CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
In this exercise, you will learn about the operations on matrices: addition of matrices, multiplication of a matrix by a scalar, subtraction, and multiplication of matrices. Class 12 maths chapter 3 exercise 3.2 of NCERT consists of questions related to properties of multiplication of matrices, like associative, distributive, and existence of multiplicative identity, which are included in this exercise. There are 22 questions given in Exercise 3.2 Class 12 Maths Solutions. These NCERT solutions are created to develop an easy approach to solving the questions. You can take help from these Class 12 Maths Chapter 3 exercise 3.2 solutions to learn the proper approach for solving the questions. It will also learn the concept in a better manner.
A + B
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
(i) A + B
The addition of matrix can be done as follows
$A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $+ \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}$
$A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}$
A - B
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
(ii) A - B
$A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}$
$A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}$
3A - C
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$
(iii) 3A - C
First multiply each element of A with 3 and then subtract C
$3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$
$3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$
$3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}$
$3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}$
AB
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
(iv) AB
$AB = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $\times \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$AB = \begin{bmatrix} 2\times 1+4\times -2 & \, \, \, 2\times 3+4\times 5 \\ 3\times 1+2\times -2 & \, \, \, 3\times 3+2 \times 5 \end{bmatrix}$
$AB = \begin{bmatrix} -6 &26 \\ -1 & 19 \end{bmatrix}$
BA
The multiplication is performed as follows
$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ ,$B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$
$BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$ $\times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$
$BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}$
$BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}$
Question 2(i). Compute the following:
$\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$
(i) $\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$
$= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}$
$= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}$
Question 2(ii). Compute the following:
(ii) The addition operation can be performed as follows
$\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}$
$=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}$
$=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}$
Question 2(iii). Compute the following:
(iii) The addition of given three by three matrix is performed as follows
$\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}$
$=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}$
$=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}$
Question 2(iv). Compute the following:
(iv) the addition is done as follows
$\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}$
$=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix}$ since $sin^2x+cos^2x=1$
$=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}$
Question 3(i). Compute the indicated products.
$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$
(i) The multiplication is performed as follows
$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$
$=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$
$=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}$
$=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}$
Question 3(ii). Compute the indicated products.
$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$
(ii) the multiplication can be performed as follows
$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$
$=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}$
$=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}$
Question 3(iii). Compute the indicated products.
$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$
Answer:
(iii) The multiplication can be performed as follows
$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$
$=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}$
Question 3(iv). Compute the indicated products.
(iv) The multiplication is performed as follows
$\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$
$=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$
$=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}$
$= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}$
Question 3(v). Compute the indicated products.
(v) The product can be computed as follows
$\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$
$=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$
$=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}$
$=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}$
Question 3(vi). Compute the indicated products.
(vi) The given product can be computed as follows
$\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$
$=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$
$=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}$
$=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}$
$A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$, $B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$
$A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}$
$A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$
$B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ $-\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$
$B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}$
$B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$
Now, to prove A + (B - C) = (A + B) - C
$L.H.S\, \, :\, A+(B-C)$
$A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$ (Puting value of $B-C$ from above)
$A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}$
$A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$
$R.H.S\, \, :\, (A+B)-C$
$(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$ $- \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$
$(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}$
$(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$
Hence, we can see L.H.S = R.H.S = $\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$
$A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$
$3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ $-5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$
$3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$ $- \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$
$3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$
$3A-5B = 0$
The simplification is explained in the following step
$\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$
$= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}$
$= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}$
$= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I$
the final answer is an identity matrix of order 2
Question 7(i). Find X and Y, if
$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$
(i) The given matrices are
$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$
$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1$
$X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2$
Adding equation 1 and 2, we get
$2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ $+ \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$
$2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}$
$2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}$
$X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$
Putting the value of X in equation 1, we get
$\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$ $+Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$
$Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} -$ $\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$
$Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}$
$Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}$
Question 7(ii). Find X and Y, if
$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$
(ii) $2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$
$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1$
$3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2$
Multiply equation 1 by 3 and equation 2 by 2 and subtract them,
$3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ $- \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$
$6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix}$ $- \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}$
$9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}$
$5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}$
$Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}$
Putting value of Y in equation 1 , we get
$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$
$2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$
$2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$
$2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}$
$2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}$
$2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}$
$X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}$
$Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$
$2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$
Substituting the value of Y in the above equation
$2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$
$2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$
$2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}$
$2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}$
$X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}$
$2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
$\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
$\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
$\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$
Now equating LHS and RHS we can write the following equations
$2+y=5$ $2x+2=8$
$y=5-2$ $2x=8-2$
$y=3$ $2x=6$
$x=3$
$2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$
Multiplying with constant terms and rearranging we can rewrite the matrix as
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}$
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}$
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}$
$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}$
Dividing by 2 on both sides
$\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}$
$x=3,y=6,z=9\, \, and\, \, t=6$
$x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$
$\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$
Adding both the matrix in LHS and rewriting
$\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$
$2x-y=10........................1$
$3x+y=5........................2$
Adding equation 1 and 2, we get
$5x=15$
$x=3$
Put the value of x in equation 2, we have
$3x+y=5$
$3\times 3+y=5$
$9+y=5$
$y=5-9$
$y=-4$
$3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}$
$\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}$
If two matrices are equal than corresponding elements are also equal.
