Careers360 Logo
NCERT Solutions for Miscellaneous Exercise Chapter 10 Class 12 - Vector Algebra

NCERT Solutions for Miscellaneous Exercise Chapter 10 Class 12 - Vector Algebra

Edited By Komal Miglani | Updated on May 07, 2025 05:08 PM IST | #CBSE Class 12th

Curious to know how well you have learned Vector Algebra? The NCERT Solutions for Class 12 maths chapter 10 miscellaneous exercise are ideal to test your knowledge with mixed and challenging questions. These 19 questions cover all that you have learned till now in this chapter, and help you revise and increase your confidence level before exams. These solutions are prepared by Careers360 experts, these solutions are according to the latest CBSE syllabus.

Attempt to solve the Class 12 Maths Chapter 10 Miscellaneous Exercise of NCERT yourself to gauge how well you have understood the concepts. These questions are a combination of all important topics and assist you in analyzing what needs to be revised. The NCERT solution for Class 12 Maths are aimed at building your foundation through step-by-step solutions.

This Story also Contains
  1. NCERT Solutions Class 12 Maths Chapter 10: Miscellaneous Exercise
  2. NCERT Solutions Subject Wise
  3. Subject Wise NCERT Exemplar Solutions

NCERT Solutions Class 12 Maths Chapter 10: Miscellaneous Exercise

Question 1: Write down a unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis.

Answer:

As we know

a unit vector in XY-Plane making an angle θ with x-axis :

r=cosθi^+sinθj^

Hence for θ=300

r=cos(300)i^+sin(300)j^

r=32i^+12j^

Answer- the unit vector in XY-plane, making an angle of 30 with the positive direction of x-axis is

r=32i^+12j^

Question 2: Find the scalar components and magnitude of the vector joining the points
P(x1,y1,z1)andQ(x2,y2,z2).

Answer:

Given in the question

P(x1,y1,z1)andQ(x2,y2,z2).

And we need to finrd the scalar components and magnitude of the vector joining the points P and Q

PQ=(x2x1)i^+(y2y1)j^+(z2z1)k^

Magnitiude of vector PQ

|PQ|=(x2x1)2+(y2y1)2+(z2z1)2

Scalar components are

(x2x1),(y2y1),(z2z1)

Question 3: A girl walks 4 km towards west, then she walks 3 km in a direction 30 east of north and stops. Determine the girl’s displacement from her initial point of departure.

Answer:

As the girl walks 4km towards west

Position vector = 4i^

Now as she moves 3km in direction 30 degree east of north.

4i^+3sin300i^+3cos300j^

4i^+32i^+332j^

52i^+332j^

hence final position vector is;

52i^+332j^

Question 4: If a=b+c , then is it true that |a|=|b|+|c| ? Justify your answer.

Answer:

No, if a=b+c then we can not conclude that |a|=|b|+|c| .

the condition a=b+c satisfies in the triangle.

also, in a triangle, |a|<|b|+|c|

Since, the condition |a|=|b|+|c| is contradicting with the triangle inequality, if a=b+c then we can not conclude that |a|=|b|+|c|

Question 5: Find the value of x for which x(i^+j^+k^) is a unit vector.

Answer:

Given in the question,

a unit vector, u=x(i^+j^+k^)

We need to find the value of x

|u|=1

|x(i^+j^+k^)|=1

x12+12+12=1

x3=1

x=13

The value of x is 13

Question 6: Find a vector of magnitude 5 units, and parallel to the resultant of the vectors a=2i^+3j^k^andb=i^2j^+k^

Answer:

Given two vectors

a=2i^+3j^k^andb=i^2j^+k^

Resultant of a and b :

R=a+b =2i^+3j^k^+i^2j^+k^=3i^+j^

Now, a unit vector in the direction of R

u=3i^+j^32+12=310i^+110j^

Now, a unit vector of magnitude in direction of R

v=5u=5310i^+5110j^=1510i^+510j^

Hence the required vector is 1510i^+510j^

Question 7: If a=i^+j^+k^,b=2i^j^+3k^andc=i^2j^+k^ , find a unit vector parallel to the vector 2ab+3c .

Answer:

Given in the question,

a=i^+j^+k^,b=2i^j^+3k^andc=i^2j^+k^

Now,

let vector V=2ab+3c

V=2(i^+j^+k^)(2i^j^+3k^)+3(i^2j^+k^)

V=3i^3j^+2k^

Now, a unit vector in direction of V

u=3i^3j^+2k^32+(3)2+22=322i^322j^+222k^

Now,

A unit vector parallel to V

u=322i^322j^+222k^

OR

u=322i^+322j^222k^

Question 8: Show that the points A(1, – 2, – 8), B(5, 0, –2) and C(11, 3, 7) are collinear, and find the ratio in which B divides AC.

