2 -5A + 6I , if

A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

Answer:

A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

First, we will find ou the value of the square of matrix A

A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}

I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

\therefore A^2 -5A + 6I

= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix} -5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix} +6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix} - \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix} +\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}

= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}

= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}

Question 16. If A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix} prove that A^3 - 6A^2 + 7A + 2I = 0 .

Answer:

A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

First, find the square of matrix A and then multiply it with A to get the cube of matrix A

A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix} \times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}

A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}

A^{3}=A^{2}\times A

A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix} \times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}

A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}

I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

\therefore A^3 - 6A^2 + 7A + 2I = 0

L.H.S :

\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix} - 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix} +7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix} +2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix} - \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix} + \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}

=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}

=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}

= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0

Hence, L.H.S = R.H.S

i.e. A^3 - 6A^2 + 7A + 2I = 0 .

Question 17. If A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} and I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix} , find k so that A^{2} = kA - 2I .

Answer:

A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} \times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}

A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}

A^{2} = kA - 2I

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}= k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} - 2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}= k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} - \begin{bmatrix}2 &0\\0&2 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+ \begin{bmatrix}2 &0\\0&2 \end{bmatrix} =k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix} =\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} =\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

We have, 3=3k

k=\frac{3}{3}=1

Hence, the value of k is 1.

Question 18. If A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix} and I is the identity matrix of order 2, show that I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

Answer:

A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

To prove : I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

L.H.S : I+A

I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix} + \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}

I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}

I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}

R.H.S : (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix} = (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}- \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}) \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix} =\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix} \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix} =\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix} \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}

=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}

=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}

= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}

Hence, we can see L.H.S = R.H.S

i.e. I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix} .

Question 19(i). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 1800

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

\begin{bmatrix}x &(30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =1800 (simple interest for 1 year =\frac{pricipal\times rate}{100} )

\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800

5x+210000-7x=180000

210000-180000=7x-5x

30000=2x

x=15000

Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.

Question 19(ii). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 2000

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

\begin{bmatrix}x &(30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =2000 (simple interest for 1 year =\frac{pricipal\times rate}{100} )

\frac{5}{100}x+\frac{7}{100}(30000-x) = 2000

5x+210000-7x=200000

210000-200000=7x-5x

10000=2x

x=5000

Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Answer:

The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.

Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively.

The total amount the bookshop will receive from selling all the books:

12 \begin{bmatrix}10 &8&10 \end{bmatrix} \begin{bmatrix}80\\60\\40 \end{bmatrix}

=12(10\times 80+8\times 60+10\times 40)

= 12(800+480+ 400)

= 12(1680)

=20160

The total amount the bookshop will receive from selling all the books is 20160.

Question 21 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k , respectively. Choose the correct answer in Exercises 21 and 22.

Q21. The restriction on n, k and p so that PY + WY will be defined are:
(A) k = 3, p = n

(B) k is arbitrary, p = 2

(C) p is arbitrary, k = 3

(D) k = 2, p = 3

Answer:

P and Y are of order p*k and 3*k respectivly.

\therefore PY will be defined only if k=3, i.e. order of PY is p*k .

W and Y are of order n*3 and 3*k respectivly.

\therefore WY is defined because the number of columns of W is equal to the number of rows of Y which is 3, i.e. the order of WY is n*k

Matrices PY and WY can only be added if they both have same order i.e = n*k implies p=n.

Thus, k = 3, p = n are restrictions on n, k and p so that PY + WY will be defined.

Option (A) is correct.

Question 22 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k ,
respectively. Choose the correct answer in Exercises 21 and 22.
If n = p , then the order of the matrix 7X - 5Z is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n

Answer:

X has of order 2*n .

\therefore 7X also has of order 2*n .

Z has of order 2*p .

\therefore 5Z also has of order 2*p .

Mtarices 7X and 5Z can only be subtracted if they both have same order i.e 2*n = 2*p and it is given that p=n.

We can say that both matrices have order of 2*n .

Thus, order of 7X - 5Z is 2*n .

Option (B) is correct.

Class 12 Maths Chapter 3 Question Answer: Exercise 3.3

Question 1(i). Find the transpose of each of the following matrices:

\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}

Answer:

A=\begin{bmatrix} 5\\ \frac{1}{2} \\-1 \end{bmatrix}

The transpose of the given matrix is

A^{T}=\begin{bmatrix} 5& \frac{1}{2} &-1 \end{bmatrix}

Question 1(ii). Find the transpose of each of the following matrices:

\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}

Answer:

A=\begin{bmatrix} 1 & -1\\ 2 & 3 \end{bmatrix}

interchanging the rows and columns of the matrix A we get

A^{T}=\begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix}

Question 1(iii) Find the transpose of each of the following matrices:

\begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}

Answer:

A = \begin{bmatrix} -1 & 5 & 6\\ \sqrt3& 5 &6 \\ 2 &3 &-1 \end{bmatrix}

Transpose is obtained by interchanging the rows and columns of matrix

A^{T} = \begin{bmatrix} -1 & \sqrt3 & 2\\ 5& 5 &3 \\ 6 &6 &-1 \end{bmatrix}

Question 2(i). If A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix} and B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix} , then verify

(A + B)' = A' + B'

Answer:

A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix} and B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}

(A + B)' = A' + B'

L.H.S : (A + B)'

A+B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix} + \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}

A+B = \begin{bmatrix} -1+(-4) & 2+1 & 3+(-5)\\ 5+1 &7+2 &9+0 \\ -2+1 & 1+3 & 1+1 \end{bmatrix}

A+B = \begin{bmatrix} -5 & 3 & -2\\ 6 &9 &9 \\ -1 & 4 & 2 \end{bmatrix}

(A+B)' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}

R.H.S : A' + B'

A'+B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix} + \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}

A'+B' = \begin{bmatrix} -1+(-4) & 5+1 & -2+1\\ 2+1 &7+2 &1+3 \\ 3+(-5) & 9+0 & 1+1 \end{bmatrix}

A'+B' = \begin{bmatrix} -5 & 6 & -1\\ 3 &9 &4 \\ -2 & 9 & 2 \end{bmatrix}

Thus we find that the LHS is equal to RHS and hence verified.

Question 2(ii). If A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix} and B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix} , then verify

(A - B)' = A' - B'

Answer:

A = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix} and B = \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}

(A - B)' = A' - B'

L.H.S : (A - B)'

A-B = \begin{bmatrix} -1 & 2 & 3\\ 5 &7 &9 \\ -2 & 1 & 1 \end{bmatrix} - \begin{bmatrix} -4 & 1 & -5\\ 1 &2 &0 \\ 1 & 3 & 1 \end{bmatrix}

A-B = \begin{bmatrix} -1-(-4) & 2-1 & 3-(-5)\\ 5-1 &7-2 &9-0 \\ -2-1 & 1-3 & 1-1 \end{bmatrix}

A-B = \begin{bmatrix} 3 & 1 & 8\\ 4 &5 &9 \\ -3 & -2& 0 \end{bmatrix}

(A-B)' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}

R.H.S : A' - B'

A'-B' = \begin{bmatrix} -1 & 5 & -2\\ 2 &7 &1 \\ 3 & 9 & 1 \end{bmatrix} - \begin{bmatrix} -4 & 1 & 1\\ 1 &2 &3\\ -5 & 0 & 1 \end{bmatrix}

A'-B' = \begin{bmatrix} -1-(-4) & 5-1 & -2-1\\ 2-1 &7-2 &1-3 \\ 3-(-5) & 9-0 & 1-1 \end{bmatrix}

A'-B' = \begin{bmatrix} 3 & 4 & -3\\ 1 &5 &-2 \\ 8 & 9& 0 \end{bmatrix}

Hence, L.H.S = R.H.S. so verified that

(A - B)' = A' - B' .

Question 3(i). If A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix} and B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix} , then verify

(A + B)' = A' + B'

Answer:

A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix} B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}

A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}

To prove: (A + B)' = A' + B'

L.H.S : (A + B)' =

A+B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}

A+B = \begin{bmatrix} 3+(-1) & -1+(-1)&0+1\\ 4+1 &2+2 & 1+3 \end{bmatrix}

A+B = \begin{bmatrix} 2 & -2&1\\ 5 &4 & 4 \end{bmatrix}

\therefore \, \, \, (A+B)' = \begin{bmatrix} 2 & 5\\ 1 &4\\1 & 4 \end{bmatrix}

R.H.S: A' + B'

A'+B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}

A'+B' = \begin{bmatrix} 2 & 5\\ 1 &4 \\ 1 & 4 \end{bmatrix}

Hence, L.H.S = R.H.S i.e. (A + B)' = A' + B' .

Question 3(ii). If A = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix} and B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix} , then verify

(A - B)' = A' - B'

Answer:

A' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix} B = \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}

A=(A')' = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix}

To prove: (A - B)' = A' - B'

L.H.S : (A - B)' =

A-B = \begin{bmatrix} 3 & -1&0\\ 4 &2 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 2 & 1\\ 1 &2 &3 \end{bmatrix}

A-B = \begin{bmatrix} 3-(-1) & -1-(2)&0-1\\ 4-1 &2-2 & 1-3 \end{bmatrix}

A-B = \begin{bmatrix} 4 & -3&-1\\ 3 &0 & -2 \end{bmatrix}

\therefore \, \, \, (A-B)' = \begin{bmatrix} 4 & 3\\ -3 &0\\-1 & -2 \end{bmatrix}

R.H.S: A' - B'

A'-B' = \begin{bmatrix} 3 & 4\\ -1 &2 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} -1 & 1\\ 2 &2 \\ 1 & 3 \end{bmatrix}

A'-B' = \begin{bmatrix} 4 & 3\\ -3 &0 \\ -1 & -2 \end{bmatrix}

Hence, L.H.S = R.H.S i.e. (A - B)' = A' - B' .

