NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

Updated on 23 Apr 2025, 12:51 PM IST

In this exercise, you will learn about the operations on matrices: addition of matrices, multiplication of a matrix by a scalar, subtraction, and multiplication of matrices. Class 12 maths chapter 3 exercise 3.2 of NCERT consists of questions related to properties of multiplication of matrices, like associative, distributive, and existence of multiplicative identity, which are included in this exercise. There are 22 questions given in Exercise 3.2 Class 12 Maths Solutions. These NCERT solutions are created to develop an easy approach to solving the questions. You can take help from these Class 12 Maths Chapter 3 exercise 3.2 solutions to learn the proper approach for solving the questions. It will also learn the concept in a better manner.

Class 12 Maths Chapter 3 Exercise 3.2 Solutions: Download PDF

Download PDF

Matrices Exercise: 3.2

Question 1(i) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

A + B

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

(i) A + B

The addition of matrix can be done as follows

$A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $+ \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}$

$A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}$

Question 1(ii) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

A - B

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

(ii) A - B

$A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}$

$A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}$

Question 1(iii) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

3A - C

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

(iii) 3A - C

First multiply each element of A with 3 and then subtract C

$3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

$3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

$3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}$

$3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}$

Question 1(iv)Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

AB

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

(iv) AB

$AB = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $\times \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$AB = \begin{bmatrix} 2\times 1+4\times -2 & \, \, \, 2\times 3+4\times 5 \\ 3\times 1+2\times -2 & \, \, \, 3\times 3+2 \times 5 \end{bmatrix}$

$AB = \begin{bmatrix} -6 &26 \\ -1 & 19 \end{bmatrix}$

Question 1(v) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

BA

Answer:

The multiplication is performed as follows

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ ,$B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$ $\times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$

$BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}$

$BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}$

Question 2(i). Compute the following:

$\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$

Answer:

(i) $\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$

$= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}$

$= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}$

Question 2(ii). Compute the following:

$\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}$

Answer:

(ii) The addition operation can be performed as follows

$\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}$

$=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}$

$=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}$

Question 2(iii). Compute the following:

$\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}$

Answer:

(iii) The addition of given three by three matrix is performed as follows

$\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}$

$=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}$

$=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}$

Question 2(iv). Compute the following:

$\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}$

Answer:

(iv) the addition is done as follows

$\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}$

$=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix}$ since $sin^2x+cos^2x=1$

$=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}$

Question 3(i). Compute the indicated products.

$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$

Answer:

(i) The multiplication is performed as follows

$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$

$=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$

$=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}$

$=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}$

Question 3(ii). Compute the indicated products.

$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$

Answer:

(ii) the multiplication can be performed as follows

$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$

$=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}$

$=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}$

Question 3(iii). Compute the indicated products.

$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$

Answer:

(iii) The multiplication can be performed as follows

$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$

$=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}$

Question 3(iv). Compute the indicated products.

$\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$

Answer:

(iv) The multiplication is performed as follows

$\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$

$=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$

$=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}$


$= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}$

Question 3(v). Compute the indicated products.

$\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$

Answer:

(v) The product can be computed as follows

$\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$

$=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$

$=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}$

$=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}$

Question 3(vi). Compute the indicated products.

$\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$

Answer:

(vi) The given product can be computed as follows

$\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$

$=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$

$=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}$

$=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}$

Question 4. If $A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$, $B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$, then compute (A+B) and (B-C). Also verify that A + (B - C) = (A + B) - C

Answer:

$A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$, $B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$

$A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$

$A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}$

$A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$

$B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ $-\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$

$B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}$

$B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$

Now, to prove A + (B - C) = (A + B) - C

$L.H.S\, \, :\, A+(B-C)$

$A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$ (Puting value of $B-C$ from above)

$A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}$

$A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$

$R.H.S\, \, :\, (A+B)-C$

$(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$ $- \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$

$(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}$

$(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$

Hence, we can see L.H.S = R.H.S = $\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$

Question 5. If $A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$, then compute 3A - 5B

Answer:

$A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$

$3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ $-5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$

$3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$ $- \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$

$3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$

$3A-5B = 0$

Question 6. Simplify $\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$.