Answer:

Given in the question,

points A(1, – 2, – 8), B(5, 0, –2) and C(11, 3, 7)

AB=(51)i^+(0(2))j^+(2(8))k^=4i^+2j^+6k^

BC=(115)i^+(30)j^+(7(2))k^=6i^+3j^+9k^

CA=(111)i^+(3(2))j^+(7(8))k^=10i^+5j^+15k^

now let's calculate the magnitude of the vectors

|AB|=42+22+62=56=214

|BC|=62+32+92=126=314

|CA|=102+52+152=350=514

As we see that AB = BC + AC, we conclude that three points are colinear.

we can also see from here,

Point B divides AC in the ratio 2 : 3.

Question 9: Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are (2a+b)and(a3b) externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.

Answer:

Given, two vectors P=(2a+b)andQ=(a3b)

the point R which divides line segment PQ in ratio 1:2 is given by

=2(2a+b)(a3b)21=4a+2ba+3b=3a+5b

Hence position vector of R is 3a+5b .

Now, Position vector of the midpoint of RQ

=(3a+5b+a3b)2=2a+b

which is the position vector of Point P . Hence, P is the mid-point of RQ

Question 10: The two adjacent sides of a parallelogram are 2i^4j^+5k^andi^2j^3k^ . Find the unit vector parallel to its diagonal. Also, find its area.

Answer:

Given, two adjacent sides of the parallelogram

2i^4j^+5k^andi^2j^3k^

The diagonal will be the resultant of these two vectors. so

resultant R:

R=2i^4j^+5k^+i^2j^3k^=3i^6j^+2k^

Now unit vector in direction of R

u=3i^6j^+2k^32+(6)2+22=3i^6j^+2k^49=3i^6j^+2k^7

Hence unit vector along the diagonal of the parallelogram

u=37i^67j^+27k^

Now,

Area of parallelogram

A=(2i^4j^+5k^)×(i^2j^3k^)

A=|i^j^k^245123|=|i^(12+10)j^(65)+k^(4+4)|=|22i^+11j^|

A=222+112=115

Hence the area of the parallelogram is 115 .

Question 11: Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ are ±(13,13,13)

Answer:

Let a vector a is equally inclined to axis OX, OY and OZ.

let direction cosines of this vector be

cosα,cosαandcosα

Now

cos2α+cos2α+cos2α=1

cos2α=13

cosα=13

Hence direction cosines are:

(13,13,13)

Question 12: Let a=i^+4j^+2k^,b=3i^2j^+7k^andc=2i^j^+4k^ . Find a vector d which is perpendicular to both aandbandc.d=15

Answer:

Given,

a=i^+4j^+2k^,b=3i^2j^+7k^andc=2i^j^+4k^

Let d=d1i^+d2j^+d3k^

now, since it is given that d is perpendicular to a and b , we got the condition,

b.d=0 and a.d=0

(i^+4j^+2k^)(d1i^+d2j^+d3k^)=0
And
(3i^2j^+7k^)(d1i^+d2j^+d3k^)=0

d1+4d2+2d3=0 And 3d12d2+7d3=0

here we got 2 equation and 3 variable. one more equation will come from the condition:

c.d=15

(2i^j^+4k^)(d1i^+d2j^+d3k^)=15

2d1d2+4d3=15

so now we have three equations and three variables,

d1+4d2+2d3=0

3d12d2+7d3=0

2d1d2+4d3=15

On solving this three equation we get,

d1=1603,d2=53andd3=703 ,

Hence required vector :

d=1603i^53j^703k^

Question 13: The scalar product of the vector i^+j^+k^ with a unit vector along the sum of vectors 2i^+4j^5k^ and λi^+2j^+3k^ is equal to one. Find the value of λ.

Answer:

Let, the sum of vectors 2i^+4j^5k^ and λi^+2j^+3k^ be

a=(λ+2)i^+6j^2k^

unit vector along a

u=(λ+2)i^+6j^2k^(λ+2)2+62+(2)2=(λ+2)i^+6j^2k^λ2+4λ+44

Now, the scalar product of this with i^+j^+k^

u.(i^+j^+k^)=(λ+2)i^+6j^2k^λ2+4λ+44.(i^+j^+k^)

u.(i^+j^+k^)=(λ+2)+62λ2+4λ+44=1

(λ+2)+62λ2+4λ+44=1

(λ+6)λ2+4λ+44=1

λ=1

Question 14: If a,b,c are mutually perpendicular vectors of equal magnitudes, show that the vector a+b+c is equally inclined to a,bandc .

