NCERT Solutions for Exercise 3.1 Class 12 Maths Chapter 3 - Matrices

NCERT Solutions for Exercise 3.1 Class 12 Maths Chapter 3 - Matrices

Upcoming Event

CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26

Ramraj SainiUpdated on 23 Apr 2025, 12:54 PM IST

A matrix is an ordered rectangular array of numbers or functions. The numbers or functions are called the elements or the entries of the matrix. These NCERT solutions for exercise 3.1 of chapter 3 of class 12 are created by the subject matter experts at Careers360 to have a more appropriate approach while preparing for the exam. There are questions based on the concept of the Construction of a matrix, Square matrix, Row matrix, Column matrix, Diagonal matrix, a Scalar matrix, Null matrix, Identity matrix, and the equality of matrices. It also covers the matrix's order and different types of matrices. Start by attempting to solve NCERT problems independently. If you encounter challenges, refer to the solutions in Exercise 3.1, Chapter 3, for assistance.

Class 12 Maths Chapter 3 Exercise 3.1 Solutions: Download PDF

Download PDF

Matrices Exercise 3.1

Question:1(i).In the matrix $A = \begin{bmatrix} 2& 5 &19 &-7 \\ 35 & -2 & \frac{5}{2} &12 \\ \sqrt3& 1 &-5 &17 \end{bmatrix}$, write:

The order of the matrix

Answer:

$A = \begin{bmatrix} 2& 5 &19 &-7 \\ 35 & -2 & \frac{5}{2} &12 \\ \sqrt3& 1 &-5 &17 \end{bmatrix}$

(i) The order of the matrix = number of row $\times$ number of columns $= 3\times 4$.

Question 1(ii). In the matrix $A = \begin{bmatrix}2&5&19&-7&\\ 35& -2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$, write:

The number of elements

Answer:

$A = \begin{bmatrix}2&5&19&-7&\\ 35& -2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$

(ii) The number of elements $3\times 4=12$.

Question 1(iii). In the matrix $A = \begin{bmatrix}2&5&19&-7&\\35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$, write:

Write the elements a13, a21, a33, a24, a23

Answer:

$A = \begin{bmatrix}2&5&19&-7&\\35&-2&\frac{5}{2}&12\\\sqrt3&1&-5&17 \end{bmatrix}$

(iii) An element $a_{ij}$ implies the element in raw number i and column number j.

$a_{13} = 19$, $a_{21} = 35$

$a_{33} = -5$, $a_{24} = 12$

$a_{23} = \frac{5}{2}$

Question 2. If a matrix has 24 elements, what are the possible orders it can have? What, if it has 13 elements?

Answer:

A matrix has 24 elements.

The possible orders are :

$1\times 24,24\times 1,2\times 12,12\times 2,3\times 8,8\times 3,4\times 6 \, \, and\, \, 6\times 4$.

If it has 13 elements, then possible orders are :

$1\times 13\, \, \, and \, \, \, \, 13\times 1$.

Question 3. If a matrix has 18 elements, what are the possible orders it can have? What, if it has 5 elements?

Answer:

A matrix has 18 elements.

The possible orders are as given below

$1\times 18,18\times 1,2\times 9,9\times 2,3\times 6\, \, \, and\, \, \, \, 6\times 3$

If it has 5 elements, then possible orders are :

$1\times 5\, \, \, and \, \, \, \, 5\times 1$.

Question 4(i). Construct a 2 × 2 matrix, $A = [a_{ij} ]$ whose elements are given by:

$a_{ij} = \frac{(i + j)^2}{2}$

Answer:

$A = [a_{ij} ]$

(i) $a_{ij} = \frac{(i + j)^2}{2}$

Each element of this matrix is calculated as follows

$a_{11} = \frac{(1+1)^2}{2} = \frac{2^2}{2} = \frac{4}{2} = 2$, $a_{22} = \frac{(2+2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$

$a_{12} = \frac{(1+2)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5$, $a_{21} = \frac{(2+1)^2}{2} = \frac{3^2}{2} = \frac{9}{2} = 4.5$

Matrix A is given by

$A = \begin{bmatrix} 2&4.5 \\4.5 & 8 \end{bmatrix}$

Question 4(ii). Construct a 2 × 2 matrix, $A = [a_{ij} ]$, whose elements are given by:

$a_{ij} = \frac{i}{j}$

Answer:

A 2 × 2 matrix, $A = [a_{ij} ]$

(ii) $a_{ij} = \frac{i}{j}$

$a_{11} = \frac{1}{1} = 1$, $a_{22} = \frac{2}{2} = 1$

$a_{12} = \frac{1}{2}$, $a_{21} = \frac{2}{1} = 2$

Hence, the matrix is

$A = \begin{bmatrix} 1& \frac{1}{2} \\ 2 & 1 \end{bmatrix}$

Question 4(iii). Construct a 2 × 2 matrix, $A = [a_{ij} ]$, whose elements are given by:

