NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

NCERT Solutions for Exercise 3.2 Class 12 Maths Chapter 3 - Matrices

Updated on 23 Apr 2025, 12:51 PM IST

In this exercise, you will learn about the operations on matrices: addition of matrices, multiplication of a matrix by a scalar, subtraction, and multiplication of matrices. Class 12 maths chapter 3 exercise 3.2 of NCERT consists of questions related to properties of multiplication of matrices, like associative, distributive, and existence of multiplicative identity, which are included in this exercise. There are 22 questions given in Exercise 3.2 Class 12 Maths Solutions. These NCERT solutions are created to develop an easy approach to solving the questions. You can take help from these Class 12 Maths Chapter 3 exercise 3.2 solutions to learn the proper approach for solving the questions. It will also learn the concept in a better manner.

Class 12 Maths Chapter 3 Exercise 3.2 Solutions: Download PDF

Download PDF

Matrices Exercise: 3.2

Question 1(i) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

A + B

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

(i) A + B

The addition of matrix can be done as follows

$A+B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $+ \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$A+B = \begin{bmatrix} 2+1 &4+3 \\ 3+(-2) & 2+5 \end{bmatrix}$

$A+B = \begin{bmatrix} 3 &7 \\ 1 & 7 \end{bmatrix}$

Question 1(ii) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

A - B

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

(ii) A - B

$A-B = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$A-B = \begin{bmatrix} 2-1 &4-3 \\ 3-(-2) & 2-5 \end{bmatrix}$

$A-B = \begin{bmatrix} 1 &1 \\ 5 & -3 \end{bmatrix}$

Question 1(iii) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

3A - C

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

(iii) 3A - C

First multiply each element of A with 3 and then subtract C

$3A -C = 3\begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

$3A -C = \begin{bmatrix} 6 &12 \\ 9 & 6 \end{bmatrix}$ $- \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

$3A -C = \begin{bmatrix} 6-(-2) &12-5 \\ 9-3 & 6-4 \end{bmatrix}$

$3A -C = \begin{bmatrix} 8 &7 \\ 6 & 2 \end{bmatrix}$

Question 1(iv)Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

AB

Answer:

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

(iv) AB

$AB = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ $\times \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$AB = \begin{bmatrix} 2\times 1+4\times -2 & \, \, \, 2\times 3+4\times 5 \\ 3\times 1+2\times -2 & \, \, \, 3\times 3+2 \times 5 \end{bmatrix}$

$AB = \begin{bmatrix} -6 &26 \\ -1 & 19 \end{bmatrix}$

Question 1(v) Let $A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$, $C = \begin{bmatrix} -2 &5 \\ 3 & 4 \end{bmatrix}$

Find each of the following:

BA

Answer:

The multiplication is performed as follows

$A = \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$ ,$B = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$

$BA = \begin{bmatrix} 1 &3 \\ -2 & 5 \end{bmatrix}$ $\times \begin{bmatrix} 2 &4 \\ 3 & 2 \end{bmatrix}$

$BA = \begin{bmatrix} 1\times 2+3\times 3 &1\times 4+3\times 2 \\ -2\times 2+5\times 3& -2\times 4+2\times 5 \end{bmatrix}$

$BA = \begin{bmatrix} 11 &10 \\ 11& 2 \end{bmatrix}$

Question 2(i). Compute the following:

$\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$

Answer:

(i) $\begin{bmatrix} a &b \\ -b& a \end{bmatrix} + \begin{bmatrix} a &b \\ b& a \end{bmatrix}$

$= \begin{bmatrix} a+a &b+b \\ -b+b & a+a \end{bmatrix}$

$= \begin{bmatrix} 2a &2b \\ 0 & 2a \end{bmatrix}$

Question 2(ii). Compute the following:

$\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}$

Answer:

(ii) The addition operation can be performed as follows

$\begin{bmatrix} a^2 + b^2& b^2+c^2\\ a^2 + c^2& a^2 + b^2 \end{bmatrix} + \begin{bmatrix} 2ab &2bc \\ -2ac & -2ab \end{bmatrix}$

$=\begin{bmatrix} a^2 + b^2+2ab& b^2+c^2+2bc\\ a^2 + c^2-2ac& a^2 + b^2-2ab \end{bmatrix}$

$=\begin{bmatrix} (a+b)^2 & (b+c)^2\\ (a-c)^2 & (a-b)^2 \end{bmatrix}$

Question 2(iii). Compute the following:

$\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}$

Answer:

(iii) The addition of given three by three matrix is performed as follows

$\begin{bmatrix} -1 & 4 & -6\\ 8 & 5 & 16\\ 2 & 8 & 5 \end{bmatrix} + \begin{bmatrix} 12 & 7 & 6\\ 8 & 0 &5 \\ 3 & 2 & 4 \end{bmatrix}$

$=\begin{bmatrix} -1+12 & 4+7 & -6+6\\ 8+8 & 5+0 & 16+5\\ 2+3 & 8+2 & 5+4 \end{bmatrix}$

$=\begin{bmatrix} 11 & 11 & 0\\ 16 & 5 & 21\\ 5 & 10 & 9 \end{bmatrix}$

Question 2(iv). Compute the following:

$\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}$

Answer:

(iv) the addition is done as follows

$\begin{bmatrix} \cos^2 x &\sin^2 x\\ \sin^2 x & \cos^2x \end{bmatrix} + \begin{bmatrix} \sin^2 x &\cos^2 x\\ \cos^2 x & \sin^2x \end{bmatrix}$

$=\begin{bmatrix} \cos^2+ \sin^2 x &\sin^2 x+\cos^2 x\\ \sin^2 x+\cos^2 x & \cos^2x+ \sin^2 x \end{bmatrix}$ since $sin^2x+cos^2x=1$

$=\begin{bmatrix} 1 &1\\ 1 & 1 \end{bmatrix}$

Question 3(i). Compute the indicated products.