Answer:

Given

|a|=|b|=|c| and

a.b=b.c=c.a=0

Now, let vector a+b+c is inclined to a,bandc at θ1,θ2andθ3 respectively.

Now,

cosθ1=(a+b+c).a|a+b+c||a|=a.a+a.b+c.a|a+b+c||a|=a.a|a+b+c||a|=|a||a+b+c|

cosθ2=(a+b+c).b|a+b+c||b|=a.b+b.b+c.b|a+b+c||b|=b.b|a+b+c||b|=|b||a+b+c|

cosθ3=(a+b+c).c|a+b+c||c|=a.c+b.c+c.c|a+b+c||c|=c.c|a+b+c||c|=|c||a+b+c|

Now, Since, |a|=|b|=|c|

cosθ1=cosθ2=cosθ3

θ1=θ2=θ3

Hence vector a+b+c is equally inclined to a,bandc .

Question 15: Prove that (a+b).(a+b)=|a2|+|b|2 , if and only if a,b are perpendicular, given a0,b0

Answer:

Given in the question,

a,bare perpendicular and we need to prove that(a+b)(a+b)=|a2|+|b|2LHS=(a+b)(a+b)=aa+ab+ba+bb=aa+2ab+bb=|a|2+2ab+|b|2ifa,bare perpendicular,ab=0(a+b)(a+b)=|a|2+2ab+|b|2=|a|2+|b|2

= RHS

LHS ie equal to RHS

Hence proved.

Question 16: Choose the correct answer If θ is the angle between two vectors aandb , then ab0 only when
A)0<θ<π2B)0θπ2C)0<θ<πD)0θπ

Answer:

Given in the question

θ is the angle between two vectors aandb

ab0

|a||b|cosθ0

this will satisfy when

cosθ0

0θπ2

Hence option B is the correct answer.

A)θ=π4B)θ=π3C)θ=π2D)θ=2π3

Answer:

Gicen in the question

aandb be two unit vectors and θ is the angle between them

|a|=1,and|b|=1

also

|a+b|=1

|a+b|2=1

|a|2+|b|2+2a.b=1

1+1+2a.b=1

a.b=12

|a||b|cosθ=12

cosθ=12

θ=2π3

Then a+b is a unit vector if θ=2π3

Hence option D is correct.

Question 18: The value of i^(j^×k^)+j^(i^×k^)+k^(i^×j^) is

(A) 0

(B) –1

(C) 1

(D) 3

Answer:

To find the value of i^(j^×k^)+j^(i^×k^)+k^(i^×j^)

i^(j^×k^)+j^(i^×k^)+k^(i^×j^)=i^.i^+j^(j^)+k^.k^=11+1=1

Hence option C is correct.

Question 19: Choose the correct. If θ is the angle between any two vectors aandb , then |ab|=|a×b| when θ
is equal to

(A) 0
(B) π/4
( C )π/2
( D ) π

Answer:

Given in the question

θ is the angle between any two vectors aandb and |ab|=|a×b|

To find the value of θ

Hence, option D is correct.

Also Read

Also see-

NEET/JEE Coaching Scholarship

Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

NCERT Solutions Subject Wise

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Subject Wise NCERT Exemplar Solutions

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

Frequently Asked Questions (FAQs)

1. Why should I study Class 12 Maths chapter Vectors?

Vectors is an important chapter of Class 12 Maths NCERT syllabus. The concepts studied in this chapter are used not only on mathematics but also to solve problems in Class 11 and 12 physics problems also. Also Vectors is an important chapter for CBSE Board exam. Solving the NCERT questions and referring to the NCERT exemplar will be beneficial for board exam preparation.

2. What are the topics coverd under Vectors Class 12 Maths NCERT syllabus?

The topics covered are vectors basic concepts, algebra of vectors, direction cosine and ratios, dot product and cross product of vectors.

Articles

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Changing from the CBSE board to the Odisha CHSE in Class 12 is generally difficult and often not ideal due to differences in syllabi and examination structures. Most boards, including Odisha CHSE , do not recommend switching in the final year of schooling. It is crucial to consult both CBSE and Odisha CHSE authorities for specific policies, but making such a change earlier is advisable to prevent academic complications.

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top