Answer:

The simplification is explained in the following step

$\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$

$= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}$

$= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}$

$= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I$

the final answer is an identity matrix of order 2

Question 7(i). Find X and Y, if

$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$

Answer:

(i) The given matrices are

$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$

$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1$

$X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2$

Adding equation 1 and 2, we get

$2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ $+ \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$

$2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}$

$2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}$

$X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$

Putting the value of X in equation 1, we get

$\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$ $+Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$

$Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} -$ $\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$

$Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}$

$Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}$

Question 7(ii). Find X and Y, if

$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$

Answer:

(ii) $2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$

$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1$

$3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2$

Multiply equation 1 by 3 and equation 2 by 2 and subtract them,

$3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ $- \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$

$6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix}$ $- \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}$

$9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}$

$5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}$

$Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}$

Putting value of Y in equation 1 , we get

$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$

$2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$

$2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$

$2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}$

$2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}$

$2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}$

$X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}$

Question 8. Find X, if $Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$ and $2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$

Answer:

$Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$

$2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$

Substituting the value of Y in the above equation

$2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$

$2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$

$2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}$

$2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}$

$X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}$

Question 9. Find x and y, if $2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

Answer:

$2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

$\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

$\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

$\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

Now equating LHS and RHS we can write the following equations

$2+y=5$ $2x+2=8$

$y=5-2$ $2x=8-2$

$y=3$ $2x=6$

$x=3$

Question 10. Solve the equation for x, y, z and t, if $2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$

Answer:

$2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$

Multiplying with constant terms and rearranging we can rewrite the matrix as

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}$

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}$

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}$

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}$

Dividing by 2 on both sides

$\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}$

$x=3,y=6,z=9\, \, and\, \, t=6$

Question 11. If $x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$, find the values of x and y.

Answer:

$x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$

$\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$

Adding both the matrix in LHS and rewriting

$\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$

$2x-y=10........................1$

$3x+y=5........................2$

Adding equation 1 and 2, we get

$5x=15$

$x=3$

Put the value of x in equation 2, we have

$3x+y=5$

$3\times 3+y=5$

$9+y=5$

$y=5-9$

$y=-4$

Question 12. Given $3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}$, find the values of x, y, z and w.

Answer:

$3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}$

$\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}$

If two matrices are equal than corresponding elements are also equal.

Thus, we have

$3x=x+4$

$3x-x=4$

$2x=4$

$x=2$

$3y=6+x+y$

Put the value of x

$3y-y=6+2$

$2y=8$

$y=4$

$3w=2w+3$

$3w-2w=3$

$w=3$

$3z=-1+z+w$

$3z-z=-1+3$

$2z=2$

$z=1$

Hence, we have $x=2,y=4,z=1\, \, and\, \, w=3.$

Question 13. If $F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}$, show that $F(x) F(y) = F(x + y)$.

Answer:

$F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}$

To prove : $F(x) F(y) = F(x + y)$

$R.H.S : F(x + y)$

$F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$

$L.H.S : F(x) F(y)$

$F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}$

$F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}$


$F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$

Hence, we have L.H.S. = R.H.S i.e. $F(x) F(y) = F(x + y)$.

Question 14(i). Show that

$\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$

Answer:

To prove:

$\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$

$L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}$

$= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}$

$= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}$

$R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$

$= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}$

$= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}$

Hence, the right-hand side not equal to the left-hand side, that is

Question 14(ii). Show that

$\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$

Answer:

To prove the following multiplication of three by three matrices are not equal

$\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$

$L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}$

$= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}$

$= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}$


$R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$

$= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}$

$= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}$

Hence, $L.H.S \neq R.H.S$ i.e. $\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$.

Question 15. Find$A^2 -5A + 6I$, if

$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$

Answer:

$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$

First, we will find ou the value of the square of matrix A

$A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$

$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$\therefore$ $A^2 -5A + 6I$

$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$ $-5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$$+6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$$- \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix}$$+\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}$

$= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}$

$= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}$

Question 16. If $A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$ prove that $A^3 - 6A^2 + 7A + 2I = 0$.

Answer:

$A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$

First, find the square of matrix A and then multiply it with A to get the cube of matrix A

$A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$

$A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}$

$A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$

$A^{3}=A^{2}\times A$

$A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$ $\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$

$A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}$

$A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$

$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$\therefore$ $A^3 - 6A^2 + 7A + 2I = 0$

L.H.S :

$\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$$- 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$$+7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$+2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$ $- \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix}$ $+ \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix}$ $+ \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}$

$=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}$

$=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}$

$= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0$

Hence, L.H.S = R.H.S

i.e.$A^3 - 6A^2 + 7A + 2I = 0$.

Question 17. If $A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$ and $I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$, find k so that $A^{2} = kA - 2I$.

Answer:

$A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$

$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$

$A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$$\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$

$A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}$

$A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}$

$A^{2} = kA - 2I$

$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$

$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+$ $\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$ $=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$

$\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}$$=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$

$\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$ $=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$

We have,$3=3k$

$k=\frac{3}{3}=1$

Hence, the value of k is 1.