Question 4. If A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix} and B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix} , then find (A + 2B)'

Answer:

B= \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}

A' = \begin{bmatrix} -2 & 3\\ 1 & 2 \end{bmatrix}

A=(A')' = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix}

(A + 2B)' :

A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix} +2 \begin{bmatrix} -1 & 0\\ 1 & 2 \end{bmatrix}

A+2B = \begin{bmatrix} -2 & 1\\ 3 & 2 \end{bmatrix} + \begin{bmatrix} -2 & 0\\ 2 & 4 \end{bmatrix}

A+2B = \begin{bmatrix} -2+(-2) & 1+0\\ 3+2 & 2+4 \end{bmatrix}

A+2B = \begin{bmatrix} -4 & 1\\ 5 & 6 \end{bmatrix}

Transpose is obtained by interchanging rows and columns and the transpose of A+2B is

(A+2B)' = \begin{bmatrix} -4 & 5\\ 1 & 6 \end{bmatrix}

Question 5(i) For the matrices A and B, verify that (AB)' = B'A' , where

A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix} , B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}

Answer:

A = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix} , B = \begin{bmatrix} -1& 2 &1 \end{bmatrix}

To prove : (AB)' = B'A'

L.H.S : (AB)'

AB = \begin{bmatrix} 1\\-4 \\3 \end{bmatrix} \begin{bmatrix} -1& 2 &1 \end{bmatrix}

AB = \begin{bmatrix} -1&2&1\\4&-8&-4 \\-3 &6&3\end{bmatrix}

(AB)' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1 &-4&3\end{bmatrix}

R.H.S : B'A'

B' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix}

A' = \begin{bmatrix} 1& -4 &3 \end{bmatrix}

B'A' = \begin{bmatrix} -1\\2 \\1 \end{bmatrix} \begin{bmatrix} 1& -4 &3 \end{bmatrix}

B'A' = \begin{bmatrix} -1&4&-3\\2&-8&6 \\1&-4&3 \end{bmatrix}

Hence, L.H.S =R.H.S

so it is verified that (AB)' = B'A' .

Question 5(ii) For the matrices A and B, verify that (AB)' = B'A' , where

A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} , B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}

Answer:

A = \begin{bmatrix} 0\\ 1\\ 2 \end{bmatrix} , B = \begin{bmatrix} 1 & 5&7 \end{bmatrix}

To prove : (AB)' = B'A'

L.H.S : (AB)'

AB = \begin{bmatrix} 0\\1 \\2 \end{bmatrix} \begin{bmatrix} 1& 5 &7 \end{bmatrix}

AB = \begin{bmatrix} 0&0&0\\1&5&7 \\2 &10&14\end{bmatrix}

(AB)' = \begin{bmatrix} 0&1&2\\0&5&10 \\0 &7&14\end{bmatrix}

R.H.S : B'A'

B' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix}

A' = \begin{bmatrix} 0& 1 &2 \end{bmatrix}

B'A' = \begin{bmatrix} 1\\5 \\7 \end{bmatrix} \begin{bmatrix} 0& 1 &2 \end{bmatrix}

B'A' = \begin{bmatrix} 0&1&2\\0&5&10 \\0&7&14 \end{bmatrix}

Heence, L.H.S =R.H.S i.e. (AB)' = B'A' .

Question 6(i). If A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix} , then verify that A'A =I

Answer:

A = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}

By interchanging rows and columns we get transpose of A

A' = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}

To prove: A'A =I

L.H.S : A'A

A'A = \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}

A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}

A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S

Question 6(ii). If A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix} , then verify that A'A = I

Answer:

A = \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}

By interchanging columns and rows of the matrix A we get the transpose of A

A' = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix}

To prove: A'A =I

L.H.S : A'A

A'A = \begin{bmatrix} \sin\alpha & -\cos\alpha \\ \cos\alpha & \sin\alpha \end{bmatrix} \begin{bmatrix} \sin\alpha & \cos\alpha \\ -\cos\alpha & \sin\alpha \end{bmatrix}

A'A = \begin{bmatrix} \cos^{2}\alpha + \sin ^{2}\alpha & \sin\alpha \cos \alpha - \sin \alpha \ cos \alpha \\ \sin\alpha \cos \alpha - \sin \alpha \cos \alpha & \ sin^{2}\alpha +\cos^{2}\alpha \end{bmatrix}

A'A = \begin{bmatrix} 1& 0 \\ 0& 1 \end{bmatrix}=I=R.H.S

Question 7(i). Show that the matrix A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix} is a symmetric matrix.

Answer:

A = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}

the transpose of A is

A' = \begin{bmatrix} 1 &- 1& 5\\ -1 & 2 & 1\\ 5 & 1 & 3 \end{bmatrix}

Since, A' = A so given matrix is a symmetric matrix.

Question 7(ii) Show that the matrix A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix} is a skew-symmetric matrix.

Answer:

A = \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}

The transpose of A is

A' = \begin{bmatrix} 0 & -1 & 1\\ 1 & 0 &-1 \\- 1 & 1 &0 \end{bmatrix}

A' =- \begin{bmatrix} 0 & 1 & -1\\ -1 & 0 &1 \\ 1 & -1 &0 \end{bmatrix}

A' =- A

Since, A' =- A so given matrix is a skew-symmetric matrix.

Question 8(i). For the matrix A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix} , verify that

(A + A') is a symmetric matrix.

Answer:

A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}

A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}

A + A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix} + \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}

A + A'= \begin{bmatrix} 1+1 & 5+6\\ 6+5 & 7+7 \end{bmatrix}

A + A'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}

(A + A')'= \begin{bmatrix}2 & 11\\ 11& 14 \end{bmatrix}

We have A+A'=(A + A')'

Hence , (A + A') is a symmetric matrix.

Question 8(ii) For the matrix A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix} , verify that

(A - A') is a skew symmetric matrix.

Answer:

A = \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix}

A' = \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}

A - A'= \begin{bmatrix} 1 & 5\\ 6 & 7 \end{bmatrix} - \begin{bmatrix} 1 & 6\\ 5 & 7 \end{bmatrix}

A - A'= \begin{bmatrix} 1-1 & 5-6\\ 6-5 & 7-7 \end{bmatrix}

A - A'= \begin{bmatrix}0 & -1\\ 1& 0 \end{bmatrix}

(A - A')'= \begin{bmatrix}0 & 1\\ -1& 0 \end{bmatrix}=-(A-A')

We have A-A'=-(A - A')'

Hence , (A - A') is a skew-symmetric matrix.

Question 9. Find \frac{1}{2}(A+A') and \frac{1}{2}(A-A') , when A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}

Answer:

A = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}

the transpose of the matrix is obtained by interchanging rows and columns

A' = \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix}

\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix} +\begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})

\frac{1}{2}(A+A') = \frac{1}{2}(\begin{bmatrix} 0+0 & a+(-a) & b+(-b)\\ -a+a & 0+0 & c+(-c)\\ -b+b & -c+c & 0+0 \end{bmatrix})

\frac{1}{2}(A+A') = \frac{1}{2}\begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}

\frac{1}{2}(A+A') = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}

\frac{1}{2}(A+A') = 0


\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix} - \begin{bmatrix} 0 & -a & -b\\ a & 0 & -c\\ b & c & 0 \end{bmatrix})

\frac{1}{2}(A-A') = \frac{1}{2}(\begin{bmatrix} 0-0 & a-(-a) & b-(-b)\\ -a-a & 0-0 & c-(-c)\\ -b-b & -c-c & 0-0 \end{bmatrix})

\frac{1}{2}(A-A') = \frac{1}{2}\begin{bmatrix} 0 & 2a &2 b\\ -2a & 0 & 2c\\ -2b & -2c & 0 \end{bmatrix}

\frac{1}{2}(A-A') = \begin{bmatrix} 0 & a & b\\ -a & 0 & c\\ -b & -c & 0 \end{bmatrix}

Question 10(i). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}

Answer:

A=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix}

A'=\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}

A+A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix} +\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}

A+A'=\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix}

Let

B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 6\\ 6 & -2 \end{bmatrix} =\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}

B'=\begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix}=B

Thus, \frac{1}{2}(A+A') is a symmetric matrix.


A-A'=\begin{bmatrix} 3 & 5\\ 1 & -1 \end{bmatrix} -\begin{bmatrix} 3 & 1\\ 5 & -1 \end{bmatrix}

A-A'=\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix}

Let

C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 4\\ -4 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix}

C'= \begin{bmatrix} 0 & -2\\ 2 & 0 \end{bmatrix}

C=-C'

Thus, \frac{1}{2}(A-A') is a skew symmetric matrix.

Represent A as sum of B and C.

B+C = \begin{bmatrix} 3 & 3\\ 3 & -1 \end{bmatrix} + \begin{bmatrix} 0 & 2\\ -2 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 5\\ 1 & -1\end{bmatrix}=A

Question:10(ii). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}

Answer:

A=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}

A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}

A+A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix} + \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}

A+A'=\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix}

Let

B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 12 & -4 & 4\\ -4 & 6 & -2\\ 4 & -2 & 6 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}

B'= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=B

Thus, \frac{1}{2}(A+A') is a symmetric matrix.


A-A'=\begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix} - \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}

A-A'=\begin{bmatrix} 0 & 0&0\\ 0 & 0&0 \\0&0&0\end{bmatrix}

Let

C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix} =\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}

C'=\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix}

C=-C'

Thus, \frac{1}{2}(A-A') is a skew-symmetric matrix.

Represent A as the sum of B and C.

B+C= \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix} +\begin{bmatrix} 0 & 0&0\\ 0&0 & 0\\0&0&0 \end{bmatrix} = \begin{bmatrix} 6 & -2 & 2\\ -2 & 3 & -1\\ 2 & -1 & 3 \end{bmatrix}=A

Question 10(iii). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}

Answer:

A=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}

A'=\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}

A+A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix} +\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}

A+A'=\begin{bmatrix} 6 & 1 & -5\\ 1& -4 & -4\\ -5 & -4 & 4 \end{bmatrix}

Let

B= \frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 6 & 1 & -5\\ 1 & -4 & -4\\ -5 & -4 & 4 \end{bmatrix} = \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}

B'= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix}=B

Thus, \frac{1}{2}(A+A') is a symmetric matrix.