$a_{ij} = \frac{(i+2j)^2}{2}$

Answer:

(iii)

$a_{ij} = \frac{(i + 2j)^2}{2}$

$a_{11} = \frac{(1 + (2 \times 1))^2}{2} = \frac{(1 + 2)^2}{2} = \frac{3^2}{2} = \frac{9}{2}$,

$a_{22} = \frac{(2 + (2 \times 2))^2}{2} = \frac{(2 + 4)^2}{2} = \frac{6^2}{2} = \frac{36}{2} = 18$,

$a_{21} = \frac{(2 + (2 \times 1))^2}{2} = \frac{(2 + 2)^2}{2} = \frac{4^2}{2} = \frac{16}{2} = 8$,

$a_{12} = \frac{(1 + (2 \times 2))^2}{2} = \frac{(1 + 4)^2}{2} = \frac{5^2}{2} = \frac{25}{2}$

Hence, the matrix is given by

$A = \begin{bmatrix} \frac{9}{2}& \frac{25}{2} \\ 8 & 18 \end{bmatrix}$

Question 5(i). Construct a 3 × 4 matrix, whose elements are given by:

$a_{ij} = \frac{1}{2}|-3i + j|$

Answer:

(i)

$a_{ij} = \frac{1}{2} \left| -3i + j \right|$

$a_{11} = \frac{\left| -3 + 1 \right|}{2} = \frac{2}{2} = 1$,
$a_{12} = \frac{\left| (-3 \times 1) + 2 \right|}{2} = \frac{1}{2}$,
$a_{13} = \frac{\left| (-3 \times 1) + 3 \right|}{2} = 0$

$a_{21} = \frac{\left| (-3 \times 2) + 1 \right|}{2} = \frac{5}{2}$,
$a_{22} = \frac{\left| (-3 \times 2) + 2 \right|}{2} = \frac{4}{2} = 2$,
$a_{23} = \frac{\left| (-3 \times 2) + 3 \right|}{2} = \frac{\left| -6 + 3 \right|}{2} = \frac{\left| -3 \right|}{2} = \frac{3}{2}$

$a_{31} = \frac{\left| (-3 \times 3) + 1 \right|}{2} = \frac{8}{2} = 4$,
$a_{32} = \frac{\left| (-3 \times 3) + 2 \right|}{2} = \frac{7}{2}$,
$a_{33} = \frac{\left| (-3 \times 3) + 3 \right|}{2} = \frac{\left| -9 + 3 \right|}{2} = \frac{\left| -6 \right|}{2} = \frac{6}{2} = 3$

$a_{14} = \frac{\left| (-3 \times 1) + 4 \right|}{2} = \frac{\left| -3 + 4 \right|}{2} = \frac{\left| 1 \right|}{2} = \frac{1}{2}$,
$a_{24} = \frac{\left| (-3 \times 2) + 4 \right|}{2} = \frac{\left| -6 + 4 \right|}{2} = \frac{\left| -2 \right|}{2} = \frac{2}{2} = 1$,
$a_{34} = \frac{\left| (-3 \times 3) + 4 \right|}{2} = \frac{\left| -9 + 4 \right|}{2} = \frac{\left| -5 \right|}{2} = \frac{5}{2}$

Hence, the required matrix of the given order is

$A = \begin{bmatrix} 1& \frac{1}{2} & 0&\frac{1}{2} \\ \frac{5}{2} & 2&\frac{3}{2}&1 \\4&\frac{7}{2}&3&\frac{5}{2}\end{bmatrix}$

Question 5(ii) Construct a 3 × 4 matrix, whose elements are given by:

$a_{ij} = 2i - j$

Answer:

A 3 × 4 matrix,

(ii) $a_{ij} = 2i - j$

$a_{11} = 2 \times 1 - 1 = 2 - 1 = 1$, $a_{12} = 2 \times 1 - 2 = 2 - 2 = 0$, $a_{13} = 2 \times 1 - 3 = 2 - 3 = -1$

$a_{21} = 2 \times 2 - 1 = 4 - 1 = 3$, $a_{22} = 2 \times 2 - 2 = 4 - 2 = 2$, $a_{23} = 2 \times 2 - 3 = 4 - 3 = 1$

$a_{31} = 2 \times 3 - 1 = 6 - 1 = 5$, $a_{32} = 2 \times 3 - 2 = 6 - 2 = 4$, $a_{33} = 2 \times 3 - 3 = 6 - 3 = 3$

$a_{14} = 2 \times 1 - 4 = 2 - 4 = -2$, $a_{24} = 2 \times 2 - 4 = 4 - 4 = 0$, $a_{34} = 2 \times 3 - 4 = 6 - 4 = 2$

Hence, the matrix is

$A = \begin{bmatrix} 1 & 0& -1& -2 \\ \ 3 & 2&1& 0 \\5&4&3&2\end{bmatrix}$

Question 6(i). Find the values of x, y and z from the following equations:

$\begin{bmatrix}4&3\\x&5 \end{bmatrix} = \begin{bmatrix}y&z\\1&5 \end{bmatrix}$

Answer:

(i) $\begin{bmatrix}4&3\\x&5 \end{bmatrix} = \begin{bmatrix}y&z\\1&5 \end{bmatrix}$

If two matrices are equal, then their corresponding elements are also equal.

$\therefore$ $x=1\, \, \, ,\, \, \, y=4\, \, \, \, and\, \, \, \, z=3$

Question 6(ii) Find the values of x, y and z from the following equations:

$\begin{bmatrix} x +y & 2\\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 &2 \\ 5 & 8 \end{bmatrix}$

Answer:

(ii)

$\begin{bmatrix} x +y & 2\\ 5 + z & xy \end{bmatrix} = \begin{bmatrix} 6 &2 \\ 5 & 8 \end{bmatrix}$

If two matrices are equal, then their corresponding elements are also equal.

$\therefore$ $x+y=6$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (i)$

$x=6-y$

$xy=8$ $\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (ii)$

Solving equation (i) and (ii) ,

$(6-y)y =8$

$6y-y^{2}=8$

$y^{2}-6y+8=0$

solving this equation we get,

$y=4 \, \, and\, \, y=2$

Putting the values of y, we get

$x=2 \, \, and\, \, x=4$

And also equating the first element of the second raw

$5+z = 5$, $z=0$

Hence,

$x=2,y=4,z=0\, \, \, \, \, and\, \, \, \, \, \, x=4,y=2,z=0$

Question 6(iii) Find the values of x, y and z from the following equations

$\begin{bmatrix} x + y + z\\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9\\5 \\7 \end{bmatrix}$

Answer:

(iii)

$\begin{bmatrix} x + y + z\\ x + z \\ y + z \end{bmatrix} = \begin{bmatrix} 9\\5 \\7 \end{bmatrix}$

If two matrices are equal, then their corresponding elements are also equal

$x+y+z=9........(1)$

$x+z=5..............(2)$

$y+z=7..............(3)$

subtracting (2) from (1) we will get y=4

substituting the value of y in equation (3) we will get z=3

now substituting the value of z in equation (2) we will get x=2

therefore,

$x=2$, $y=4$ and $z=3$

Question 7. Find the value of a, b, c and d from the equation:

$\begin{bmatrix} a -b & 2a + c\\ 2a - b & 3c + d \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 0 & 13 \end{bmatrix}$

Answer:

$\begin{bmatrix} a -b & 2a + c\\ 2a - b & 3c + d \end{bmatrix} = \begin{bmatrix} -1 & 5\\ 0 & 13 \end{bmatrix}$

If two matrices are equal, then their corresponding elements are also equal

$a-b=-1$ $.............................1$

$2a+c=5$ $.............................2$

$2a-b=0$ $.............................3$

$3c+d=13$ $.............................4$

Solving equation 1 and 3 , we get

$a=1 \, \, \, \, and \, \, \, \, b=2$

Putting the value of a in equation 2, we get

$c=3$

Putting the value of c in equation 4 , we get

$d=4$

Question 8. $A = [a_{ij}]_{m\times n}$ is a square matrix, if

(A) $m <n$

(B) $m >n$

(C) $m =n$

(D) None of these

Answer:

A square matrix has the number of rows and columns equal.

Thus, for $A = [a_{ij}]_{m\times n}$ to be a square matrix m and n should be equal.

$\therefore m=n$

Option (c) is correct.

Question 9. Which of the given values of x and y make the following pair of matrices equal

$\begin{bmatrix} 3x + 7 &5 \\ y + 1 & 2 -3x \end{bmatrix}$, $\begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}$

(A) $x = \frac{-1}{3}, y = 7$

(B) Not possible to find

(C) $y =7, x = \frac{-2}{3}$

(D) $x = \frac{-1}{3}, y = \frac{-2}{3}$

Answer:

Given, $\begin{bmatrix} 3x + 7 &5 \\ y + 1 & 2 -3x \end{bmatrix}$ $=\begin{bmatrix} 0 & y - 2 \\ 8 & 4 \end{bmatrix}$

If two matrices are equal, then their corresponding elements are also equal

$3x+7=0\Rightarrow x=\frac{-7}{3}$

$y-2=5 \Rightarrow y=5+2=7$

$y+1=8\Rightarrow y=8-1=7$

$2-3x=4\Rightarrow 3x=2-4\Rightarrow 3x=-2\Rightarrow x=\frac{-2}{3}$

Here, the value of x is not unique, so option B is correct.

