Careers360 Logo
NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

Edited By Ramraj Saini | Updated on Dec 03, 2023 03:39 PM IST | #CBSE Class 12th

NCERT Solutions For Class 12 Maths Chapter 3 Exercise 3.2

NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 Matrices are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for class 12 maths chapter 3 exercise 3.2 consist of questions related to operations on matrices like the addition of matrices, multiplication of a matrix by a scalar, properties of matrix addition, and properties of scalar multiplication of a matrix. Topics such as properties of multiplication of matrices like associative, distributive, and existence of multiplicative identity are also covered in the NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2. There are 22 questions given in exercise 3.2 class 12 maths solutions. You can take help from these class 12 maths ch 3 ex 3.2 solutions. You are advised to solve more problems to get conceptual clarity.

12th class Maths exercise 3.2 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

Also, see

PTE Registrations 2024

Register now for PTE & Unlock 10% OFF : Use promo code: 'C360SPL10'. Limited Period Offer!

Assess NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2

Download PDF

Matrices Exercise: 3.2

Question 1(i) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

A + B

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(i) A + B

The addition of matrix can be done as follows

A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} + \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}

A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}

Question 1(ii) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

A - B

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(ii) A - B

A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}

A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}

Question 1(iii) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

3A - C

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

(iii) 3A - C

First multiply each element of A with 3 and then subtract C

3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix} - \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}

3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}

Question 1(iv)Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

AB

Answer:

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

(iv) AB

AB = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} \times \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

AB = \begin{bmatrix} 2\times 1+4\times -2 & \, \, \, 2\times 3+4\times 5 \\ 3\times 1+2\times -2 & \, \, \, 3\times 3+2 \times 5 \end{bmatrix}

AB = \begin{bmatrix} -6 &26 \\ -1 & 19 \end{bmatrix}

Question 1(v) Let A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}, B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}, C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}

Find each of the following:

BA

Answer:

The multiplication is performed as follows

A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix} ,B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}

BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix} \times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}

BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}

BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}

Question 2(i). Compute the following:

\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}

Answer:

(i) \begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}

= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}

= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}

Question 2(ii). Compute the following:

\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}

Answer:

(ii) The addition operation can be performed as follows

\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}

=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}

=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}

Question 2(iii). Compute the following:

\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}

Answer:

(iii) The addition of given three by three matrix is performed as follows

\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}

=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}

=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}

Question 2(iv). Compute the following:

\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}

Answer:

(iv) the addition is done as follows

\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}

=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix} since sin^2x+cos^2x=1

=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}

Question 3(i). Compute the indicated products.

\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

Answer:

(i) The multiplication is performed as follows

\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}

=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}

=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}

Question 3(ii). Compute the indicated products.

\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}

Answer:

(ii) the multiplication can be performed as follows

\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}

=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}

=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}

Question 3(iii). Compute the indicated products.

\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}

Answer:

(iii) The multiplication can be performed as follows

\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}

=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}

Question 3(iv). Compute the indicated products.

\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

Answer:

(iv) The multiplication is performed as follows

\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}

=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}

= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}

Question 3(v). Compute the indicated products.

\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

Answer:

(v) The product can be computed as follows

\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}

=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}

=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}

Question 3(vi). Compute the indicated products.

\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

Answer:

(vi) The given product can be computed as follows

\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}

=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}

=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}

Question 4. If A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}, B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} and C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}, then compute (A+B) and (B-C). Also verify that A + (B - C) = (A + B) - C

Answer:

A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}, B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} and C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} + \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}

A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}

A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}

B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix} -\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}

B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}

Now, to prove A + (B - C) = (A + B) - C

L.H.S\, \, :\, A+(B-C)

A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix} + \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix} (Puting value of B-C from above)

A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}

A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

R.H.S\, \, :\, (A+B)-C

(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix} - \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}

(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}

(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

Hence, we can see L.H.S = R.H.S = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}

Question 5. If A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} and B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}, then compute 3A - 5B

Answer:

A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} and B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}

3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix} -5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}

3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix} - \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}

3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}

3A-5B = 0

Question 6. Simplify \cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}.

Answer:

The simplification is explained in the following step

\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}

= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}

= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}

= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I

the final answer is an identity matrix of order 2

Question 7(i). Find X and Y, if

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} and X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

Answer:

(i) The given matrices are

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} and X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1

X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2

Adding equation 1 and 2, we get

2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} + \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}

2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}

2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}

X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}

Putting the value of X in equation 1, we get

\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix} +Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}

Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} - \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}

Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}

Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}

Question 7(ii). Find X and Y, if

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and 3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

Answer:

(ii) 2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} and 3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1

3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2

Multiply equation 1 by 3 and equation 2 by 2 and subtract them,

3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}

6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix} - \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}

9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}

5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}

Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}

Putting value of Y in equation 1 , we get

2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}

2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}

2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}

2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}

X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}

Question 8. Find X, if Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} and 2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

Answer:

Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}

2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

Substituting the value of Y in the above equation

2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}

2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}

2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}

2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}

X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}

Question 9. Find x and y, if 2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

Answer:

2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}

Now equating LHS and RHS we can write the following equations

2+y=5 2x+2=8

y=5-2 2x=8-2

y=3 2x=6

x=3

Question 10. Solve the equation for x, y, z and t, if 2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}

Answer:

2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}

Multiplying with constant terms and rearranging we can rewrite the matrix as

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}

\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}

Dividing by 2 on both sides

\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}

x=3,y=6,z=9\, \, and\, \, t=6

Question 11. If x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}, find the values of x and y.

Answer:

x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

Adding both the matrix in LHS and rewriting

\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}

2x-y=10........................1

3x+y=5........................2

Adding equation 1 and 2, we get

5x=15

x=3

Put the value of x in equation 2, we have

3x+y=5

3\times 3+y=5

9+y=5

y=5-9

y=-4

Question 12. Given 3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}, find the values of x, y, z and w.

Answer:

3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}

\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}

If two matrices are equal than corresponding elements are also equal.

Thus, we have

3x=x+4

3x-x=4

2x=4

x=2

3y=6+x+y

Put the value of x

3y-y=6+2

2y=8

y=4

3w=2w+3

3w-2w=3

w=3

3z=-1+z+w

3z-z=-1+3

2z=2

z=1

Hence, we have x=2,y=4,z=1\, \, and\, \, w=3.

Question 13. If F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}, show that F(x) F(y) = F(x + y).

Answer:

F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}

To prove : F(x) F(y) = F(x + y)

R.H.S : F(x + y)

F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}

L.H.S : F(x) F(y)

F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}

F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}


F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}

Hence, we have L.H.S. = R.H.S i.e. F(x) F(y) = F(x + y).

Question 14(i). Show that

\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

Answer:

To prove:

\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}

= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}

= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}

R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}

= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}

= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}

Hence, the right-hand side not equal to the left-hand side, that is

Question 14(ii). Show that

\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

Answer:

To prove the following multiplication of three by three matrices are not equal

\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}

= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}

= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}


R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}

= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}

= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}

Hence, L.H.S \neq R.H.S i.e. \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}.

Question 15. FindA^2 -5A + 6I, if

A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

Answer:

A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

First, we will find ou the value of the square of matrix A

A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}

A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}

I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

\therefore A^2 -5A + 6I

= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix} -5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}+6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}- \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix}+\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}

= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}

= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}

Question 16. If A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix} prove that A^3 - 6A^2 + 7A + 2I = 0.

Answer:

A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

First, find the square of matrix A and then multiply it with A to get the cube of matrix A

A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}

A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}

A^{3}=A^{2}\times A

A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix} \times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}

A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}

A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}

I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

\therefore A^3 - 6A^2 + 7A + 2I = 0

L.H.S :

\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}- 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}+7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}+2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}

=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix} - \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix} + \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix} + \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}

=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}

=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}

= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0

Hence, L.H.S = R.H.S

i.e.A^3 - 6A^2 + 7A + 2I = 0.

Question 17. If A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} and I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}, find k so that A^{2} = kA - 2I.

Answer:

A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}

A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}

A^{2} = kA - 2I

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -\begin{bmatrix}2 &0\\0&2 \end{bmatrix}

\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+ \begin{bmatrix}2 &0\\0&2 \end{bmatrix} =k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}

\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} =\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}

We have,3=3k

k=\frac{3}{3}=1

Hence, the value of k is 1.

Question 18. If A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix} and I is the identity matrix of order 2, show thatI + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

Answer:

A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}

I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}

To prove : I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

L.H.S : I+A

I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}+ \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}

I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}

I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}

R.H.S : (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}= (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}- \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix})\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix} =\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix} \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}=\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix} \times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}

=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}

=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}

=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}

= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}

Hence, we can see L.H.S = R.H.S

i.e. I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}.

Question 19(i). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 1800

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

\begin{bmatrix}x &(30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =1800 (simple interest for 1 year =\frac{pricipal\times rate}{100} )

\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800

5x+210000-7x=180000

210000-180000=7x-5x

30000=2x

x=15000

Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.

Question 19(ii). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 2000

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

\begin{bmatrix}x &(30000-x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} =2000 (simple interest for 1 year =\frac{pricipal\times rate}{100} )

\frac{5}{100}x+\frac{7}{100}(30000-x) = 2000

5x+210000-7x=200000

210000-200000=7x-5x

10000=2x

x=5000

Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Answer:

The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.

Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively.

The total amount the bookshop will receive from selling all the books:

12\begin{bmatrix}10 &8&10 \end{bmatrix} \begin{bmatrix}80\\60\\40 \end{bmatrix}

=12(10\times 80+8\times 60+10\times 40)

= 12(800+480+ 400)

= 12(1680)

=20160

The total amount the bookshop will receive from selling all the books is 20160.

Question 21 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 21 and 22.

Q21. The restriction on n, k and p so that PY + WY will be defined are:
(A) k = 3, p = n

(B) k is arbitrary,p = 2

(C) p is arbitrary, k = 3

(D) k = 2, p = 3

Answer:

P and Y are of order p*k and 3*k respectivly.