A-A'=\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix} -\begin{bmatrix} 3 & -2 & -4\\ 3 & -2 & -5\\ -1 & 1 & 2 \end{bmatrix}

A-A'=\begin{bmatrix} 0 & 5&3\\ -5 & 0&6 \\-3&-6&0\end{bmatrix}

Let

C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 5&3\\ -5&0 & 6\\-3&-6&0 \end{bmatrix} =\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix}

C'=\begin{bmatrix} 0 &- \frac{5}{2}&-\frac{3}{2}\\ \frac{5}{2}&0 &- 3\\\frac{3}{2}&3&0 \end{bmatrix}

C=-C'

Thus, \frac{1}{2}(A-A') is a skew-symmetric matrix.

Represent A as the sum of B and C.

B+C= \begin{bmatrix} 3 & \frac{1}{2} & -\frac{5}{2}\\ \frac{1}{2} & -2 & -2\\ \frac{-5}{2} & -2 & 2 \end{bmatrix} +\begin{bmatrix} 0 & \frac{5}{2}&\frac{3}{2}\\ -\frac{5}{2}&0 & 3\\\frac{-3}{2}&-3&0 \end{bmatrix} =\begin{bmatrix} 3 & 3 & -1\\ -2 & -2 & 1\\ -4 & -5 & 2 \end{bmatrix}=A

Question 10(iv). Express the following matrices as the sum of a symmetric and a skew symmetric matrix:

\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}

Answer:

A =\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix}

A'=\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}

A+A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix} +\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}

A+A'=\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix}

Let

B=\frac{1}{2}(A+A')=\frac{1}{2}\begin{bmatrix} 2 & 4\\ 4 & 4 \end{bmatrix} =\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}

B'=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix}=B

Thus, \frac{1}{2}(A+A') is a symmetric matrix.

A-A'=\begin{bmatrix} 1 & 5\\ -1 & 2 \end{bmatrix} -\begin{bmatrix} 1 & -1\\ 5 & 2 \end{bmatrix}

A-A'=\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix}

Let

C= \frac{1}{2}(A-A')=\frac{1}{2}\begin{bmatrix} 0 & 6\\ -6 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 3\\ -3 & 0 \end{bmatrix}

C'= \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix}

C=-C'

Thus, \frac{1}{2}(A-A') is a skew-symmetric matrix.

Represent A as the sum of B and C.

B+C=\begin{bmatrix} 1 & 2\\ 2 & 2 \end{bmatrix} - \begin{bmatrix} 0 & -3\\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 5\\ -1 & 2\end{bmatrix}=A


NCERT solutions for class 12 maths chapter 3 Matrices: Exercise 3.4

Question 1 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix}1&-1\\2&3 \end{bmatrix}

Answer:

Use the elementary transformation we can find the inverse as follows

A=\begin{bmatrix}1&-1\\2&3 \end{bmatrix}

A=IA

\Rightarrow \begin{bmatrix}1&-1\\2&3 \end{bmatrix} = \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_2\rightarrow R_2-2R_1

\Rightarrow \begin{bmatrix}1&-1\\0&5 \end{bmatrix} = \begin{bmatrix}1&0\\-2&1 \end{bmatrix}A

R_2\rightarrow \frac{R_2}{5}

\Rightarrow \begin{bmatrix}1&-1\\0&1 \end{bmatrix} = \begin{bmatrix}1&0\\\frac{-2}{5}&\frac{1}{5} \end{bmatrix}A

R_1\rightarrow R_1+R_2

\Rightarrow \begin{bmatrix}1&0\\0&1 \end{bmatrix} = \begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\\frac{-2}{5}&\frac{1}{5} \end{bmatrix}A

\therefore A^{-1}= \begin{bmatrix}\frac{3}{5}&\frac{1}{5}\\\frac{-2}{5}&\frac{1}{5} \end{bmatrix}

Question 2 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 2&1\\1&1\end{bmatrix}

Answer:

A=\begin{bmatrix} 2&1\\1&1\end{bmatrix}

A=IA

\Rightarrow \begin{bmatrix} 2&1\\1&1\end{bmatrix} = \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_1\rightarrow R_1-R_2

\Rightarrow \begin{bmatrix}1&0\\1&1 \end{bmatrix} = \begin{bmatrix}1&-1\\0&1 \end{bmatrix}A

R_2\rightarrow R_2-R_1

\Rightarrow \begin{bmatrix}1&0\\0&1 \end{bmatrix} = \begin{bmatrix}1&-1\\-1& 2 \end{bmatrix}A

A^{-1}= \begin{bmatrix}1&-1\\-1& 2 \end{bmatrix}

Thus we have obtained the inverse of the given matrix through elementary transformation

Question 7 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 3 & 1\\ 5 & 2 \end{bmatrix}

Answer:

A=\begin{bmatrix} 3 & 1\\ 5 & 2 \end{bmatrix}

A=IA

\Rightarrow \begin{bmatrix} 3 & 1\\ 5 & 2 \end{bmatrix} = \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_2\rightarrow R_2-R_1

\Rightarrow \begin{bmatrix} 3 & 1\\ 2 & 1 \end{bmatrix} = \begin{bmatrix}1&0\\-1&1 \end{bmatrix}A

\Rightarrow R_1\rightarrow R_1-R_2

\Rightarrow \begin{bmatrix} 1 & 0\\ 2 & 1 \end{bmatrix} = \begin{bmatrix}2&-1\\-1&1 \end{bmatrix}A

R_2\rightarrow R_2-2R_1

\Rightarrow \begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix} = \begin{bmatrix}2&-1\\-5&3 \end{bmatrix}A

\therefore A^{-1}= \begin{bmatrix}2&-1\\-5&3 \end{bmatrix} .

Thus the inverse of matrix A is obtained using elementary transformation.

Question 8 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 4 &5 \\ 3 & 4 \end{bmatrix}

Answer:

A=\begin{bmatrix} 4 &5 \\ 3 & 4 \end{bmatrix}

A=IA

\Rightarrow\begin{bmatrix} 4 &5 \\ 3 & 4 \end{bmatrix}= \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_1\rightarrow R_1-R_2

\Rightarrow\begin{bmatrix} 1 &1 \\ 3 & 4 \end{bmatrix}= \begin{bmatrix}1&-1\\0&1 \end{bmatrix}A

\Rightarrow R_2\rightarrow R_2-3R_1

\Rightarrow \begin{bmatrix}1&1\\0&1 \end{bmatrix} = \begin{bmatrix}1&-1\\-3&4 \end{bmatrix}A

R_1\rightarrow R_1-R_2

\Rightarrow \begin{bmatrix}1&0\\0&1 \end{bmatrix} = \begin{bmatrix}4&-5\\-3&4 \end{bmatrix}A

Thus using elementary transformation inverse of A is obtained as

\therefore A^{-1}= \begin{bmatrix}4&-5\\-3&4 \end{bmatrix} .

Question 9 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 3 & 10\\ 2 & 7 \end{bmatrix}

Answer:

A=\begin{bmatrix} 3 & 10\\ 2 & 7 \end{bmatrix}

A=IA

\Rightarrow\begin{bmatrix} 3 & 10\\ 2 & 7 \end{bmatrix}= \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_1\rightarrow R_1-R_2

\Rightarrow\begin{bmatrix} 1& 3\\ 2 & 7 \end{bmatrix}= \begin{bmatrix}1&-1\\0&1 \end{bmatrix}A

\Rightarrow R_2\rightarrow R_2-2R_1

\Rightarrow\begin{bmatrix} 1& 3\\ 0 & 1 \end{bmatrix}= \begin{bmatrix}1&-1\\-2&3 \end{bmatrix}A

R_1\rightarrow R_1-3R_2

\Rightarrow\begin{bmatrix} 1& 0\\ 0 & 1 \end{bmatrix}= \begin{bmatrix}7&-10\\-2&3 \end{bmatrix}A

Thus using elementary transformation the inverse of A is obtained as

\therefore A^{-1}= \begin{bmatrix}7&-10\\-2&3 \end{bmatrix} .

Question 10 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 3 & -1\\ -4 & 2 \end{bmatrix}

Answer:

A=\begin{bmatrix} 3 & -1\\ -4 & 2 \end{bmatrix}

A=IA

\Rightarrow\begin{bmatrix} 3 & -1\\ -4 & 2 \end{bmatrix}= \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_2\rightarrow R_2+R_1

\Rightarrow\begin{bmatrix} 3 & -1\\ -1 & 1 \end{bmatrix}= \begin{bmatrix}1&0\\1&1 \end{bmatrix}A

\Rightarrow R_1\rightarrow R_1+2R_2

\Rightarrow\begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix}= \begin{bmatrix}3&2\\1&1 \end{bmatrix}A

R_2\rightarrow R_2+R_1

\begin{bmatrix} 1 & 1\\ 0 & 2 \end{bmatrix}= \begin{bmatrix}3&2\\4&3 \end{bmatrix}A

R_2\rightarrow \frac{R_2}{2}

\begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}= \begin{bmatrix}3&2\\2&\frac{3}{2} \end{bmatrix}A

R_1\rightarrow R_1-R_2

\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}= \begin{bmatrix}1&\frac{1}{2}\\2&\frac{3}{2} \end{bmatrix}A

\therefore A^{-1}= \begin{bmatrix}1&\frac{1}{2}\\2&\frac{3}{2} \end{bmatrix} .

Thus the inverse of A is obtained using elementary transformation.

Question 11 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 2 & -6\\ 1 & -2 \end{bmatrix}

Answer:

A=\begin{bmatrix} 2 & -6\\ 1 & -2 \end{bmatrix}

A=IA

\Rightarrow\begin{bmatrix} 2 & -6\\ 1 & -2 \end{bmatrix}= \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_1\rightarrow R_1-3R_1

\Rightarrow\begin{bmatrix} -1 & 0\\ 1 & -2 \end{bmatrix}= \begin{bmatrix}1&-3\\0&1 \end{bmatrix}A

\Rightarrow R_2\rightarrow R_2+R_1

\Rightarrow\begin{bmatrix} -1 & 0\\ 0 & -2 \end{bmatrix}= \begin{bmatrix}1&-3\\1&-2 \end{bmatrix}A

R_1\rightarrow -R_1

\Rightarrow\begin{bmatrix} 1 & 0\\ 0 & -2 \end{bmatrix}= \begin{bmatrix}-1&3\\1&-2 \end{bmatrix}A

R_2\rightarrow \frac{R_2}{-2}

\Rightarrow\begin{bmatrix} 1 & 0\\ 0 & 1 \end{bmatrix}= \begin{bmatrix}-1&3\\\frac{1}{-2}&1 \end{bmatrix}A

thus the inverse of matrix A is

\therefore A^{-1}= \begin{bmatrix}-1&3\\\frac{1}{-2}&1 \end{bmatrix} .