$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$

Answer:

(i) The multiplication is performed as follows

$\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$

$=\begin{bmatrix} a &b \\ -b &a \end{bmatrix} \times \begin{bmatrix} a & -b \\ b &a \end{bmatrix}$

$=\begin{bmatrix} a\times a+b\times b &a\times -b+b\times a \\ -b\times a+a\times b &-b\times -b+a\times a \end{bmatrix}$

$=\begin{bmatrix} a^{2}+b^{2} & 0 \\ 0 & b^{2}+a^{2} \end{bmatrix}$

Question 3(ii). Compute the indicated products.

$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$

Answer:

(ii) the multiplication can be performed as follows

$\begin{bmatrix} 1\\ 2\\ 3 \end{bmatrix}\begin{bmatrix} 2 &3 & 4 \end{bmatrix}$

$=\begin{bmatrix} 1\times 2 &1\times 3&1\times 4\\ 2\times 2&2\times 3&2\times 4\\3\times 2&3\times 3&3\times 4 \end{bmatrix}$

$=\begin{bmatrix} 2 &3& 4\\ 4&6&8\\6&9&12 \end{bmatrix}$

Question 3(iii). Compute the indicated products.

$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$

Answer:

(iii) The multiplication can be performed as follows

$\begin{bmatrix} 1 & -2\\ 2 & 3 \end{bmatrix}\begin{bmatrix} 1 &2 &3\\ 2 & 3 & 1 \end{bmatrix}$

$=\begin{bmatrix} 1\times 1+(-2)\times 2 & 1\times 2+(-2)\times 3&1\times 3+(-2)\times 1\\ 2\times 1+3\times 2 & 2\times 2+3\times 3&2\times 3+3\times 1 \end{bmatrix}$

Question 3(iv). Compute the indicated products.

$\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$

Answer:

(iv) The multiplication is performed as follows

$\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$

$=\begin{bmatrix} 2 & 3 & 4\\ 3 & 4 & 5\\ 4 & 5 & 6 \end{bmatrix}\times \begin{bmatrix} 1 & -3 & 5\\ 0& 2 & 4\\ 3 & 0 & 5 \end{bmatrix}$

$=\begin{bmatrix} 2\times 1+3\times 0+4\times 3 \, \, & 2\times (-3)+3\times 2+4\times 0 \, \, & 2\times 5+3\times 4+4\times 5 \\ 3\times 1+4\times 0+5\times 3 \, \, & 3\times (-3)+4\times 2+5\times 0 & 3\times 5+4\times 4+5\times 5 \\ 4\times 1+5\times 0+6\times 3 \, \, & 4\times (-3)+5\times 2+6\times 0\, \, & 4\times 5+5\times 4+6\times 5 \end{bmatrix}$


$= \begin{bmatrix} 14 & 0 & 42\\ 18 & -1 & 56\\ 22 & -2 & 70 \end{bmatrix}$

Question 3(v). Compute the indicated products.

$\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$

Answer:

(v) The product can be computed as follows

$\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$

$=\begin{bmatrix} 2 &1 \\ 3 & 2\\ -1 & 1 \end{bmatrix}\times \begin{bmatrix} 1 & 0 & 1\\ -1 &2 & 1 \end{bmatrix}$

$=\begin{bmatrix} 2\times 1+1\times (-1) &2\times 0+1\times (2) & 2\times 1+1\times (1) \\ 3\times 1+2\times (-1) & 3\times 0+2\times (2) &3\times 1+2\times (1) \\ (-1)\times 1+1\times (-1) & (-1)\times 0+1\times (2) & (-1)\times 1+1\times (1) \end{bmatrix}$

$=\begin{bmatrix} 1 &2&3 \\ 1 & 4&5\\ -2 & 2&0 \end{bmatrix}$

Question 3(vi). Compute the indicated products.

$\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$

Answer:

(vi) The given product can be computed as follows

$\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$

$=\begin{bmatrix} 3 & -1 & 3\\ -1 & 0 & 2 \end{bmatrix}\times \begin{bmatrix} 2 & -3\\ 1 & 0\\ 3 & 1 \end{bmatrix}$

$=\begin{bmatrix} 3 \times 2+(-1)\times 1+3\times 3\, \, \, & 3 \times (-3)+(-1)\times 0+3\times 1 \\ (-1) \times 2+ 0 \times 1+2\times 3 \, \, \, & (-1) \times -3+0\times 0+2\times 1 \end{bmatrix}$

$=\begin{bmatrix} 14 & -6 \\ 4 & 5 \end{bmatrix}$

Question 4. If $A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$, $B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$, then compute (A+B) and (B-C). Also verify that A + (B - C) = (A + B) - C

Answer:

$A = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$, $B = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ and $C = \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$

$A+B = \begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$

$A+B = \begin{bmatrix} 1+3 &2+(-1) &-3+2 \\ 5+4 &0+2 &2+5 \\ 1+2 & -1+0 &1+3 \end{bmatrix}$

$A+B = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$

$B-C = \begin{bmatrix} 3 &-1 &2 \\ 4 &2 &5 \\ 2 & 0 &3 \end{bmatrix}$ $-\begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$