Thus, we have
$3x=x+4$
$3x-x=4$
$2x=4$
$x=2$
$3y=6+x+y$
Put the value of x
$3y-y=6+2$
$2y=8$
$y=4$
$3w=2w+3$
$3w-2w=3$
$w=3$
$3z=-1+z+w$
$3z-z=-1+3$
$2z=2$
$z=1$
Hence, we have $x=2,y=4,z=1\, \, and\, \, w=3.$
$F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}$
To prove : $F(x) F(y) = F(x + y)$
$R.H.S : F(x + y)$
$F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$
$L.H.S : F(x) F(y)$
$F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}$
$F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}$
$F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$
Hence, we have L.H.S. = R.H.S i.e. $F(x) F(y) = F(x + y)$.
Question 14(i). Show that
To prove:
$\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$
$L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}$
$= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}$
$= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}$
$R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$
$= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}$
$= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}$
Hence, the right-hand side not equal to the left-hand side, that is
Question 14(ii). Show that
To prove the following multiplication of three by three matrices are not equal
$\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$
$L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}$
$= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}$
$= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}$
$R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$
$= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}$
$= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}$
Hence, $L.H.S \neq R.H.S$ i.e. $\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$.
Question 15. Find$A^2 -5A + 6I$, if
$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$
$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$
First, we will find ou the value of the square of matrix A
$A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}$
$A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$
$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$\therefore$ $A^2 -5A + 6I$
$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$ $-5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$$+6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$$- \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix}$$+\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}$
$= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}$
$= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}$
Question 16. If $A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$ prove that $A^3 - 6A^2 + 7A + 2I = 0$.
$A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$
First, find the square of matrix A and then multiply it with A to get the cube of matrix A
$A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$
$A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}$
$A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$
$A^{3}=A^{2}\times A$
$A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$ $\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$
$A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}$
$A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$
$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$\therefore$ $A^3 - 6A^2 + 7A + 2I = 0$
L.H.S :
$\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$$- 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$$+7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$+2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$
$=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$ $- \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix}$ $+ \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix}$ $+ \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}$
$=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}$
$=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}$
$= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0$
Hence, L.H.S = R.H.S
i.e.$A^3 - 6A^2 + 7A + 2I = 0$.
$A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$
$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$
$A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$$\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$
$A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}$
$A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}$
$A^{2} = kA - 2I$
$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$
$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$
$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+$ $\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$ $=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$
$\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}$$=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$
$\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$ $=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$
We have,$3=3k$
$k=\frac{3}{3}=1$
Hence, the value of k is 1.
$A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$
$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$
To prove : $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
L.H.S : $I+A$
$I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$$+ \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$
$I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}$
$I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$
R.H.S : $(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$= (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}-$ $\begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix})$$\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$ $=\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$=\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$
$=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}$
$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$
$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$
$= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$
Hence, we can see L.H.S = R.H.S
i.e. $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$.
Rs. 1800
Let Rs. x be invested in the first bond.