Question 12 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 6 & -3\\ -2 & 1 \end{bmatrix}

Answer:

A=\begin{bmatrix} 6 & -3\\ -2 & 1 \end{bmatrix}

A=IA

\Rightarrow \begin{bmatrix} 6 & -3\\ -2 & 1 \end{bmatrix} = \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_1\rightarrow \frac{R_1}{6}

\Rightarrow \begin{bmatrix} 1& -\frac{1}{2}\\ -2 & 1 \end{bmatrix} = \begin{bmatrix}\frac{1}{6}&0\\0&1 \end{bmatrix}A

\Rightarrow R_2\rightarrow R_2+2R_1

\Rightarrow \begin{bmatrix} 1& -\frac{1}{2}\\ 0 & 0 \end{bmatrix} = \begin{bmatrix}\frac{1}{6}&0\\\frac{1}{3}&1 \end{bmatrix}A

Hence, we can see all the zeros in the second row of the matrix in L.H.S so A^{-1} does not exist.

Question 14 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 2 & 1\\ 4 & 2 \end{bmatrix}

Answer:

A=\begin{bmatrix} 2 & 1\\ 4 & 2 \end{bmatrix}

A=IA

\Rightarrow\begin{bmatrix} 2 & 1\\ 4 & 2 \end{bmatrix}= \begin{bmatrix}1&0\\0&1 \end{bmatrix}A

R_2\rightarrow \frac{R_2}{2}

\Rightarrow\begin{bmatrix} 2 & 1\\ 2 & 1 \end{bmatrix}= \begin{bmatrix}1&0\\0&\frac{1}{2} \end{bmatrix}A

\Rightarrow R_1\rightarrow R_1-R_2

\Rightarrow\begin{bmatrix} 0 & 0\\ 2 & 1 \end{bmatrix}= \begin{bmatrix}1&\frac{-1}{2}\\0&\frac{1}{2} \end{bmatrix}A

Hence, we can see all upper values of matirix are zeros in L.H.S so A^{-1} does not exists.

Question 16 Using elementary transformations, find the inverse of each of the matrices, if it exists
in Exercises 1 to 17.

\begin{bmatrix} 1 &3 & -2\\ -3& 0 &-5 \\ 2 & 5 & 0 \end{bmatrix}

Answer:

A=\begin{bmatrix} 1 &3 & -2\\ -3& 0 &-5 \\ 2 & 5 & 0 \end{bmatrix}

A=IA

\Rightarrow\begin{bmatrix} 1 &3 & -2\\ -3& 0 &-5 \\ 2 & 5 & 0 \end{bmatrix}= \begin{bmatrix}1&0&0\\0&1&0 \\0&0&1 \end{bmatrix}A

R_2\rightarrow R_2+3R_1 and R_3\rightarrow R_3-2R_1

\Rightarrow\begin{bmatrix} 1 &3 & -2\\ 0& 9 &-11 \\ 0 & -1 & 4 \end{bmatrix}= \begin{bmatrix}1&0&0\\3&1&0 \\-2&0&1 \end{bmatrix}A

R_1\rightarrow R_1+3R_3 and R_2\rightarrow R_2+8R_3

\Rightarrow\begin{bmatrix} 1 &0 & 10\\ 0& 1 &21 \\ 0 & -1 & 4 \end{bmatrix}= \begin{bmatrix}-5&0&3\\-13&1&8 \\-2&0&1 \end{bmatrix}A

\Rightarrow R_3\rightarrow R_3+R_2

\Rightarrow\begin{bmatrix} 1 &0 & 10\\ 0& 1 &21 \\ 0 & 0 & 25 \end{bmatrix}= \begin{bmatrix}-5&0&3\\-13&1&8 \\-15&1&9 \end{bmatrix}A

R_3\rightarrow \frac{R_3}{25}

\Rightarrow\begin{bmatrix} 1 &0 & 10\\ 0& 1 &21 \\ 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix}-5&0&3\\-13&1&8 \\-\frac{3}{5}&\frac{1}{25}&\frac{9}{25} \end{bmatrix}A

R_1\rightarrow R_1-10R_3 and R_2\rightarrow R_2-21R_3

\Rightarrow\begin{bmatrix} 1 &0 & 0\\ 0& 1 &0 \\ 0 & 0 & 1 \end{bmatrix}= \begin{bmatrix}1&\frac{-2}{5}&\frac{-3}{5}\\\frac{-2}{5}&\frac{4}{25}&\frac{11}{25} \\-\frac{3}{5}&\frac{1}{25}&\frac{9}{25} \end{bmatrix}A

Thus the inverse of three by three matrix A is

\therefore A^{-1}= . \begin{bmatrix}1&\frac{-2}{5}&\frac{-3}{5}\\\frac{-2}{5}&\frac{4}{25}&\frac{11}{25} \\-\frac{3}{5}&\frac{1}{25}&\frac{9}{25} \end{bmatrix} .

Question:18 Matrices A and B will be inverse of each other only if

(A) AB = BA

(B) AB = BA = 0

(C) AB = 0, BA = I

(D) AB = BA = I

Answer:

We know that if A is a square matrix of order n and there is another matrix B of same order n, such that AB=BA=I , then B is inverse of matrix A.

In this case, it is clear that A is inverse of B.

Hence, m atrices A and B will be inverse of each other only if AB=BA=I .

Option D is correct .


NCERT solutions for class 12 maths chapter - 3 Matrices: Miscellaneous exercise

Question:1 Let A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix} , show that (aI + bA)^n = a^n I + na^{n-1} bA , where I is the identity matrix of order 2 and n \in N .

Answer:

Given :

A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}

To prove : (aI + bA)^n = a^n I + na^{n-1} bA

For n=1, aI + bA = a I + a^{0} bA =a I + bA

The result is true for n=1.

Let result be true for n=k,

(aI + bA)^k = a^k I + ka^{k-1} bA

Now, we prove that the result is true for n=k+1,

(aI + bA)^k^+^1 = (aI + bA)^k^(aI + bA)

= (a^k I + ka^{k-1} bA) (aI + bA)

=a^{k+1}I+Ka^{k}bAI+a^{k}bAI+ka^{k-1}b^{2}A^{2}

=a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}

A^{2} = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}\begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 0 &0 \\ 0 & 0 \end{bmatrix}=0

Put the value of A^{2} in above equation,

(aI + bA)^k^+^1 =a^{k+1}I+(k+1)a^{k}bAI+ka^{k-1}b^{2}A^{2}

(aI + bA)^k^+^1 =a^{k+1}I+(k+1)a^{k}bAI+0

=a^{k+1}I+(k+1)a^{k}bAI

Hence, the result is true for n=k+1.

Thus, we have (aI + bA)^n = a^n I + na^{n-1} bA where A = \begin{bmatrix} 0 &1 \\ 0 & 0 \end{bmatrix} , n \in N .

Question 2. If A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix} then show that A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix} , n\in N .

Answer:

Given :

A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}

To prove:

A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix}

For n=1, we have

A^1 =\begin{bmatrix} 3^{1-1} & 3^{1-1} &3^{1-1} \\ 3^{1-1}& 3^{1-1} & 3^{1-1}\\ 3^{1-1} & 3^{1-1}& 3^{1-1} \end{bmatrix} =\begin{bmatrix} 3^{0} & 3^{0} &3^{0} \\ 3^{0}& 3^{0} & 3^{0}\\ 3^{0} & 3^{0}& 3^{0} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix}=A

Thus, the result is true for n=1.

Now, take n=k,

A^k =\begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}

For, n=k+1,

A^{K+1}=A.A^K

= \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix} \begin{bmatrix} 3^{k-1} & 3^{k-1} &3^{k-1} \\ 3^{k-1}& 3^{k-1} & 3^{k-1}\\ 3^{k-1} & 3^{k-1}& 3^{k-1} \end{bmatrix}

=\begin{bmatrix}3. 3^{k-1} & 3.3^{k-1} &3.3^{k-1} \\3. 3^{k-1}& 3.3^{k-1} & 3.3^{k-1}\\3. 3^{k-1} & 3.3^{k-1}&3. 3^{k-1} \end{bmatrix}

=\begin{bmatrix} 3^{(K+1)-1} &3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1}&3^{(K+1)-1} &3^{(K+1)-1}\\ 3^{(K+1)-1} & 3^{(K+1)-1}& 3^{(K+1)-1}\end{bmatrix}

Thus, the result is true for n=k+1.

Hence, we have A^n =\begin{bmatrix} 3^{n-1} & 3^{n-1} &3^{n-1} \\ 3^{n-1}& 3^{n-1} & 3^{n-1}\\ 3^{n-1} & 3^{n-1}& 3^{n-1} \end{bmatrix} , n\in N where A = \begin{bmatrix} 1 & 1 & 1\\ 1& 1& 1\\ 1& 1& 1 \end{bmatrix} .

Question 3. If A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix} , then prove that A^n = \begin{bmatrix} 1+2n & -4\n\\ n & 1-2n \end{bmatrix} , where n is any positive integer.

Answer:

Given :

A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix}

To prove:

A^n = \begin{bmatrix} 1+2n & -4\n\\ n & 1-2n \end{bmatrix}

For n=1, we have

A^1 = \begin{bmatrix} 1+2\times 1 & -4\times 1\\ 1 & 1-2\times 1 \end{bmatrix} = \begin{bmatrix} 3 & -4\\ 1 & -1 \end{bmatrix}=A

Thus, result is true for n=1.