$B-C = \begin{bmatrix} 3-4 &-1-1 &2-2 \\ 4-0 &2-3 &5-2 \\ 2-1 & 0-(-2) &3-3 \end{bmatrix}$

$B-C = \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$

Now, to prove A + (B - C) = (A + B) - C

$L.H.S\, \, :\, A+(B-C)$

$A+(B-C)=\begin{bmatrix} 1 &2 &-3 \\ 5 &0 &2 \\ 1 & -1 &1 \end{bmatrix}$ $+ \begin{bmatrix} -1 &-2 &0 \\ 4 &-1 &3 \\ 1 & 2 &0 \end{bmatrix}$ (Puting value of $B-C$ from above)

$A+(B-C)=\begin{bmatrix} 1-1 &2-2 &-3+0 \\ 5+4 &0+(-1) &2+3 \\ 1+1 & -1+2 &1+0 \end{bmatrix}$

$A+(B-C)=\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$

$R.H.S\, \, :\, (A+B)-C$

$(A+B)-C = \begin{bmatrix} 4 &1 &-1 \\ 9 &2 &7 \\ 3 & -1 &4 \end{bmatrix}$ $- \begin{bmatrix} 4 &1 &2 \\ 0 &3 &2 \\ 1 & -2 &3 \end{bmatrix}$

$(A+B)-C = \begin{bmatrix} 4-4 &1-1 &-1-2 \\ 9-0 &2-3 &7-2 \\ 3-1 & -1-(-2) &4-3 \end{bmatrix}$

$(A+B)-C = \begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$

Hence, we can see L.H.S = R.H.S = $\begin{bmatrix} 0 &0 &-3 \\ 9 &-1 &5 \\ 2 & 1 &1 \end{bmatrix}$

Question 5. If $A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$, then compute 3A - 5B

Answer:

$A = \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ and $B = \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$

$3A-5B = 3\times \begin{bmatrix} \frac{2}{3} & 1 & \frac{5}{3}\\ \frac{1}{3} & \frac{2}{3} &\frac{4}{3} \\ \frac{7}{3} & 2 & \frac{2}{3} \end{bmatrix}$ $-5\times \begin{bmatrix} \frac{2}{5} & \frac{3}{5}&1\\ \frac{1}{5} & \frac{2}{5} &\frac{4}{5} \\ \frac{7}{5} & \frac{6}{5} & \frac{2}{5} \end{bmatrix}$

$3A-5B = \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$ $- \begin{bmatrix} 2 & 3 & 5\\ 1 & 2 &4 \\ 7 & 6 & 2 \end{bmatrix}$

$3A-5B = \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix}$

$3A-5B = 0$

Question 6. Simplify $\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$.

Answer:

The simplification is explained in the following step

$\cos\theta\begin{bmatrix} \cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix} + \sin\theta\begin{bmatrix} \sin\theta & -\cos\theta\\ \cos\theta & \sin\theta \end{bmatrix}$

$= \begin{bmatrix} \cos^{2}\theta & \sin\theta \cos\theta \\ -\sin\theta \cos\theta & \cos^{2}\theta \end{bmatrix} +\begin{bmatrix} \sin^{2}\theta & - \sin\theta \cos\theta\\ \sin\theta\cos\theta & \sin^{2}\theta \end{bmatrix}$

$= \begin{bmatrix} \cos^{2}\theta+\sin^{2}\theta & \sin\theta \cos\theta - \sin\theta \cos\theta \\ -\sin\theta \cos\theta + \sin\theta \cos\theta & \cos^{2}\theta + \sin^{2}\theta\end{bmatrix}$

$= \begin{bmatrix} 1&0 \\ 0 & 1\end{bmatrix} =I$

the final answer is an identity matrix of order 2

Question 7(i). Find X and Y, if

$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$

Answer:

(i) The given matrices are

$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ and $X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$

$X + Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}.............................1$

$X - Y = \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}.............................2$

Adding equation 1 and 2, we get

$2 X = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$ $+ \begin{bmatrix} 3 &0 \\ 0 &3 \end{bmatrix}$

$2 X = \begin{bmatrix} 7+3 &0+0 \\ 2+0 &5+3 \end{bmatrix}$

$2 X = \begin{bmatrix} 10 &0 \\ 2 &8 \end{bmatrix}$

$X = \begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$

Putting the value of X in equation 1, we get

$\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$ $+Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix}$

$Y = \begin{bmatrix} 7 &0 \\ 2 &5 \end{bmatrix} -$ $\begin{bmatrix} 5 &0 \\ 1 &4 \end{bmatrix}$

$Y = \begin{bmatrix} 7-5 &0-0 \\ 2-1 &5-4 \end{bmatrix}$

$Y = \begin{bmatrix} 2 &0 \\ 1 &1 \end{bmatrix}$

Question 7(ii). Find X and Y, if

$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$

Answer:

(ii) $2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ and $3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$

$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}..........................1$

$3X + 2Y = \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}......................2$

Multiply equation 1 by 3 and equation 2 by 2 and subtract them,

$3(2X + 3Y)-2(3X+2Y) = 3 \times \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$ $- \, \, \, 2\times \begin{bmatrix} 2 &-2 \\ -1 & 5 \end{bmatrix}$

$6X + 9Y-6X-4Y= \begin{bmatrix} 6 &9 \\ 12 & 0 \end{bmatrix}$ $- \begin{bmatrix} 4 &-4 \\ -2 & 10 \end{bmatrix}$