Money invested in second bond = Rs (3000-x)
The first bond pays 5% interest per year and the second bond pays 7% interest per year.
To obtain an annual total interest of Rs. 1800, we have
$\begin{bmatrix}x &(30000-x) \end{bmatrix}$ $\begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix}$ $=1800$ (simple interest for 1 year $=\frac{pricipal\times rate}{100}$ )
$\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800$
$5x+210000-7x=180000$
$210000-180000=7x-5x$
$30000=2x$
$x=15000$
Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.
Rs. 2000
Let Rs. x be invested in the first bond.
Money invested in second bond = Rs (3000-x)
The first bond pays 5% interest per year and the second bond pays 7% interest per year.
To obtain an annual total interest of Rs. 1800, we have
$\begin{bmatrix} x & (30000 - x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} = 2000$
(Simple interest for 1 year = $\frac{\text{Principal} \times \text{Rate}}{100}$)
$\frac{5}{100}x + \frac{7}{100}(30000 - x) = 2000$
$\frac{5x + 210000 - 7x}{100} = 2000$
$\frac{210000 - 2x}{100} = 2000$
$210000 - 2x = 200000$
$210000 - 200000 = 2x$
$10000 = 2x$
$x = 5000$
Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.
The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.
Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively.
The total amount the bookshop will receive from selling all the books:
$12$$\begin{bmatrix}10 &8&10 \end{bmatrix}$ $\begin{bmatrix}80\\60\\40 \end{bmatrix}$
$=12(10\times 80+8\times 60+10\times 40)$
$= 12(800+480+ 400)$
$= 12(1680)$
$=20160$
The total amount the bookshop will receive from selling all the books is 20160.
Q21. The restriction on n, k and p so that PY + WY will be defined are:
(A) $k = 3, p = n$
(B) k is arbitrary,$p = 2$
(C) p is arbitrary, $k = 3$
(D) $k = 2, p = 3$
P and Y are of order \( p \times k \) and \( 3 \times k \) respectively.
Therefore, \( PY \) will be defined only if \( k = 3 \), i.e., the order of \( PY \) is \( p \times k \).
W and Y are of order \( n \times 3 \) and \( 3 \times k \) respectively.
Therefore, \( WY \) is defined because the number of columns of \( W \) is equal to the number of rows of \( Y \), which is 3, i.e., the order of \( WY \) is \( n \times k \).
Matrices \( PY \) and \( WY \) can only be added if they both have the same order, i.e., \( p \times k = n \times k \Rightarrow p = n \).
Therefore, \( k = 3 \), \( p = n \) are restrictions on \( n \), \( k \), and \( p \) so that \( PY + WY \) will be defined.
Option (A) is correct.
$X$ has order $2 \times n$.
Therefore, $7X$ also has order $2 \times n$.
$Z$ has order $2 \times p$.
Therefore, $5Z$ also has order $2 \times p$.
Matrices $7X$ and $5Z$ can only be subtracted if they both have the same order, i.e., $2 \times n = 2 \times p$, and it is given that $p = n$.
We can say that both matrices have order $2 \times n$.
Therefore, the order of $7X - 5Z$ is $2 \times n$.
Option (B) is correct.
Also Read,
The matrix $\mathrm{C}=\left[c_{ik}\right]_{m \ m\times p}$ is the product of A and B.
(i) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$
(ii) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$, whenever both sides of equality are defined.
Also, read,
Here are links to NCERT textbook solutions for other subjects. Students can explore and assess these organised solutions to gain a deeper understanding.
Students can check these NCERT exemplar links for additional practice.
Frequently Asked Questions (FAQs)
Matrix is an important tool useful in science, statistics, research, representation of data, mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, etc.
A matrix all of whose entries are zero is called a zero matrix.
Two matrices are equal matrices if the order and correspondence entities of both matrices are the same.
Yes, the scalar matrix is a square matrix.
A scalar matrix is a square matrix whose all diagonal elements are equal and all other elements are zero.
Click here to get NCERT solutions for class 12 maths. Links for solutions to each chapters of NCERT syllabus Class 12 Mathematics is available here. All the exercise questions of NCERT textbook are covered. For more questions solve use NCERT exemplar.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters