NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3 - Vector Algebra

NCERT Solutions for Class 12 Maths Chapter 10 Exercise 10.3 - Vector Algebra

Komal MiglaniUpdated on 07 May 2025, 05:30 PM IST

Ever tried to push a door and seen how it opens easily when you push in the right direction? That's dot product in real life. In Class 12 Maths Chapter 10 Exercise 10.3, you will find out how the angle between the vectors determines the outcome a useful concept in physics, maths, and even basic motion.

Class 12 Maths chapter 10 Exercise 10.3 solutions of NCERT are simplified and easy to understand, with step-by-step explanations for every question. Practising these will help you grasp the dot product more clearly and give you confidence during exams. You can find all NCERT solution for Class 12 chapter 10 exercises combined from the link below for easy revision.

This Story also Contains

  1. Class 12 Maths Chapter 10 Exercise 10.3 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.3
  3. Topics Covered in Chapter 10 Vector Algebra: Exercise 10.3
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

Class 12 Maths Chapter 10 Exercise 10.3 Solutions: Download PDF

Get simple and clear NCERT solutions for Class 12 Maths Chapter 10 Exercise 10.3 to understand dot product of vectors in an easy way.

Download PDF

NCERT Solutions Class 12 Maths Chapter 10: Exercise 10.3

Question 1: Find the angle between two vectors $\vec a \: \:and \: \: \vec b$ with magnitudes $\sqrt 3 \: \:and \: \: 2$ , respectively having . $\vec a . \vec b = \sqrt 6$

Answer:

Given

$\left | \vec a \right |=\sqrt{3}$

$\left | \vec b \right |=2$

$\vec a . \vec b = \sqrt 6$

As we know

$\vec a . \vec b = \left | \vec a \right |\left | \vec b \right |cos\theta$

where $\theta$ is the angle between two vectors

So,

$cos\theta =\frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}=\frac{\sqrt{6}}{\sqrt{3}*2}=\frac{1}{\sqrt{2}}$

$\theta=\frac{\pi}{4}$

Hence the angle between the vectors is $\frac{\pi}{4}$ .

Question 2: Find the angle between the vectors $\hat i - 2 \hat j + 3 \hat k \: \:and \: \: 3 \hat i - 2 \hat j + \hat k$

Answer:

Given two vectors

$\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$

Now As we know,

The angle between two vectors $\vec a$ and $\vec b$ is given by

$\theta=cos^{-1}\left ( \frac{\vec a.\vec b}{\left | \vec a \right |\left | \vec b \right |}\right )$

Hence the angle between $\vec a=\hat i - 2 \hat j + 3 \hat k \: \:and \: \: \vec b=3 \hat i - 2 \hat j + \hat k$

$\theta=cos^{-1}\left ( \frac{(\hat i-2\hat j+3\hat k).(3\hat i-2\hat j+\hat k)}{\left | \hat i-2\hat j+3\hat k \right |\left |3\hat i-2\hat j+\hat k \right |}\right )$

$\theta=cos^{-1}\left ( \frac{3+4+3}{\sqrt{1^2+(-2)^2+3^3}\sqrt{3^2+(-2)^2+1^2}} \right )$

$\theta=cos^{-1}\frac{10}{14}$

$\theta=cos^{-1}\frac{5}{7}$

Question 3: Find the projection of the vector $\hat i - \hat j$ on the vector $\hat i + \hat j$

Answer:

Let

$\vec a=\hat i - \hat j$

$\vec b=\hat i + \hat j$

Projection of vector $\vec a$ on $\vec b$

$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i-\hat j)(\hat i+\hat j)}{\left |\hat i+\hat j \right |}=\frac{1-1}{\sqrt{2}}=0$

Hence, Projection of vector $\vec a$ on $\vec b$ is 0.


Question 4: Find the projection of the vector $\hat i + 3 \hat j + 7 \hat k$ on the vector $7\hat i - \hat j + 8 \hat k$

Answer:

Let

$\vec a =\hat i + 3 \hat j + 7 \hat k$

$\vec b=7\hat i - \hat j + 8 \hat k$

The projection of $\vec a$ on $\vec b$ is

$\frac{\vec a.\vec b}{\left | \vec b \right |}=\frac{(\hat i+3\hat j+7\hat k)(7\hat i-\hat j+8\hat k)}{\left | 7\hat i-\hat j+8\hat k \right |}=\frac{7-3+56}{\sqrt{7^2+(-1)^2+8^2}}=\frac{60}{\sqrt{114}}$

Hence, projection of vector $\vec a$ on $\vec b$ is

$\frac{60}{\sqrt{114}}$

Question 5: Show that each of the given three vectors is a unit vector: $\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ), \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$ Also, show that they are mutually perpendicular to each other.