Now, take result is true for n=k,

A^k = \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}

For, n=k+1,

A^{K+1}=A.A^K

= \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix} \begin{bmatrix} 1+2k & -4k\\ k & 1-2k \end{bmatrix}

=\begin{bmatrix} 3(1+2k)-4k & -12k-4(1-2k)\\ (1+2k)-k &-4k-(1-2k) \end{bmatrix}

=\begin{bmatrix} 3+6k-4k & -12k-4k+8k\\ 1+k &-4k-1+2k \end{bmatrix}

=\begin{bmatrix} 3+2k & -4k-4k\\ 1+k &-2k-1 \end{bmatrix}

=\begin{bmatrix} 1+2(k+1)& -4(k+1)\\ 1+k &1-2(k+1) \end{bmatrix}

Thus, the result is true for n=k+1.

Hence, we have A^n = \begin{bmatrix} 1+2n & -4\n\\ n & 1-2n \end{bmatrix} , where A = \begin{bmatrix} 3 & -4\\ 1& -1 \end{bmatrix} .

Question 4. If A and B are symmetric matrices, prove that AB - BA is a skew symmetric matrix.

Answer:

If A, B are symmetric matrices then

A'=A and B' = B

we have, \left ( AB-BA \right )'=\left ( AB \right )'-\left ( BA \right )'=B'A'-A'B'

=BA-AB

= -(AB-BA)

Hence, we have (AB-BA) = -(AB-BA)'

Thus,( AB-BA)' is skew symmetric.

Question 5. Show that the matrix B′AB is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Answer:

Let be a A is symmetric matrix , then A'=A

Consider, (B'AB)' ={B'(AB)}'

={(AB)}'(B')'

= B'A'(B)

= B'(A'B)

Replace A' by A

=B'(AB)

i.e. (B'AB)' =B'(AB)

Thus, if A is a symmetric matrix than B'(AB) is a symmetric matrix.


Now, let A be a skew-symmetric matrix, then A'=-A .

(B'AB)' ={B'(AB)}'

={(AB)}'(B')'

= B'A'(B)

= B'(A'B)

Replace A' by - A ,

=B'(-AB)

= - B'AB

i.e. (B'AB)' = - B'AB .

Thus, if A is a skew-symmetric matrix then - B'AB is a skew-symmetric matrix.

Hence, the matrix B′AB is symmetric or skew-symmetric according to as A is symmetric or skew-symmetric.

Question 6. Find the values of x , y , z if the matrix A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix} satisfy the equation A'A = I

Answer:

A = \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix}

A' = \begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix}

A'A = I

\begin{bmatrix} 0 & x & x\\ 2y & y & -y\\ z & -z &z \end{bmatrix} \begin{bmatrix} 0 & 2y & z\\ x & y & -z\\ x & -y &z \end{bmatrix} = \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}

\begin{bmatrix} x^{2}+x^{2} & xy-xy& -xz+xz\\ xy-xy& 4y^{2}+y^{2}+y^{2} & 2yz-yz-yz\\ -zx+zx & 2yz-yz-yz &z^{2}+z^{2}+z^{2}\end{bmatrix} = \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}

\begin{bmatrix} 2x^{2} & 0& 0\\ 0& 6y^{2} & 0\\ 0 & 0 &3z^{2}\end{bmatrix} = \begin{bmatrix} 1 & 0& 0\\ 0 & 1 & 0\\ 0 & 0 &1\end{bmatrix}

Thus equating the terms elementwise

2x^{2} = 1 6y^{2} = 1 3z^{2} = 1

x^{2} = \frac{1}{2} y^{2} = \frac{1}{6} z^{2}=\frac{1}{3}

x = \pm \frac{1}{\sqrt{2}} y= \pm \frac{1}{\sqrt{6}} z=\pm \frac{1}{\sqrt{3}}

Question 7. For what values of x: \begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O ?

Answer:

\begin{bmatrix} 1 & 2 & 1 \end{bmatrix}\begin{bmatrix} 1 & 2 & 0\\ 2 & 0 &1 \\ 1& 0& 2\end{bmatrix}\begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O

\begin{bmatrix} 1+4+1 & 2+0+0 & 0+2+2 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O

\begin{bmatrix} 6& 2& 4 \end{bmatrix} \begin{bmatrix} 0\\ 2 \\ x \end{bmatrix} = O

\begin{bmatrix} 0+4+4x \end{bmatrix} = O

4+4x=0

4x=-4

x=-1

Thus, value of x is -1.

Question 8. If A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix} , show that A^2 -5A + 7I= 0 .

Answer:

A = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}

A^{2} = \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix}

A^{2} = \begin{bmatrix} 9-1 &3+2 \\ -3-2 & -1+4 \end{bmatrix}

A^{2} = \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix}

I= \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

To prove: A^2 -5A + 7I= 0

L.H.S : A^2 -5A + 7I

= \begin{bmatrix} 8 &5 \\ -5 & 3 \end{bmatrix} -5 \begin{bmatrix} 3 &1 \\ -1 & 2 \end{bmatrix} + 7 \begin{bmatrix} 1 &0 \\ 0& 1 \end{bmatrix}

=\begin{bmatrix} 8-15+7 &5-5+0 \\ -5+5+0& 3-10+7 \end{bmatrix}

=\begin{bmatrix} 0 &0 \\ 0& 0 \end{bmatrix} =0=R.H.S

Hence, we proved that

A^2 -5A + 7I= 0 .

Question 9. Find x, if \begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0 .

Answer:

\begin{bmatrix} x & -5 & -1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 2\\ 0 & 2 & 1\\ 2 & 0 & 3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0

\begin{bmatrix} x +0-2& 0-10+0 & 2x-5-3 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0

\begin{bmatrix} x -2& -10 & 2x-8 \end{bmatrix} \begin{bmatrix} x\\ 4\\ 1 \end{bmatrix} = 0

\begin{bmatrix}x (x -2)-40+(2x-8) \end{bmatrix} = 0

\begin{bmatrix}x ^{2}-2x-40+2x-8\end{bmatrix} = 0

\therefore \, \, x ^{2}-48= 0

x ^{2}=48

thus the value of x is

x =\pm 4\sqrt{3}

Question 10(a) A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively, find the total revenue in each market with the help of matrix algebra.

Answer:

The unit sale prices of x, y and z are ` 2.50, ` 1.50 and ` 1.00, respectively.

The total revenue in the market I with the help of matrix algebra can be represented as :

\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}

= 10000\times 2.50+2000\times 1.50+18000\times 1.00

= 25000+3000+18000

= 46000

The total revenue in market II with the help of matrix algebra can be represented as :

\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.50\\ 1.50\\ 1.00 \end{bmatrix}

= 6000\times 2.50+20000\times 1.50+8000\times 1.00

= 15000+30000+8000

= 53000

Hence, total revenue in the market I is 46000 and total revenue in market II is 53000.

Question 10(b). A manufacturer produces three products x, y, z which he sells in two markets.
Annual sales are indicated below:

Market Products
I 10,000 2,000 18,000
II 6,000 20,000 8,000

If the unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively. Find the gross profit.

Answer:

The unit costs of the above three commodities are ` 2.00, ` 1.00 and 50 paise respectively.

The total cost price in market I with the help of matrix algebra can be represented as :

\begin{bmatrix} 10000& 2000 & 18000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}

= 10000\times 2.00+2000\times 1.00+18000\times 0.50

= 20000+2000+9000

= 31000

Total revenue in the market I is 46000 , gross profit in the market is = 46000-31000 =Rs. 15000

The total cost price in market II with the help of matrix algebra can be represented as :

\begin{bmatrix} 6000& 20000 & 8000 \end{bmatrix} \begin{bmatrix} 2.00\\ 1.00\\ 0.50 \end{bmatrix}

= 6000\times 2.0+20000\times 1.0+8000\times 0.50

= 12000+20000+4000

= 36000

Total revenue in market II is 53000, gross profit in the market is = 53000-36000= Rs. 17000

Question 11. Find the matrix X so that X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}

Answer:

X\begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}

The matrix given on R.H.S is 2\times 3 matrix and on LH.S is 2\times 3 matrix.Therefore, X has to be 2\times 2 matrix.

Let X be \begin{bmatrix} a & c\\ b & d \end{bmatrix}

\begin{bmatrix} a & c\\ b & d \end{bmatrix} \begin{bmatrix} 1 & 2 &3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}

\begin{bmatrix} a+4c & 2a+5c &3a+6c \\ b+4d & 2b+5d & 3b+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9\\ 2 &4 & 6 \end{bmatrix}

a+4c=-7 2a+5c=-8 3a+6c=-9

b+4d=2 2b+5d=4 3b+6d=6

Taking, a+4c=-7

a=-4c-7

2a+5c=-8

-8c-14+5c=-8

-3c=6

c=-2

a=-4\times -2-7

a=8-7=1

b+4d=2

b=-4d+2

2b+5d=4

\Rightarrow -8d+4+5d=4

\Rightarrow -3d=0

\Rightarrow d=0

b=-4d+2

\Rightarrow b=-4\times 0+2=2

Hence, we have a=1, b=2,c=-2,d=0

Matrix X is \begin{bmatrix} 1 & -2\\ 2 & 0 \end{bmatrix} .

Question 12. If A and B are square matrices of the same order such that AB = BA , then prove by induction that AB^n = B^n A . Further, prove that (AB)^n = A^n B^n for all n \in N .

Answer:

A and B are square matrices of the same order such that AB = BA ,

To prove : AB^n = B^n A , n \in N

For n=1, we have AB^1 = B^1 A

Thus, the result is true for n=1.

Let the result be true for n=k,then we have AB^k = B^k A

Now, taking n=k+1 , we have AB^{k+1} = AB^k .B

AB^{k+1} = (B^kA) .B

AB^{k+1} = (B^k) .AB

AB^{k+1} = (B^k) .BA

AB^{k+1} = (B^k.B) .A

AB^{k+1} = (B^k^+^1) .A

Thus, the result is true for n=k+1.

Hence, we have AB^n = B^n A , n \in N .

To prove: (AB)^n = A^n B^n

For n=1, we have (AB)^1 = A^1 B^1

Thus, the result is true for n=1.