$9Y-4Y= \begin{bmatrix} 6-4 &9-(-4) \\ 12-(-2) & 0-10 \end{bmatrix}$

$5Y= \begin{bmatrix} 2 &13 \\ 14 & -10 \end{bmatrix}$

$Y= \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix}$

Putting value of Y in equation 1 , we get

$2X + 3Y = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$

$2X + 3 \begin{bmatrix} \frac{2}{5} &\frac{13}{5} \\ \frac{14}{5} & -2 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$

$2X + \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix} = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix}$

$2X = \begin{bmatrix} 2 &3 \\ 4 & 0 \end{bmatrix} - \begin{bmatrix} \frac{6}{5} &\frac{39}{5} \\ \frac{42}{5} & -6 \end{bmatrix}$

$2X = \begin{bmatrix} 2-\frac{6}{5} &3-\frac{39}{5} \\ 4-\frac{42}{5} & 0 -(-6)\end{bmatrix}$

$2X = \begin{bmatrix} \frac{4}{5} &-\frac{24}{5} \\ -\frac{22}{5} & 6\end{bmatrix}$

$X = \begin{bmatrix} \frac{2}{5} &-\frac{12}{5} \\ -\frac{11}{5} & 3\end{bmatrix}$

Question 8. Find X, if $Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$ and $2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$

Answer:

$Y = \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$

$2X+ Y = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$

Substituting the value of Y in the above equation

$2X+ \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}$

$2X = \begin{bmatrix} 1 &0 \\ -3 & 2 \end{bmatrix}- \begin{bmatrix} 3 &2 \\ 1 & 4 \end{bmatrix}$

$2X = \begin{bmatrix} 1-3 &0-2 \\ -3-1 & 2-4 \end{bmatrix}$

$2X = \begin{bmatrix} -2 &-2 \\ -4 & -2 \end{bmatrix}$

$X = \begin{bmatrix} -1 &-1 \\ -2 & -1 \end{bmatrix}$

Question 9. Find x and y, if $2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

Answer:

$2\begin{bmatrix} 1 & 3\\ 0 & x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

$\begin{bmatrix} 2 & 6\\ 0 & 2x \end{bmatrix} + \begin{bmatrix} y & 0\\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

$\begin{bmatrix} 2+y & 6+0\\ 0+1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

$\begin{bmatrix} 2+y & 6\\ 1 & 2x+2 \end{bmatrix} = \begin{bmatrix} 5 & 6\\ 1 & 8\end{bmatrix}$

Now equating LHS and RHS we can write the following equations

$2+y=5$ $2x+2=8$

$y=5-2$ $2x=8-2$

$y=3$ $2x=6$

$x=3$

Question 10. Solve the equation for x, y, z and t, if $2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$

Answer:

$2\begin{bmatrix}x & z \\ y &t \end{bmatrix} + 3\begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} = 3\begin{bmatrix} 3 & 5\\ 4 & 6 \end{bmatrix}$

Multiplying with constant terms and rearranging we can rewrite the matrix as

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - 3\begin{bmatrix} 1& -1\\ 0 & 2 \end{bmatrix}$

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9 &15\\ 12 & 18 \end{bmatrix} - \begin{bmatrix} 3& -3\\ 0 & 6 \end{bmatrix}$

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 9-3 &15-(-3)\\ 12-0 & 18-6 \end{bmatrix}$

$\begin{bmatrix}2x &2 z \\ 2y &2t \end{bmatrix} = \begin{bmatrix} 6 &18\\ 12 & 12 \end{bmatrix}$

Dividing by 2 on both sides

$\begin{bmatrix}x & z \\ y &t \end{bmatrix} = \begin{bmatrix} 3 &9\\ 6 & 6 \end{bmatrix}$

$x=3,y=6,z=9\, \, and\, \, t=6$

Question 11. If $x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$, find the values of x and y.

Answer:

$x\begin{bmatrix}2\\3 \end{bmatrix} + y\begin{bmatrix} -1\\1 \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$

$\begin{bmatrix}2x\\3x \end{bmatrix} + \begin{bmatrix} -y\\y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$

Adding both the matrix in LHS and rewriting

$\begin{bmatrix}2x-y\\3x+y \end{bmatrix} = \begin{bmatrix} 10\\5 \end{bmatrix}$

$2x-y=10........................1$

$3x+y=5........................2$

Adding equation 1 and 2, we get

$5x=15$

$x=3$

Put the value of x in equation 2, we have

$3x+y=5$

$3\times 3+y=5$

$9+y=5$

$y=5-9$

$y=-4$

Question 12. Given $3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}$, find the values of x, y, z and w.

Answer:

$3\begin{bmatrix}x & y \\ z & w \end{bmatrix} = \begin{bmatrix} x & 6 \\ -1 & 2w \end{bmatrix} + \begin{bmatrix} 4 &x + y \\ z + w & 3 \end{bmatrix}$

$\begin{bmatrix}3x &3 y \\3 z & 3w \end{bmatrix} = \begin{bmatrix} x+4 & 6+x+y \\ -1+z+w & 2w+3 \end{bmatrix}$

If two matrices are equal than corresponding elements are also equal.

Thus, we have

$3x=x+4$

$3x-x=4$

$2x=4$

$x=2$

$3y=6+x+y$

Put the value of x

$3y-y=6+2$

$2y=8$

$y=4$

$3w=2w+3$

$3w-2w=3$

$w=3$

$3z=-1+z+w$

$3z-z=-1+3$

$2z=2$

$z=1$

Hence, we have $x=2,y=4,z=1\, \, and\, \, w=3.$

Question 13. If $F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}$, show that $F(x) F(y) = F(x + y)$.

Answer:

$F(x) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}$

To prove : $F(x) F(y) = F(x + y)$

$R.H.S : F(x + y)$

$F(x+y) = \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$

$L.H.S : F(x) F(y)$

$F(x)F(y) = \begin{bmatrix} \cos x & -\sin x& 0\\\sin x &\cos x & 0 \\ 0 &0&1\end{bmatrix}\times \begin{bmatrix} \cos y & -\sin y& 0\\\sin y &\cos y & 0 \\ 0 &0&1\end{bmatrix}$

$F(x)F(y) = \begin{bmatrix} \cos x \cos y- \sin x\sin y+0 & -\cos x \sin y-\sin x\cos y+0& 0+0+0\\\ sin x\cos y+\cos x \sin y+0 & - \sin x\sin y+\cos x \cos y+0 &0+0+0 \\ 0+0+0 &0+0+0&0+0+1\end{bmatrix}$


$F(x) F(y)= \begin{bmatrix} \cos (x+y) & -\sin (x+y)& 0\\\sin (x+y) &\cos (x+y) & 0 \\ 0 &0&1\end{bmatrix}$

Hence, we have L.H.S. = R.H.S i.e. $F(x) F(y) = F(x + y)$.

Question 14(i). Show that

$\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$

Answer:

To prove:

$\begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\neq \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$

$L.H.S : \begin{bmatrix}5&-1\\6&7 \end{bmatrix}\begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}$

$= \begin{bmatrix}5\times 2+(-1)\times 3 &5\times 1+(-1)\times 4\\6\times 2+7\times 3&6\times 1+7\times 4 \end{bmatrix}$

$= \begin{bmatrix}7 &1\\33&34 \end{bmatrix}$

$R.H.S : \begin{bmatrix} 2 & 1\\ 3 & 4 \end{bmatrix}\begin{bmatrix}5&-1\\6&7 \end{bmatrix}$

$= \begin{bmatrix} 2\times 5+1\times 6 & 2\times (-1)+1\times 7\\ 3\times 5+4\times 6 & 3\times (-1)+4\times 7 \end{bmatrix}$

$= \begin{bmatrix} 16 & 5\\ 39 & 25 \end{bmatrix}$

Hence, the right-hand side not equal to the left-hand side, that is

Question 14(ii). Show that

$\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$

Answer:

To prove the following multiplication of three by three matrices are not equal

$\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$

$L.H.S: \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix}$

$= \begin{bmatrix}1\times(-1)+2\times 0+3\times 2 \, \, \, & 1\times(1)+2\times (-1)+3\times 3\, \, \, &1\times(0)+2\times 1+3\times 4\\0\times(-1)+1\times 0+0\times 2\, \, \, &0\times(1)+1\times (-1)+0\times 3\, \, \, &0\times(0)+1\times 1+0\times 4\\1\times(-1)+1\times 0+0\times 2\, \, \, &1\times(1)+1\times (-1)+0\times 3\, \, \, &1\times(0)+1\times 1+0\times 4 \end{bmatrix}$

$= \begin{bmatrix}5& 8&14\\0&-1&1\\-1&0&1\end{bmatrix}$


$R.H.S : \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$

$= \begin{bmatrix}-1\times(1)+1\times 0+0\times 1 \, \, \, & -1\times(2)+1\times (1)+0\times 1\, \, \, &-1\times(3)+1\times 0+0\times 0\\0\times(1)+-(1)\times 0+1\times 1\, \, \, &0\times(2)+(-1)\times (1)+1\times 1\, \, \, &0\times(3)+(-1)\times 0+1\times 0\\2\times(1)+3\times 0+4\times 1\, \, \, &2\times(2)+3\times (1)+4\times 1\, \, \, &2\times(3)+3\times 0+4\times 0 \end{bmatrix}$

$= \begin{bmatrix}-1& -1&-3\\1&0&0\\6&11&6\end{bmatrix}$

Hence, $L.H.S \neq R.H.S$ i.e. $\begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix} \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \neq \begin{bmatrix} -1 & 1 & 0\\ 0 & -1 & 1\\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix}1& 2&3\\0&1&0\\1&1&0 \end{bmatrix}$.

Question 15. Find$A^2 -5A + 6I$, if

$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$

Answer:

$A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$

First, we will find ou the value of the square of matrix A

$A\times A = \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}\times \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 2\times 2+0\times 2+1\times 1 & 2\times 0+0\times 1+1\times -1 & 2\times 1+0\times 3+1\times 0\\ 2\times 2+1\times 2+3\times 1& 2\times 0+1\times 1+3\times -1 &2\times 1+1\times 3+3\times 0 \\ 1\times 2+(-1)\times 2+0\times 1 & 1\times 0+(-1)\times 1+0\times -1 & 1\times 1+(-1)\times 3+0\times 0 \end{bmatrix}$

$A^{2} = \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$

$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$\therefore$ $A^2 -5A + 6I$

$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$ $-5 \begin{bmatrix} 2 & 0 & 1\\ 2 & 1 &3 \\ 1 & -1 & 0 \end{bmatrix}$$+6 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$= \begin{bmatrix} 5 & -1 & 2\\ 9 & -2 &5 \\ 0 & -1 & -2 \end{bmatrix}$$- \begin{bmatrix} 10 & 0 & 5\\ 10 & 5 &15 \\ 5 & -5 & 0 \end{bmatrix}$$+\begin{bmatrix} 6 & 0 & 0\\ 0 & 6 &0 \\ 0 & 0 & 6 \end{bmatrix}$

$= \begin{bmatrix} 5-10+6 & -1-0+0 & 2-5+0\\ 9-10+0 & -2-5+6 &5-15+0 \\ 0-5+0 & -1-(-5)+0 & -2-0+6 \end{bmatrix}$

$= \begin{bmatrix} 1 & -1 & -3\\ -1 & -1 &-10 \\ -5 & 4 & 4 \end{bmatrix}$

Question 16. If $A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$ prove that $A^3 - 6A^2 + 7A + 2I = 0$.