Question 10. The number of all possible matrices of order 3 × 3 with each entry 0 or 1 is:

(A) 27
(B) 18
(C) 81
(D) 512

Answer:

Total number of elements in a 3 × 3 matrix

$=3\times 3=9$

If each entry is 0 or 1 then for every entry there are 2 permutations.

The total permutations for 9 elements

$=2^{9}=512$

Thus, option (D) is correct.

Also Read,

Topics covered in Chapter 3: Matrices: Exercise 3.1

  • Introduction
  • Types of matrices
    - Column matrix: A matrix is said to be a column matrix if it has only one column.

- Row matrix: A matrix is said to be a row matrix if it has only one row.

- Square matrix: A matrix in which the number of rows is equal to the number of columns is said to be a square matrix. Thus, an $m \times n$ matrix is said to be a square matrix if $m=n$ and is known as a square matrix of order ' $n$ '.

- Diagonal matrix: A square matrix $\mathrm{B}=\left[b_{i j}\right]_{m \times m}$ is said to be a diagonal matrix if all its non diagonal elements are zero, that is a matrix $\mathbf{B}=\left[b_{i j}\right]_{m \times m}$ is said to be a diagonal matrix if $b_{i j}=0$, when $i \neq j$.

- Scalar matrix: A diagonal matrix is said to be a scalar matrix if its diagonal elements are equal, that is, a square matrix $\mathrm{B}=\left[b_{i j}\right]_{n \times n}$ is said to be a scalar matrix if

$\begin{aligned}\\ & b_{ij}=0,\quad\text{when} i \neq j \\ &b_{ij}= k, \quad\text{when} i=j, \text{for some constant} k.\\ \end{aligned}$

- Identity matrix: A square matrix in which elements on the diagonal are all 1 and the rest are all zero is called an identity matrix. In other words, the square matrix $\mathrm{A}=\left[a_{i j}\right]_{n \times n}$ is an identity matrix, if $a_{i j}=\left\{\begin{array}{lll}1 & \text { if } \quad i=j \\ 0 & \text { if } \quad i \neq j\end{array}\right.$.

- Zero matrix: A matrix is said to be a zero matrix or null matrix if all its elements are zero.

  • Equality of Matrices: Two matrices $\mathrm{A}=\left[a_{i j}\right]$ and $\mathrm{B}=\left[b_{i j}\right]$ are said to be equal if
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

(i) they are of the same order

(ii) each element of A is equal to the corresponding element of B, that is $a_{ij}=b_{ij}$ for all $i$ and $j$.

Also, read,

Subject-wise NCERT Exemplar solutions

Students can check these NCERT exemplar links for further practice purposes.

Frequently Asked Questions (FAQs)

Q: What is the matrix ?
A:

Concept related to matrices are discussed in ex 3.1 class 12. A matrix is a rectangular array of numbers or functions. The concept of matrix is discussed in the Class 12 Mathematics NCERT textbook. Practice class 12 ex 3.1 exercise to command concepts.

Q: what is a column matrix ?
A:

If a matrix has only one column it's called a column matrix.

Q: what is a square matrix ?
A:

If a matrix has equal numbers of rows and columns then it's called a square matrix.

Q: what is a diagonal matrix ?
A:

If all the non-diagonal elements of a matrix are zero it's called a diagonal matrix.

Q: What is a scalar matrix ?
A:

A scalar matrix is a diagonal matrix that has equal diagonal elements.

Q: What is identity matrix ?
A:

A square matrix that has all the non-diagonal elements are zero and its diagonal elements are 1 is called an identity matrix.

Q: What is the order of the matrix ?
A:

If a matrix has m rows and n columns then its order is m x n.

Q: what is a row matrix ?
A:

If a matrix has only one row it's called a row matrix. This concept is discussed in the NCERT syllabus of Class 12 Maths

Articles
|
Upcoming School Exams
Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.

Hello,

You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests

Hope it helps !

Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.

https://school.careers360.com/exams/nios-class-12

For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.

https://school.careers360.com/boards/cbse/cbse-class-12-physics-last-5-years-question-papers-free-pdf-download

Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -

https://school.careers360.com/boards/cbse/cbse-question-bank

Thankyou.


Hello,

Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.

I hope it will clear your query!!