Let the result be true for n=k,then we have (AB)^k = A^k B^k

Now, taking n=k+1 , we have (AB)^{k+1} = (A B)^k.(AB)

(AB)^{k+1} = A^k B^k.(AB)

(AB)^{k+1} = A^{K}( B^kA)B

(AB)^{k+1} = A^{K}( AB^k)B

(AB)^{k+1} = (A^{K}A)(B^kB)

(AB)^{k+1} = (A^{k+1})(B^{k+1})

Thus, the result is true for n=k+1.

Hence, we have AB^n = B^n A and (AB)^n = A^n B^n for all n \in N .

Question 14. If the matrix A is both symmetric and skew-symmetric, then

(A) A is a diagonal matrix
(B) A is a zero matrix
(C) A is a square matrix
(D) None of these

Answer:

If the matrix A is both symmetric and skew-symmetric, then

A'=A and A'=-A

A'=A'

\Rightarrow \, \, \, \, \, \, \, A=-A

\Rightarrow \, \, \, \, \, \, \, A+A=0

\Rightarrow \, \, \, \, \, \, \, 2A=0

\Rightarrow \, \, \, \, \, \, \, A=0

Hence, A is a zero matrix.

Option B is correct.

Question 15. If A is square matrix such that A^{2}=A , then (I + A)^3 - 7 A is equal to

(A) A
(B) I – A
(C) I
(D) 3A

Answer:

A is a square matrix such that A^{2}=A

(I + A)^3 - 7 A

=I^{3}+A^{3}+3I^{2}A+3IA^{2}-7A

=I+A^{2}.A+3A+3A^{2}-7A

=I+A.A+3A+3A-7A (Replace A^{2} by A )

=I+A^{2}+6A-7A

=I+A-A

=I

Hence, we have (I + A)^3 - 7 A=I

Option C is correct.

If you are interested in Matrices Class 12 NCERT Solutions exercises then these are listed below.

Matrices Class 12 NCERT Solutions Exercise 3.1

Matrices Class 12 NCERT Solutions Exercise 3.2

Matrices Class 12 NCERT Solutions Exercise 3.3

Matrices Class 12 NCERT Solutions Exercise 3.4

Matrices Class 12 NCERT Solutions Miscellaneous Exercise

More about NCERT Solutions for Class 12 Maths Chapter 3 Matrices

Matrix is an array of numbers. Matrix is a mode of representing data to ease calculation and it is one of the most important tools of mathematics because matrices simplify our work to a great extent when compared with other straight forward methods. Exercises are given in chapter 3 maths class 12 students should refer for practice. Matrices class 12 solutions also provided by careers360’s expert team if you are facing problems then you can refer to it as well.

Matrices are used as a representation of the coefficients in the system of linear equations, electronic spreadsheet programs, also used in business and science. For the students to understand NCERT class 12 maths solutions chapter 3 in a better way, a total of 28 solved examples are given to practice more, at the end of the chapter, 15 questions are given in the miscellaneous exercise. For command on concepts you can uses these practice problems of matrices class 12.

Matrices Class 12 NCERT solutions - Topics

3.1 Introduction

3.2 Matrix

3.2.1 Order of a matrix

3.3 Types of Matrices

3.3.1 Equality of matrices

3.4 Operations on Matrices

3.4.1 Addition of matrices

3.4.2 Multiplication of a matrix by a scalar

3.4.3 Properties of matrix addition

3.4.4 Properties of scalar multiplication of a matrix

3.4.5 Multiplication of matrices

3.4.6 Properties of multiplication of matrices

3.5. Transpose of a Matrix

3.5.1 Properties of the transpose of the matrices

3.6 Symmetric and Skew-Symmetric Matrices

3.7 Elementary Operation (Transformation) of a Matrix

3.8 Invertible Matrices

3.8.1 Inverse of a matrix by elementary operations

Topics of NCERT Class 12 Maths Chapter Matrices

The main topics covered in maths chapter 3 class 12 are:

  • Matrix

It is an ordered representation of numbers and functions, known as elements in a rectangular array. In this class 12 NCERT topics discuss concepts related to the order of a matrix, elements in raw, and columns of a matrix. there are good quality questions in matrix class 12 solutions.

  • Type of matrices

This ch 1 maths class 12 concerns different types of matrices like column matrix, raw matrix, square matrix, diagonal matrix, scalar matrix, identity matrix, zero matrix, etc. In this ch 3 maths class 12 also discuss comprehensively conditions of equality of matrix. To get command on these concepts you can refer to NCERT solutions for class 12 maths chapter 3.

  • Operations on matrices

This ch 3 maths class 12 also includes concepts of addition of matrices, multiplication of a matrix by a scalar, negative matrix, difference of matrices. maths class 12 chapter 3 also contains properties of matrix addition that include commutative leas, associative laws, the existence of an additive identity, the existence of additive inverse. Properties of scalar multiplication of matrix elaborated in this chapter. You can refer to class 12 NCERT solutions for questions about these concepts.

  • multiplication of matrix

Properties of multiplication of matrix that includes associative law, distributive laws, the existence of multiplicative identity. to get command of these concepts you can go through the NCERT solution for class 12 maths chapter 3.

  • transpose of a matrix

properties of transpose of the matrix are discussed in maths class 12 chapter 3. matrix class 12 solutions include quality questions to understand the concepts.

ch 3 maths class 12 also discuss in detail the concepts of symmetric and skew symmetric matrix, elementary operations (transformation) of a matrix. for questions on these concepts, you can browse NCERT solutions for class 12 chapter 3.

  • Invertible matrix

In class 12 NCERT chapter you get an idea of the inverse of a matrix by elementary operation. class 12 NCERT solutions include problems related to these concepts

Topics enumerated in class 12 NCERT are very important and students are suggested to go through all the concepts discussed in the topics. Questions related to all the above topics are covered in the NCERT solutions for class 12 maths chapter 3

Also read,

NCERT Solutions for Class 12 - Subject Wise

NCERT solutions for class 12 maths - Chapter wise

How to use NCERT Solutions for Class 12 Maths Chapter 3 Matrices

  • NCERT Class 12 Maths solutions chapter 3 covers all the questions given in the textbook. Make sure you have gone through all the important concepts of NCERT class 12th maths Matricesbefore solving the questions.

  • Firstly try to solve the questions on your own and then check the NCERT class 12 maths chapter 3 solutions.

  • Along with the NCERT Solutions for Class 12 Maths Chapter 3 Matrices, solve the previous year questions as well.

  • NCERT Class 12 maths chapter 3 solutions pdf download will be made available soon. Till then you can save this webpage instead of NCERT class 12 maths chapter 3 pdf to practice questions offline.

NCERT Books and NCERT Syllabus

Frequently Asked Question (FAQs)

1. How are the NCERT solutions helpful in the board exam?

NCERT solutions are not only important when you are stuck while solving the problems but you will get to know how to answer in the board exam in order to get good marks in the board exam. these class 12 maths ch 3 question answer also make you understand new concepts or in depth understanding of topics and can solve you doubts. in this way ncert solutions becomes important so you can refer ncert textbooks, ncert exercises and ncert solutions.

2. What are the important topics in chapter matrices?

Matrices, order of a matrix, types of matrices, equality of matrices, operations like addition multiplication on matrices, symmetric and skew-symmetric matrices are the important topics in this chapter. these topics are very important because of use in other supplementary topics like 3d geometry.

3. Can using class 12 maths chapter 3 ncert solutions improve your performance on the board exam?

Yes, Class 12 Matrices solutions definitely improve the performance on the board exam. It's recommended that students begin by tackling simpler problems before moving on to more challenging ones. Class 12 matrices NCERT solutions will enable them to identify areas where they need improvement. Through repeated practice on their weaker concepts, students can strengthen their skills and perform well on the board exams. Additionally, short-cut tips are provided to assist students in finding easier ways to solve complex problems.

4. What is the weightage of the chapter matrices for CBSE board exam?

The topic algebra which contains two topics matrices and determinants which has 13 % weightage in the maths CBSE 12th board final examination. students can list out topics according to respective weightage and channelise their energy according to priority of the topics.

5. What are the primary themes covered in NCERT Solutions for class 12 chapter 3 maths?

Mathematics often has simple chapters that can be enjoyable to study once understood, and matrices are one example. NCERT Class 12 maths matrices focus on the following main topics: matrices, types of matrices, operations on matrices, transpose of a matrix, symmetric and skew symmetric matrices, elementary operations on matrices, and invertible matrices. The material is presented in a straightforward manner to help students achieve good grades in the board exams, regardless of their intelligence. For ease, students can study matrices class 12 ncert pdf both online and offline.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello aspirant,

The purpose of graphic design extends beyond the brand's look. Nevertheless, by conveying what the brand stands for, it significantly aids in the development of a sense of understanding between a company and its audience. The future in the field of graphic designing is very promising.

There are various courses available for graphic designing. To know more information about these courses and much more details, you can visit our website by clicking on the link given below.

https://www.careers360.com/courses/graphic-designing-course

Thank you

Hope this information helps you.

hello,

Yes you can appear for the compartment paper again since CBSE gives three chances to a candidate to clear his/her exams so you still have two more attempts. However, you can appear for your improvement paper for all subjects but you cannot appear for the ones in which you have failed.

I hope this was helpful!

Good Luck

Hello dear,

If you was not able to clear 1st compartment and now you giving second compartment so YES, you can go for your improvement exam next year but if a student receives an improvement, they are given the opportunity to retake the boards as a private candidate the following year, but there are some requirements. First, the student must pass all of their subjects; if they received a compartment in any subject, they must then pass the compartment exam before being eligible for the improvement.


As you can registered yourself as private candidate for giving your improvement exam of 12 standard CBSE(Central Board of Secondary Education).For that you have to wait for a whole year which is bit difficult for you.


Positive side of waiting for whole year is you have a whole year to preparing yourself for your examination. You have no distraction or something which may causes your failure in the exams. In whole year you have to stay focused on your 12 standard examination for doing well in it. By this you get a highest marks as a comparison of others.


Believe in Yourself! You can make anything happen


All the very best.

Hello Student,

I appreciate your Interest in education. See the improvement is not restricted to one subject or multiple subjects  and  we cannot say if improvement in one subject in one year leads to improvement in more subjects in coming year.

You just need to have a revision of all subjects what you have completed in the school. have a revision and practice of subjects and concepts helps you better.

All the best.

Hi,

You just need to give the exams for the concerned two subjects in which you have got RT. There is no need to give exam for all of your subjects, you can just fill the form for the two subjects only.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Data Administrator

Database professionals use software to store and organise data such as financial information, and customer shipping records. Individuals who opt for a career as data administrators ensure that data is available for users and secured from unauthorised sales. DB administrators may work in various types of industries. It may involve computer systems design, service firms, insurance companies, banks and hospitals.

4 Jobs Available
Bio Medical Engineer

The field of biomedical engineering opens up a universe of expert chances. An Individual in the biomedical engineering career path work in the field of engineering as well as medicine, in order to find out solutions to common problems of the two fields. The biomedical engineering job opportunities are to collaborate with doctors and researchers to develop medical systems, equipment, or devices that can solve clinical problems. Here we will be discussing jobs after biomedical engineering, how to get a job in biomedical engineering, biomedical engineering scope, and salary. 

4 Jobs Available
Ethical Hacker

A career as ethical hacker involves various challenges and provides lucrative opportunities in the digital era where every giant business and startup owns its cyberspace on the world wide web. Individuals in the ethical hacker career path try to find the vulnerabilities in the cyber system to get its authority. If he or she succeeds in it then he or she gets its illegal authority. Individuals in the ethical hacker career path then steal information or delete the file that could affect the business, functioning, or services of the organization.

3 Jobs Available
GIS Expert

GIS officer work on various GIS software to conduct a study and gather spatial and non-spatial information. GIS experts update the GIS data and maintain it. The databases include aerial or satellite imagery, latitudinal and longitudinal coordinates, and manually digitized images of maps. In a career as GIS expert, one is responsible for creating online and mobile maps.

3 Jobs Available
Data Analyst

The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

3 Jobs Available
Geothermal Engineer

Individuals who opt for a career as geothermal engineers are the professionals involved in the processing of geothermal energy. The responsibilities of geothermal engineers may vary depending on the workplace location. Those who work in fields design facilities to process and distribute geothermal energy. They oversee the functioning of machinery used in the field.

3 Jobs Available
Database Architect

If you are intrigued by the programming world and are interested in developing communications networks then a career as database architect may be a good option for you. Data architect roles and responsibilities include building design models for data communication networks. Wide Area Networks (WANs), local area networks (LANs), and intranets are included in the database networks. It is expected that database architects will have in-depth knowledge of a company's business to develop a network to fulfil the requirements of the organisation. Stay tuned as we look at the larger picture and give you more information on what is db architecture, why you should pursue database architecture, what to expect from such a degree and what your job opportunities will be after graduation. Here, we will be discussing how to become a data architect. Students can visit NIT Trichy, IIT Kharagpur, JMI New Delhi

3 Jobs Available
Remote Sensing Technician

Individuals who opt for a career as a remote sensing technician possess unique personalities. Remote sensing analysts seem to be rational human beings, they are strong, independent, persistent, sincere, realistic and resourceful. Some of them are analytical as well, which means they are intelligent, introspective and inquisitive. 

Remote sensing scientists use remote sensing technology to support scientists in fields such as community planning, flight planning or the management of natural resources. Analysing data collected from aircraft, satellites or ground-based platforms using statistical analysis software, image analysis software or Geographic Information Systems (GIS) is a significant part of their work. Do you want to learn how to become remote sensing technician? There's no need to be concerned; we've devised a simple remote sensing technician career path for you. Scroll through the pages and read.

3 Jobs Available
Budget Analyst

Budget analysis, in a nutshell, entails thoroughly analyzing the details of a financial budget. The budget analysis aims to better understand and manage revenue. Budget analysts assist in the achievement of financial targets, the preservation of profitability, and the pursuit of long-term growth for a business. Budget analysts generally have a bachelor's degree in accounting, finance, economics, or a closely related field. Knowledge of Financial Management is of prime importance in this career.

4 Jobs Available
Data Analyst

The invention of the database has given fresh breath to the people involved in the data analytics career path. Analysis refers to splitting up a whole into its individual components for individual analysis. Data analysis is a method through which raw data are processed and transformed into information that would be beneficial for user strategic thinking.

Data are collected and examined to respond to questions, evaluate hypotheses or contradict theories. It is a tool for analyzing, transforming, modeling, and arranging data with useful knowledge, to assist in decision-making and methods, encompassing various strategies, and is used in different fields of business, research, and social science.

3 Jobs Available
Underwriter

An underwriter is a person who assesses and evaluates the risk of insurance in his or her field like mortgage, loan, health policy, investment, and so on and so forth. The underwriter career path does involve risks as analysing the risks means finding out if there is a way for the insurance underwriter jobs to recover the money from its clients. If the risk turns out to be too much for the company then in the future it is an underwriter who will be held accountable for it. Therefore, one must carry out his or her job with a lot of attention and diligence.

3 Jobs Available
Finance Executive
3 Jobs Available
Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

3 Jobs Available
Operations Manager

Individuals in the operations manager jobs are responsible for ensuring the efficiency of each department to acquire its optimal goal. They plan the use of resources and distribution of materials. The operations manager's job description includes managing budgets, negotiating contracts, and performing administrative tasks.

3 Jobs Available
Stock Analyst

Individuals who opt for a career as a stock analyst examine the company's investments makes decisions and keep track of financial securities. The nature of such investments will differ from one business to the next. Individuals in the stock analyst career use data mining to forecast a company's profits and revenues, advise clients on whether to buy or sell, participate in seminars, and discussing financial matters with executives and evaluate annual reports.

2 Jobs Available
Researcher

A Researcher is a professional who is responsible for collecting data and information by reviewing the literature and conducting experiments and surveys. He or she uses various methodological processes to provide accurate data and information that is utilised by academicians and other industry professionals. Here, we will discuss what is a researcher, the researcher's salary, types of researchers.

2 Jobs Available
Welding Engineer

Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues. 

5 Jobs Available
Transportation Planner

A career as Transportation Planner requires technical application of science and technology in engineering, particularly the concepts, equipment and technologies involved in the production of products and services. In fields like land use, infrastructure review, ecological standards and street design, he or she considers issues of health, environment and performance. A Transportation Planner assigns resources for implementing and designing programmes. He or she is responsible for assessing needs, preparing plans and forecasts and compliance with regulations.

3 Jobs Available
Environmental Engineer

Individuals who opt for a career as an environmental engineer are construction professionals who utilise the skills and knowledge of biology, soil science, chemistry and the concept of engineering to design and develop projects that serve as solutions to various environmental problems. 

2 Jobs Available
Safety Manager

A Safety Manager is a professional responsible for employee’s safety at work. He or she plans, implements and oversees the company’s employee safety. A Safety Manager ensures compliance and adherence to Occupational Health and Safety (OHS) guidelines.

2 Jobs Available
Conservation Architect

A Conservation Architect is a professional responsible for conserving and restoring buildings or monuments having a historic value. He or she applies techniques to document and stabilise the object’s state without any further damage. A Conservation Architect restores the monuments and heritage buildings to bring them back to their original state.

2 Jobs Available
Structural Engineer

A Structural Engineer designs buildings, bridges, and other related structures. He or she analyzes the structures and makes sure the structures are strong enough to be used by the people. A career as a Structural Engineer requires working in the construction process. It comes under the civil engineering discipline. A Structure Engineer creates structural models with the help of computer-aided design software. 

2 Jobs Available
Highway Engineer

Highway Engineer Job Description: A Highway Engineer is a civil engineer who specialises in planning and building thousands of miles of roads that support connectivity and allow transportation across the country. He or she ensures that traffic management schemes are effectively planned concerning economic sustainability and successful implementation.

2 Jobs Available
Field Surveyor

Are you searching for a Field Surveyor Job Description? A Field Surveyor is a professional responsible for conducting field surveys for various places or geographical conditions. He or she collects the required data and information as per the instructions given by senior officials. 

2 Jobs Available
Orthotist and Prosthetist

Orthotists and Prosthetists are professionals who provide aid to patients with disabilities. They fix them to artificial limbs (prosthetics) and help them to regain stability. There are times when people lose their limbs in an accident. In some other occasions, they are born without a limb or orthopaedic impairment. Orthotists and prosthetists play a crucial role in their lives with fixing them to assistive devices and provide mobility.

6 Jobs Available
Pathologist

A career in pathology in India is filled with several responsibilities as it is a medical branch and affects human lives. The demand for pathologists has been increasing over the past few years as people are getting more aware of different diseases. Not only that, but an increase in population and lifestyle changes have also contributed to the increase in a pathologist’s demand. The pathology careers provide an extremely huge number of opportunities and if you want to be a part of the medical field you can consider being a pathologist. If you want to know more about a career in pathology in India then continue reading this article.

5 Jobs Available
Veterinary Doctor
5 Jobs Available
Speech Therapist
4 Jobs Available
Gynaecologist

Gynaecology can be defined as the study of the female body. The job outlook for gynaecology is excellent since there is evergreen demand for one because of their responsibility of dealing with not only women’s health but also fertility and pregnancy issues. Although most women prefer to have a women obstetrician gynaecologist as their doctor, men also explore a career as a gynaecologist and there are ample amounts of male doctors in the field who are gynaecologists and aid women during delivery and childbirth. 

4 Jobs Available
Audiologist

The audiologist career involves audiology professionals who are responsible to treat hearing loss and proactively preventing the relevant damage. Individuals who opt for a career as an audiologist use various testing strategies with the aim to determine if someone has a normal sensitivity to sounds or not. After the identification of hearing loss, a hearing doctor is required to determine which sections of the hearing are affected, to what extent they are affected, and where the wound causing the hearing loss is found. As soon as the hearing loss is identified, the patients are provided with recommendations for interventions and rehabilitation such as hearing aids, cochlear implants, and appropriate medical referrals. While audiology is a branch of science that studies and researches hearing, balance, and related disorders.

3 Jobs Available
Oncologist

An oncologist is a specialised doctor responsible for providing medical care to patients diagnosed with cancer. He or she uses several therapies to control the cancer and its effect on the human body such as chemotherapy, immunotherapy, radiation therapy and biopsy. An oncologist designs a treatment plan based on a pathology report after diagnosing the type of cancer and where it is spreading inside the body.

3 Jobs Available
Anatomist

Are you searching for an ‘Anatomist job description’? An Anatomist is a research professional who applies the laws of biological science to determine the ability of bodies of various living organisms including animals and humans to regenerate the damaged or destroyed organs. If you want to know what does an anatomist do, then read the entire article, where we will answer all your questions.

2 Jobs Available
Actor

For an individual who opts for a career as an actor, the primary responsibility is to completely speak to the character he or she is playing and to persuade the crowd that the character is genuine by connecting with them and bringing them into the story. This applies to significant roles and littler parts, as all roles join to make an effective creation. Here in this article, we will discuss how to become an actor in India, actor exams, actor salary in India, and actor jobs. 

4 Jobs Available
Acrobat

Individuals who opt for a career as acrobats create and direct original routines for themselves, in addition to developing interpretations of existing routines. The work of circus acrobats can be seen in a variety of performance settings, including circus, reality shows, sports events like the Olympics, movies and commercials. Individuals who opt for a career as acrobats must be prepared to face rejections and intermittent periods of work. The creativity of acrobats may extend to other aspects of the performance. For example, acrobats in the circus may work with gym trainers, celebrities or collaborate with other professionals to enhance such performance elements as costume and or maybe at the teaching end of the career.

3 Jobs Available
Video Game Designer

Career as a video game designer is filled with excitement as well as responsibilities. A video game designer is someone who is involved in the process of creating a game from day one. He or she is responsible for fulfilling duties like designing the character of the game, the several levels involved, plot, art and similar other elements. Individuals who opt for a career as a video game designer may also write the codes for the game using different programming languages.

Depending on the video game designer job description and experience they may also have to lead a team and do the early testing of the game in order to suggest changes and find loopholes.

3 Jobs Available
Radio Jockey

Radio Jockey is an exciting, promising career and a great challenge for music lovers. If you are really interested in a career as radio jockey, then it is very important for an RJ to have an automatic, fun, and friendly personality. If you want to get a job done in this field, a strong command of the language and a good voice are always good things. Apart from this, in order to be a good radio jockey, you will also listen to good radio jockeys so that you can understand their style and later make your own by practicing.

A career as radio jockey has a lot to offer to deserving candidates. If you want to know more about a career as radio jockey, and how to become a radio jockey then continue reading the article.

3 Jobs Available
Choreographer

The word “choreography" actually comes from Greek words that mean “dance writing." Individuals who opt for a career as a choreographer create and direct original dances, in addition to developing interpretations of existing dances. A Choreographer dances and utilises his or her creativity in other aspects of dance performance. For example, he or she may work with the music director to select music or collaborate with other famous choreographers to enhance such performance elements as lighting, costume and set design.

2 Jobs Available
Social Media Manager

A career as social media manager involves implementing the company’s or brand’s marketing plan across all social media channels. Social media managers help in building or improving a brand’s or a company’s website traffic, build brand awareness, create and implement marketing and brand strategy. Social media managers are key to important social communication as well.

2 Jobs Available
Photographer

Photography is considered both a science and an art, an artistic means of expression in which the camera replaces the pen. In a career as a photographer, an individual is hired to capture the moments of public and private events, such as press conferences or weddings, or may also work inside a studio, where people go to get their picture clicked. Photography is divided into many streams each generating numerous career opportunities in photography. With the boom in advertising, media, and the fashion industry, photography has emerged as a lucrative and thrilling career option for many Indian youths.

2 Jobs Available
Producer

An individual who is pursuing a career as a producer is responsible for managing the business aspects of production. They are involved in each aspect of production from its inception to deception. Famous movie producers review the script, recommend changes and visualise the story. 

They are responsible for overseeing the finance involved in the project and distributing the film for broadcasting on various platforms. A career as a producer is quite fulfilling as well as exhaustive in terms of playing different roles in order for a production to be successful. Famous movie producers are responsible for hiring creative and technical personnel on contract basis.

2 Jobs Available
Copy Writer

In a career as a copywriter, one has to consult with the client and understand the brief well. A career as a copywriter has a lot to offer to deserving candidates. Several new mediums of advertising are opening therefore making it a lucrative career choice. Students can pursue various copywriter courses such as Journalism, Advertising, Marketing Management. Here, we have discussed how to become a freelance copywriter, copywriter career path, how to become a copywriter in India, and copywriting career outlook. 

5 Jobs Available
Vlogger

In a career as a vlogger, one generally works for himself or herself. However, once an individual has gained viewership there are several brands and companies that approach them for paid collaboration. It is one of those fields where an individual can earn well while following his or her passion. 

Ever since internet costs got reduced the viewership for these types of content has increased on a large scale. Therefore, a career as a vlogger has a lot to offer. If you want to know more about the Vlogger eligibility, roles and responsibilities then continue reading the article. 

3 Jobs Available
Publisher

For publishing books, newspapers, magazines and digital material, editorial and commercial strategies are set by publishers. Individuals in publishing career paths make choices about the markets their businesses will reach and the type of content that their audience will be served. Individuals in book publisher careers collaborate with editorial staff, designers, authors, and freelance contributors who develop and manage the creation of content.

3 Jobs Available
Journalist

Careers in journalism are filled with excitement as well as responsibilities. One cannot afford to miss out on the details. As it is the small details that provide insights into a story. Depending on those insights a journalist goes about writing a news article. A journalism career can be stressful at times but if you are someone who is passionate about it then it is the right choice for you. If you want to know more about the media field and journalist career then continue reading this article.

3 Jobs Available
Editor

Individuals in the editor career path is an unsung hero of the news industry who polishes the language of the news stories provided by stringers, reporters, copywriters and content writers and also news agencies. Individuals who opt for a career as an editor make it more persuasive, concise and clear for readers. In this article, we will discuss the details of the editor's career path such as how to become an editor in India, editor salary in India and editor skills and qualities.

3 Jobs Available
Reporter

Individuals who opt for a career as a reporter may often be at work on national holidays and festivities. He or she pitches various story ideas and covers news stories in risky situations. Students can pursue a BMC (Bachelor of Mass Communication), B.M.M. (Bachelor of Mass Media), or MAJMC (MA in Journalism and Mass Communication) to become a reporter. While we sit at home reporters travel to locations to collect information that carries a news value.  

2 Jobs Available
Corporate Executive

Are you searching for a Corporate Executive job description? A Corporate Executive role comes with administrative duties. He or she provides support to the leadership of the organisation. A Corporate Executive fulfils the business purpose and ensures its financial stability. In this article, we are going to discuss how to become corporate executive.

2 Jobs Available
Multimedia Specialist

A multimedia specialist is a media professional who creates, audio, videos, graphic image files, computer animations for multimedia applications. He or she is responsible for planning, producing, and maintaining websites and applications. 

2 Jobs Available
Welding Engineer

Welding Engineer Job Description: A Welding Engineer work involves managing welding projects and supervising welding teams. He or she is responsible for reviewing welding procedures, processes and documentation. A career as Welding Engineer involves conducting failure analyses and causes on welding issues. 

5 Jobs Available
QA Manager
4 Jobs Available
Quality Controller

A quality controller plays a crucial role in an organisation. He or she is responsible for performing quality checks on manufactured products. He or she identifies the defects in a product and rejects the product. 

A quality controller records detailed information about products with defects and sends it to the supervisor or plant manager to take necessary actions to improve the production process.

3 Jobs Available
Production Manager
3 Jobs Available
Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

3 Jobs Available
QA Lead

A QA Lead is in charge of the QA Team. The role of QA Lead comes with the responsibility of assessing services and products in order to determine that he or she meets the quality standards. He or she develops, implements and manages test plans. 

2 Jobs Available
Structural Engineer

A Structural Engineer designs buildings, bridges, and other related structures. He or she analyzes the structures and makes sure the structures are strong enough to be used by the people. A career as a Structural Engineer requires working in the construction process. It comes under the civil engineering discipline. A Structure Engineer creates structural models with the help of computer-aided design software. 

2 Jobs Available
Process Development Engineer

The Process Development Engineers design, implement, manufacture, mine, and other production systems using technical knowledge and expertise in the industry. They use computer modeling software to test technologies and machinery. An individual who is opting career as Process Development Engineer is responsible for developing cost-effective and efficient processes. They also monitor the production process and ensure it functions smoothly and efficiently.

2 Jobs Available
QA Manager
4 Jobs Available
AWS Solution Architect

An AWS Solution Architect is someone who specializes in developing and implementing cloud computing systems. He or she has a good understanding of the various aspects of cloud computing and can confidently deploy and manage their systems. He or she troubleshoots the issues and evaluates the risk from the third party. 

4 Jobs Available
Azure Administrator

An Azure Administrator is a professional responsible for implementing, monitoring, and maintaining Azure Solutions. He or she manages cloud infrastructure service instances and various cloud servers as well as sets up public and private cloud systems. 

4 Jobs Available
Computer Programmer

Careers in computer programming primarily refer to the systematic act of writing code and moreover include wider computer science areas. The word 'programmer' or 'coder' has entered into practice with the growing number of newly self-taught tech enthusiasts. Computer programming careers involve the use of designs created by software developers and engineers and transforming them into commands that can be implemented by computers. These commands result in regular usage of social media sites, word-processing applications and browsers.

3 Jobs Available
Product Manager

A Product Manager is a professional responsible for product planning and marketing. He or she manages the product throughout the Product Life Cycle, gathering and prioritising the product. A product manager job description includes defining the product vision and working closely with team members of other departments to deliver winning products.  

3 Jobs Available
Information Security Manager

Individuals in the information security manager career path involves in overseeing and controlling all aspects of computer security. The IT security manager job description includes planning and carrying out security measures to protect the business data and information from corruption, theft, unauthorised access, and deliberate attack 

3 Jobs Available
ITSM Manager
3 Jobs Available
Automation Test Engineer

An Automation Test Engineer job involves executing automated test scripts. He or she identifies the project’s problems and troubleshoots them. The role involves documenting the defect using management tools. He or she works with the application team in order to resolve any issues arising during the testing process. 

2 Jobs Available
Back to top