Answer:

$A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$

First, find the square of matrix A and then multiply it with A to get the cube of matrix A

$A\times A = \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$

$A^{2} = \begin{bmatrix}1+0+4&0+0+0&2+0+6\\0+0+2&0+4+0&0+2+3\\2+0+6&0+0+0&4+0+9 \end{bmatrix}$

$A^{2} = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$

$A^{3}=A^{2}\times A$

$A^{2}\times A = \begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$ $\times \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$

$A^{3} = \begin{bmatrix}5+0+16&0+0+0&10+0+24\\2+0+10&0+8+0&4+4+15\\8+0+26&0+0+0&16+0+39 \end{bmatrix}$

$A^{3} = \begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$

$I= \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$\therefore$ $A^3 - 6A^2 + 7A + 2I = 0$

L.H.S :

$\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$$- 6\begin{bmatrix}5&0&8\\2&4&5\\8&0&13 \end{bmatrix}$$+7 \begin{bmatrix}1&0&2\\0&2&1\\2&0&3 \end{bmatrix}$$+2 \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 &0 \\ 0 & 0 & 1 \end{bmatrix}$

$=\begin{bmatrix}21&0&34\\12&8&23\\34&0&55 \end{bmatrix}$ $- \begin{bmatrix}30&0&48\\12&24&30\\48&0&78 \end{bmatrix}$ $+ \begin{bmatrix}7&0&14\\0&14&7\\14&0&21 \end{bmatrix}$ $+ \begin{bmatrix} 2 & 0 & 0\\ 0 & 2 &0 \\ 0 & 0 & 2 \end{bmatrix}$

$=\begin{bmatrix}21-30+7+2&0-0+0+0&34-48+14+0\\12-12+0+0&8-24+14+2&23-30+7+0\\34-48+14+0&0-0+0+0&55-78+21+2 \end{bmatrix}$

$=\begin{bmatrix}30-30&0&48-48\\12-12&24-24&30-30\\48-48&0&78-78 \end{bmatrix}$

$= \begin{bmatrix} 0 & 0 & 0\\ 0 & 0 &0 \\ 0 & 0 & 0 \end{bmatrix}=0$

Hence, L.H.S = R.H.S

i.e.$A^3 - 6A^2 + 7A + 2I = 0$.

Question 17. If $A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$ and $I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$, find k so that $A^{2} = kA - 2I$.

Answer:

$A = \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$

$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$

$A \times A= \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$$\times \begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$

$A^{2} = \begin{bmatrix}9-8 &-6+4\\12-8&-8+4 \end{bmatrix}$

$A^{2} = \begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}$

$A^{2} = kA - 2I$

$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$2 \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$

$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}=$$k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix} -$$\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$

$\begin{bmatrix}1 &-2\\4&-4 \end{bmatrix}+$ $\begin{bmatrix}2 &0\\0&2 \end{bmatrix}$ $=k\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$

$\begin{bmatrix}1+2 &-2+0\\4+0&-4+2 \end{bmatrix}$$=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$

$\begin{bmatrix}3 &-2\\4&-2 \end{bmatrix}$ $=\begin{bmatrix}3k&-2k\\4k&-2k \end{bmatrix}$

We have,$3=3k$

$k=\frac{3}{3}=1$

Hence, the value of k is 1.

Question 18. If $A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$ and I is the identity matrix of order 2, show that$I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

Answer:

$A = \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$

$I = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$

To prove : $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

L.H.S : $I+A$

$I+A = \begin{bmatrix}1 &0\\0&1 \end{bmatrix}$$+ \begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix}$

$I+A = \begin{bmatrix} 1+0&0-\tan\frac{\alpha}{2}\\0+\tan\frac{\alpha}{2}&1+ 0\end{bmatrix}$

$I+A = \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$

R.H.S : $(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$= (\begin{bmatrix}1 &0\\0&1 \end{bmatrix}-$ $\begin{bmatrix} 0&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}& 0\end{bmatrix})$$\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$ $=\begin{bmatrix} 1-0&0-(-\tan\frac{\alpha}{2})\\0-\tan\frac{\alpha}{2}&1- 0\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$(I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$$=\begin{bmatrix} 1&\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2}&1\end{bmatrix}$ $\times \begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$

$=\begin{bmatrix} \cos\alpha + \sin \alpha\tan\frac{\alpha}{2} &- \sin \alpha+ \cos \alpha \tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} \cos\alpha + \sin \alpha &\tan\frac{\alpha}{2} \sin\alpha + \cos \alpha \end{bmatrix}$

$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}\tan\frac{\alpha}{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ (2\cos^{2} \frac{\alpha }{2} -1)\tan\frac{\alpha}{2}\\-\tan\frac{\alpha}{2} (2\cos^{2} \frac{\alpha }{2} -1) + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} &\tan\frac{\alpha}{2} 2\sin\frac{\alpha } {2} \ cos \frac{\alpha }{2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$

$=\begin{bmatrix} 1-2\sin^{2}\frac{\alpha }{2} + 2\sin^{2}\frac{\alpha }{2} &- 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+ 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} -\tan\frac{\alpha}{2}\\-2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2}+\tan\frac{\alpha}{2} + 2\sin\frac{\alpha }{2} \ cos \frac{\alpha }{2} & 2\sin^{2}\frac{\alpha } {2} + 1-2\sin^{2}\frac{\alpha }{2} \end{bmatrix}$


$= \begin{bmatrix} 1&-\tan\frac{\alpha}{2}\\\tan\frac{\alpha}{2}&1\end{bmatrix}$

Hence, we can see L.H.S = R.H.S

i.e. $I + A = (I- A)\begin{bmatrix} \cos\alpha & -\sin\alpha\\ \sin\alpha & \cos\alpha \end{bmatrix}$.

Question 19(i). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 1800

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

$\begin{bmatrix}x &(30000-x) \end{bmatrix}$ $\begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix}$ $=1800$ (simple interest for 1 year $=\frac{pricipal\times rate}{100}$ )

$\frac{5}{100}x+\frac{7}{100}(30000-x) = 1800$

$5x+210000-7x=180000$

$210000-180000=7x-5x$

$30000=2x$

$x=15000$

Thus, to obtain an annual total interest of Rs. 1800, the trust fund should invest Rs 15000 in the first bond and Rs 15000 in the second bond.

Question 19(ii). A trust fund has Rs. 30,000 that must be invested in two different types of bonds. The first bond pays 5% interest per year, and the second bond pays 7% interest per year. Using matrix multiplication, determine how to divide Rs 30,000 among the two types of bonds. If the trust fund must obtain an annual total interest of:

Rs. 2000

Answer:

Let Rs. x be invested in the first bond.

Money invested in second bond = Rs (3000-x)

The first bond pays 5% interest per year and the second bond pays 7% interest per year.

To obtain an annual total interest of Rs. 1800, we have

$\begin{bmatrix} x & (30000 - x) \end{bmatrix} \begin{bmatrix} \frac{5}{100} \\ \frac{7}{100} \end{bmatrix} = 2000$

(Simple interest for 1 year = $\frac{\text{Principal} \times \text{Rate}}{100}$)

$\frac{5}{100}x + \frac{7}{100}(30000 - x) = 2000$

$\frac{5x + 210000 - 7x}{100} = 2000$

$\frac{210000 - 2x}{100} = 2000$

$210000 - 2x = 200000$

$210000 - 200000 = 2x$

$10000 = 2x$

$x = 5000$

Thus, to obtain an annual total interest of Rs. 2000, the trust fund should invest Rs 5000 in the first bond and Rs 25000 in the second bond.

Question 20. The bookshop of a particular school has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books. Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively. Find the total amount the bookshop will receive from selling all the books using matrix algebra.

Answer:

The bookshop has 10 dozen chemistry books, 8 dozen physics books, 10 dozen economics books.

Their selling prices are Rs 80, Rs 60 and Rs 40 each respectively.

The total amount the bookshop will receive from selling all the books:

$12$$\begin{bmatrix}10 &8&10 \end{bmatrix}$ $\begin{bmatrix}80\\60\\40 \end{bmatrix}$

$=12(10\times 80+8\times 60+10\times 40)$

$= 12(800+480+ 400)$

$= 12(1680)$

$=20160$

The total amount the bookshop will receive from selling all the books is 20160.

Question 21 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k, respectively. Choose the correct answer in Exercises 21 and 22.

Q21. The restriction on n, k and p so that PY + WY will be defined are:
(A) $k = 3, p = n$

(B) k is arbitrary,$p = 2$

(C) p is arbitrary, $k = 3$

(D) $k = 2, p = 3$

Answer:

P and Y are of order \( p \times k \) and \( 3 \times k \) respectively.

Therefore, \( PY \) will be defined only if \( k = 3 \), i.e., the order of \( PY \) is \( p \times k \).

W and Y are of order \( n \times 3 \) and \( 3 \times k \) respectively.

Therefore, \( WY \) is defined because the number of columns of \( W \) is equal to the number of rows of \( Y \), which is 3, i.e., the order of \( WY \) is \( n \times k \).

Matrices \( PY \) and \( WY \) can only be added if they both have the same order, i.e., \( p \times k = n \times k \Rightarrow p = n \).

Therefore, \( k = 3 \), \( p = n \) are restrictions on \( n \), \( k \), and \( p \) so that \( PY + WY \) will be defined.

Option (A) is correct.

Question 22 Assume X, Y, Z, W and P are matrices of order 2 × n, 3 × k, 2 × p, n × 3 and p × k,
respectively. Choose the correct answer in Exercises 21 and 22. If n = p, then the order of the matrix $7X - 5Z$ is:
(A) p × 2
(B) 2 × n
(C) n × 3
(D) p × n

Answer:

$X$ has order $2 \times n$.

Therefore, $7X$ also has order $2 \times n$.

$Z$ has order $2 \times p$.

Therefore, $5Z$ also has order $2 \times p$.

Matrices $7X$ and $5Z$ can only be subtracted if they both have the same order, i.e., $2 \times n = 2 \times p$, and it is given that $p = n$.

We can say that both matrices have order $2 \times n$.

Therefore, the order of $7X - 5Z$ is $2 \times n$.

Option (B) is correct.

Also Read,

Topics covered in Chapter 3: Matrices: Exercise 3.2

  • Introduction
  • Topics covered
  • Addition of matrices: If $\mathrm{A}=\left[a_{i j}\right]$ and $\mathrm{B}=\left[b_{i j}\right]$ are two matrices of the same order, say $m \times n$. Then, the sum of the two matrices A and B is defined as a matrix $\mathrm{C}=\left[c_{i j}\right]_{m \times n}$, where $c_{i j}=a_{i j}+b_{i j}$, for all possible values of $i$ and $j$.
  • Multiplication of a matrix by a scalar: Multiplication of a matrix by a scalar as follows: if $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ is a matrix and $k$ is a scalar, then $k \mathrm{~A}$ is another matrix which is obtained by multiplying each element of A by the scalar $k$.
  • Difference of matrices: If $\mathrm{A}=\left[a_{i j}\right], \mathrm{B}=\left[b_{i j}\right]$ are two matrices of the same order, say $m \times n$, then difference $\mathrm{A}-\mathrm{B}$ is defined as a matrix $\mathrm{D}=\left[d_{i j}\right]$, where $d_{i j}=a_{i j}-b_{i j}$, for all value of $i$ and $j$. In other words, $\mathrm{D}=\mathrm{A}-\mathrm{B}=\mathrm{A}+(-1) \mathrm{B}$, that is, the sum of the matrix A and the matrix - B.
  • Properties of matrix addition
Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

  1. Commutative Law: If $\mathrm{A}=\left[a_{i j}\right], \mathrm{B}=\left[b_{i j}\right]$ are matrices of the same order, say $m \times n$, then $\mathrm{A}+\mathrm{B}=\mathrm{B}+\mathrm{A}$.
  2. Associative Law: For any three matrices $\mathrm{A}=\left[a_{i j}\right], \mathrm{B}=\left[b_{i j}\right], \mathrm{C}=\left[c_{i j}\right]$ of the same order, say $m \times n,(A+B)+C=A+(B+C)$.
  3. Existence of additive identity: Let $\mathrm{A}=\left[a_{i j}\right]$ be an $m \times n$ matrix and O be an $m \times n$ zero matrix, then $\mathrm{A}+\mathrm{O}=\mathrm{O}+\mathrm{A}=\mathrm{A}$. In other words, O is the additive identity for matrix addition.
  4. The existence of additive inverse: Let $\mathrm{A}=\left[a_{i j}\right]_{m \times n}$ be any matrix, then we have another matrix as $-\mathrm{A}=\left[-a_{i j}\right]_{m \times n}$ such that $\mathrm{A}+(-\mathrm{A}) = (-\mathrm{A})+\mathrm{A} =\mathrm{O}$. So, - A is the additive inverse of A or the negative of A.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
  • Properties of scalar multiplication of a matrix
  1. $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$
  2. $k(\mathrm{~A}+\mathrm{B})=k \mathrm{~A}+k \mathrm{~B}$
  3. $(k+l) \mathrm{A}=k \mathrm{~A}+l \mathrm{~A}$
  • Multiplication of matrices: If $\mathrm{A}=\left[a_{i j}\right]_{m \times n}, \mathrm{~B}=\left[b_{j k}\right]_{n \times p}$, then the $i^{\text {th }}$ row of A is $\left[a_{i 1} a_{i 2} \ldots a_{i n}\right]$ and the $k^{\text {th }}$ column of B is $\left[\begin{array}{c}b_{1 k} \\ b_{2 k} \\ \vdots \\ b_{n k}\end{array}\right]$, then $c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+a_{i 3} b_{3 k}+\ldots+a_{i n} b_{n k}=\sum_{j=1}^n a_{i j} b_{j k}$.

The matrix $\mathrm{C}=\left[c_{ik}\right]_{m \ m\times p}$ is the product of A and B.

  • Properties of Multiplication
  1. The associative law: For any three matrices A, B, and C. We have $(A B) C=A(B C)$ whenever both sides of the equality are defined.
  2. The distributive law: For three matrices $\mathrm{A}, \mathrm{B}$ and C.

(i) $\mathrm{A}(\mathrm{B}+\mathrm{C})=\mathrm{AB}+\mathrm{AC}$

(ii) $(\mathrm{A}+\mathrm{B}) \mathrm{C}=\mathrm{AC}+\mathrm{BC}$, whenever both sides of equality are defined.

  1. The existence of multiplicative identity: For every square matrix $A$, there exists an identity matrix of the same order such that $\mathrm{IA}=\mathrm{AI}=\mathrm{A}$.

Also, read,

NCERT Solutions Subject Wise

Here are links to NCERT textbook solutions for other subjects. Students can explore and assess these organised solutions to gain a deeper understanding.

Subject-wise NCERT Exemplar solutions

Students can check these NCERT exemplar links for additional practice.

Frequently Asked Questions (FAQs)

Q: What is the use of matrix ?
A:

Matrix is an important tool useful in science, statistics, research, representation of data, mechanics, optics, electromagnetism, quantum mechanics, and quantum electrodynamics, etc.

Q: What is zero matrix ?
A:

A matrix all of whose entries are zero is called a zero matrix.

Q: What is equal matrix ?
A:

Two matrices are equal matrices if the order and correspondence entities of both matrices are the same.

Q: Does scalar matrix is square matrix ?
A:

Yes, the scalar matrix is a square matrix.

Q: How do you identify a scalar matrix ?
A:

A scalar matrix is a square matrix whose all diagonal elements are equal and all other elements are zero.

Q: Can I get free NCERT solutions for Class 12 maths?
A:

Click here to get NCERT solutions for class 12 maths. Links for solutions to each chapters of NCERT syllabus Class 12 Mathematics is available here. All the exercise questions of NCERT textbook are covered. For more questions solve use NCERT exemplar.

Articles
|
Next
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.

Hello Aspirant,

Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.

Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.

From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .

If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.

The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.