Question 18. If $A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$ and I is the identity matrix of order 2, show that$I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

Answer:

$A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$

$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$

To prove : $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

L.H.S : $I+A$

$I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$$+ \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$

$I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}$

$I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$

R.H.S : $(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$= (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}-$ $\begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix})$$\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$ $=\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$=\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}$

$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$

$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$


$= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$

Hence, we can see L.H.S = R.H.S

i.e. $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$.

Question 19(i). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 1800

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

$\begin{bmatrix}x &(30000-x) \end{bmatrix}$ $\begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix}$ $=1800$ (simple interest for 1 year $=\frac{pricipal\times rate}{100}$ )

$\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800$

$5x+210000-7x=180000$

$210000-180000=7x-5x$

$30000=2x$

$x=15000$

Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.

Question 19(ii). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 2000

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

$\begin{bmatrix} x & (30000 - x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} = 2000$

(Simple interest for 1 year = $\frac{\text{Principal} \times \text{Rate}}{100}$)

$\frac{5}{100}x + \frac{7}{100}(30000 - x) = 2000$

$\frac{5x + 210000 - 7x}{100} = 2000$

$\frac{210000 - 2x}{100} = 2000$

$210000 - 2x = 200000$

$210000 - 200000 = 2x$

$10000 = 2x$

$x = 5000$

Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Answer:

The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.

Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively.

The total amount the bookshop will receive from selling all the books:

$12$$\begin{bmatrix}10 &8&10 \end{bmatrix}$ $\begin{bmatrix}80\\60\\40 \end{bmatrix}$

$=12(10\times 80+8\times 60+10\times 40)$

$= 12(800+480+ 400)$

$= 12(1680)$

$=20160$

The total amount the bookshop will receive from selling all the books is 20160.

Question 21 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 21 and 22.

Q21. The restriction on n, k and p so that PY + WY will be defined are:
(A) $k = 3, p = n$

(B) k is arbitrary,$p = 2$

(C) p is arbitrary, $k = 3$

(D) $k = 2, p = 3$

Answer:

P and Y are of order \( p \times k \) and \( 3 \times k \) respectively.

Therefore, \( PY \) will be defined only if \( k = 3 \), i.e., the order of \( PY \) is \( p \times k \).

W and Y are of order \( n \times 3 \) and \( 3 \times k \) respectively.

Therefore, \( WY \) is defined because the number of columns of \( W \) is equal to the number of rows of \( Y \), which is 3, i.e., the order of \( WY \) is \( n \times k \).

Matrices \( PY \) and \( WY \) can only be added if they both have the same order, i.e., \( p \times k = n \times k \Rightarrow p = n \).

Therefore, \( k = 3 \), \( p = n \) are restrictions on \( n \), \( k \), and \( p \) so that \( PY + WY \) will be defined.

Option (A) is correct.

Question 22 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k,
respectively. Choose the correct answer in Exercises 21 and 22. If n = p, then the order of the matrix $7X - 5Z$ is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n

Answer:

$X$ has order $2 \times n$.

Therefore, $7X$ also has order $2 \times n$.

$Z$ has order $2 \times p$.

Therefore, $5Z$ also has order $2 \times p$.

Matrices $7X$ and $5Z$ can only be subtracted if they both have the same order, i.e., $2 \times n = 2 \times p$, and it is given that $p = n$.

We can say that both matrices have order $2 \times n$.

Therefore, the order of $7X - 5Z$ is $2 \times n$.

Option (B) is correct.

Also Read,

Topics covered in Chapter 3: Matrices: Exercise 3.2

  • Introduction
  • Topics covered
  • Addition of matrices: If $\mathrm{A}=\left[a_{i j}\right]$ and $\mathrm{B}=\left[b_{i j}\right]$ are two matrices of the same order, say $m \times n$. Then, the sum of the two matrices A and B is defined as a matrix $\mathrm{C}=\left[c_{i j}\right]_{m \times n}$, where $c_{i j}=a_{i j}+b_{i j}$, for all possible values of $i$ and $j$.
  • Multiplication of a matrix by a scalar: Multiplication of a matrix by a scalar as follows: if $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ is a matrix and $k$ is a scalar, then $k \mathrm{~A}$ is another matrix which is obtained by multiplying each element of A by the scalar $k$.
  • Difference of matrices: If $\mathrm{A}=\left[a_{i j}\right], \mathrm{B}=\left[b_{i j}\right]$ are two matrices of the same order, say $m \times n$, then difference $\mathrm{A}-\mathrm{B}$ is defined as a matrix $\mathrm{D}=\left[d_{i j}\right]$, where $d_{i j}=a_{i j}-b_{i j}$, for all value of $i$ and $j$. In other words, $\mathrm{D}=\mathrm{A}-\mathrm{B}=\mathrm{A}+(-1) \mathrm{B}$, that is, the sum of the matrix A and the matrix - B.
  • Properties of matrix addition
  1. Commutative Law: If $\mathrm{A}=\left[a_{i j}\right], \mathrm{B}=\left[b_{i j}\right]$ are matrices of the same order, say $m \times n$, then $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$.
  2. Associative Law: For any three matrices $\mathrm{A}=\left[a_{i j}\right], \mathrm{B}=\left[b_{i j}\right], \mathrm{C}=\left[c_{i j}\right]$ of the same order, say $m \times n,(A+B)+C=A+(B+C)$.
  3. Existence of additive identity: Let $\mathrm{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix and O be an $m \times n$ zero matrix, then $\mathrm{A}+\mathrm{O}=\mathrm{O}+\mathrm{A}=\mathrm{A}$. In other words, O is the additive identity for matrix addition.
  4. The existence of additive inverse: Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ be any matrix, then we have another matrix as $-\mathrm{A}=\left[-a_{i j}\right]_{m \times n}$ such that $\mathrm{A}+(-\mathrm{A}) = (-\mathrm{A})+\mathrm{A} =\mathrm{O}$. So, - A is the additive inverse of A or the negative of A.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
  • Properties of scalar multiplication of a matrix
  1. $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$
  2. $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$
  3. $(k+l) \mathrm{A}=k \mathrm{~A}+l \mathrm{~A}$
  • Multiplication of matrices: If $\mathrm{A}=\left[a_{i j}\right]_{m \times n}, \mathrm{~B}=\left[b_{j k}\right]_{n \times p}$, then the $i^{\text {th }}$ row of A is $\left[a_{i 1} a_{i 2} \ldots a_{i n}\right]$ and the $k^{\text {th }}$ column of B is $\left[\begin{array}{c}b_{1 k} \\ b_{2 k} \\ \vdots \\ b_{n k}\end{array}\right]$, then $c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+a_{i 3} b_{3 k}+\ldots+a_{i n} b_{n k}=\sum_{j=1}^n a_{i j} b_{j k}$.

The matrix $\mathrm{C}=\left[c_{ik}\right]_{m \ m\times p}$ is the product of A and B.

  • Properties of Multiplication
  1. The associative law: For any three matrices A, B, and C. We have $(A B) C=A(B C)$ whenever both sides of the equality are defined.
  2. The distributive law: For three matrices $\mathrm{A}, \mathrm{B}$ and C.

(i) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$

(ii) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$, whenever both sides of equality are defined.

  1. The existence of multiplicative identity: For every square matrix $A$, there exists an identity matrix of the same order such that $\mathrm{IA}=\mathrm{AI}=\mathrm{A}$.

Also, read,

Subject-wise NCERT Exemplar solutions

Students can check these NCERT exemplar links for additional practice.

Frequently Asked Questions (FAQs)

Q: What is the use of matrix ?
A:

Matrix is an important tool useful in science, statistics, research, representation of data, mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, etc.

Q: What is zero matrix ?
A:

A matrix all of whose entries are zero is called a zero matrix.

Q: What is equal matrix ?
A:

Two matrices are equal matrices if the order and correspondence entities of both matrices are the same.

Q: Does scalar matrix is square matrix ?
A:

Yes, the scalar matrix is a square matrix.

Q: How do you identify a scalar matrix ?
A:

A scalar matrix is a square matrix whose all diagonal elements are equal and all other elements are zero.

Q: Can I get free NCERT solutions for Class 12 maths?
A:

Click here to get NCERT solutions for class 12 maths. Links for solutions to each chapters of NCERT syllabus Class 12 Mathematics is available here. All the exercise questions of NCERT textbook are covered. For more questions solve use NCERT exemplar.

Articles
|
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 27 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

10 Aug'25 - 27 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.

You can download it in pdf form from below link

CBSE DATE SHEET 2026

all the best for your exam!!

Hii neeraj!

You can check CBSE class 12th registration number in:

  • Your class 12th board exam admit card. Please do check admit card for registration number, it must be there.
  • You can also check the registration number in your class 12th marksheet in case you have got it.
  • Alternatively you can also visit your school and ask for the same in the administration office they may tell you the registration number.

Hope it helps!