\therefore PY will be defined only if k=3, i.e. order of PY is p*k.

W and Y are of order n*3 and 3*k respectivly.

\therefore WY is defined because the number of columns of W is equal to the number of rows of Y which is 3, i.e. the order of WY is n*k

Matrices PY and WY can only be added if they both have same order i.e = n*k implies p=n.

Thus, k = 3, p = nare restrictions on n, k and p so that PY + WY will be defined.

Option (A) is correct.

Question 22 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k,
respectively. Choose the correct answer in Exercises 21 and 22. If n = p, then the order of the matrix 7X - 5Z is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n

Answer:

X has of order 2*n .

\therefore 7X also has of order 2*n .

Z has of order 2*p .

\therefore 5Z also has of order 2*p .

Mtarices 7X and 5Z can only be subtracted if they both have same order i.e 2*n= 2*p and it is given that p=n.

We can say that both matrices have order of 2*n.

Thus, order of 7X - 5Z is 2*n.

Option (B) is correct.

More about NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2:-

There are 20 long answer type questions and 2 multiple-type questions are given in the NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2. You should try to solve all of them on your own. Also, there are 14 solved examples given before the NCERT textbook exercise 3.2 Class 12 Maths. Solving these examples will help you to grasp the concepts and solve textbook questions very easily. These Class 12th maths chapter 3 exercise 3.2 examples are very descriptive with help some important definitions. There are some theorems given in the textbook. Sometimes prove of these theorems is asked in the CBSE board exams. You should look into them also.

Also Read| Matrices Class 12 Maths Chapter Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2:-

  • NCERT Solutions for Class 12 Maths Chapter 3 Exercise 3.2 are very helpful in solving NCERT problems.
  • Class 12 maths chapter 3 exercise 3.2 solutions are designed the basis of guidelines given by the CBSE on which you can rely upon.
  • Only Knowing the answer is enough to get good marks but you should know how to write answers in the board exams in order to get good marks.
  • Exercise 3.2 Chapter 3 Maths Solutions are prepared by experts who know how best to write in the board exams.
  • You can use these class 12 maths chapter 3 exercise 3.2 solutions for reference.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 3.2 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 3.2, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 3.2 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 3.2 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 3.2 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 3.2 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

NCERT solutions of class 12 subject wise

Subject wise NCERT Exampler solutions

Happy learning!!!

Frequently Asked Question (FAQs)

1. Can I get free NCERT solutions for Class 12 maths?

Click here to get NCERT solutions for class 12 maths. Links for solutions to each chapters of NCERT syllabus Class 12 Mathematics is available here. All the exercise questions of NCERT textbook are covered. For more questions solve use NCERT exemplar.

2. What is the use of matrix ?

Matrix is an important tool useful in science, statistics, research, representation of data, mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, etc.

3. What is zero matrix ?

A matrix all of whose entries are zero is called a zero matrix.

4. What is equal matrix ?

Two matrices are equal matrices if the order and correspondence entities of both matrices are the same.

5. Does scalar matrix is square matrix ?

Yes, the scalar matrix is a square matrix.

6. How do you identify a scalar matrix ?

A scalar matrix is a square matrix whose all diagonal elements are equal and all other elements are zero.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hi,

The Medhavi National Scholarship Program, under the Human Resources & Development Mission (HRDM), offers financial assistance to meritorious students through a scholarship exam. To be eligible, candidates must be between 16 and 40 years old as of the last date of registration and have at least passed the 10th grade from a recognized board. Higher qualifications, such as 11th/12th grade, graduation, post-graduation, or a diploma, are also acceptable.

To apply, download the Medhavi App from the Google Play Store, sign up, and read the detailed notification about the scholarship exam. Complete the registration within the app, take the exam from home using the app, and receive your results within two days. Following this, upload the necessary documents and bank account details for verification. Upon successful verification, the scholarship amount will be directly transferred to your bank account.

The scholarships are categorized based on the marks obtained in the exam: Type A for those scoring 60% or above, Type B for scores between 50% and 60%, and Type C for scores between 40% and 50%. The cash scholarships range from Rs. 2,000 to Rs. 18,000 per month, depending on the exam and the marks obtained.

Since you already have a 12th-grade qualification with 84%, you meet the eligibility criteria and can apply for the Medhavi Scholarship exam. Preparing well for the exam can increase your chances of receiving a higher scholarship.

Yuvan 01 September,2024

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

Hello student,

If you are planning to appear again for class 12th board exam with PCMB as a private candidate here is the right information you need:

  • No school admission needed! Register directly with CBSE. (But if you want to attend the school then you can take admission in any private school of your choice but it will be waste of money)
  • You have to appear for the 2025 12th board exams.
  • Registration for class 12th board exam starts around September 2024 (check CBSE website for exact dates).
  • Aim to register before late October to avoid extra fees.
  • Schools might not offer classes for private students, so focus on self-study or coaching.

Remember , these are tentative dates based on last year. Keep an eye on the CBSE website ( https://www.cbse.gov.in/ ) for the accurate and official announcement.

I hope this answer helps you. If you have more queries then feel free to share your questions with us, we will be happy to help you.

Good luck with your studies!

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top