Answer:

Given

$\\\vec a=\frac{1}{7}( 2 \hat i + 3 \hat j + 6 \hat k ), \\\ \vec b =\frac{1}{7}( 3 \hat i- 6 \hat j + 2 \hat k ),\\\vec c = \frac{1}{7}( 6\hat i + 2 \hat j -3\hat k )$

Now magnitude of $\vec a,\vec b \:and\: \vec c$

$\left | \vec a \right |=\frac{1}{7} \sqrt{2^2+3^2+6^2}=\frac{\sqrt{49}}{7}=1$

$\left | \vec b \right |=\frac{1}{7} \sqrt{3^2+(-6)^2+2^2}=\frac{\sqrt{49}}{7}=1$

$\left | \vec c \right |=\frac{1}{7} \sqrt{6^2+2^2+(-3)^2}=\frac{\sqrt{49}}{7}=1$

Hence, they all are unit vectors.

Now,

$\vec a.\vec b=\frac{1}{7}(2\hat i+3\hat j+6\hat k)\frac{1}{7}(3\hat i-6\hat j+2\hat k)=\frac{1}{49}(6-18+12)=0$

$\vec b.\vec c=\frac{1}{7}(3\hat i-6\hat j+2\hat k)\frac{1}{7}(6\hat i+2\hat j-3\hat k)=\frac{1}{49}(18-12-6)=0$

$\vec c.\vec a=\frac{1}{7}(6\hat i+2\hat j-3\hat k)\frac{1}{7}(2\hat i+3\hat j-6\hat k)=\frac{1}{49}(12+6-18)=0$

Hence all three are mutually perpendicular to each other.

Question 6: Find $|\vec a| \: \: and\: \:| \vec b |$ , if $( \vec a + \vec b ). ( \vec a - \vec b )=8 \: \:and \: \: |\vec a |\: \:= 8 \: \:|\vec b |$ .

Answer:

Given in the question

$( \vec a + \vec b ). ( \vec a - \vec b )=8$

$\left | \vec a \right |^2-\left | \vec b \right |^2=8$

Since $|\vec a |\: \:= 8 \: \:|\vec b |$

$\left | \vec {8b} \right |^2-\left | \vec b \right |^2=8$

$\left | \vec {63b} \right |^2=8$

$\left | \vec {b} \right |^2=\frac{8}{63}$

$\left | \vec {b} \right |=\sqrt{\frac{8}{63}}$

So, answer of the question is

$\left | \vec {a} \right |=8\left | \vec {b} \right |=8\sqrt{\frac{8}{63}}$

Question 7: Evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$ .

Answer:

To evaluate the product $( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )$

$( 3\vec a - 5 \vec b ). ( 2 \vec a + 7 \vec b )=6\vec a.\vec a+21\vec a.\vec b-10\vec b.\vec a-35\vec b.\vec b$

$=6\vec a.^2+11\vec a.\vec b-35\vec b^2$

$=6\left | \vec a \right |^2+11\vec a.\vec b-35\left | \vec b \right |^2$

Question 8: Find the magnitude of two vectors $\vec a \: \: and \: \: \vec b$ , having the same magnitude and such that the angle between them is $60 ^\circ$ and their scalar product is 1/2

Answer:

Given two vectors $\vec a \: \: and \: \: \vec b$

$\left | \vec a \right |=\left | \vec b\right |$

$\vec a.\vec b=\frac{1}{2}$

Now Angle between $\vec a \: \: and \: \: \vec b$

$\theta=60^0$

Now As we know that

$\vec a.\vec b=\left | \vec a \right |\left | \vec b \right |cos\theta$

$\frac{1}{2}=\left | \vec a \right |\left | \vec a \right |cos60^0$

$\left | a \right |^2=1$

Hence, the magnitude of two vectors $\vec a \: \: and \: \: \vec b$

$\left | a \right |=\left | b \right |=1$

Question 9: Find $|\vec x |$ , if for a unit vector $\vec a , ( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$

Answer:

Given in the question that

$( \vec x -\vec a ) . ( \vec x + \vec a ) = 12$

And we need to find $\left | \vec x \right |$

$\left | \vec x \right |^2-\left | \vec a \right |^2 = 12$

$\left | \vec x \right |^2-1 = 12$

$\left | \vec x \right |^2 = 13$

$\left | \vec x \right | = \sqrt{13}$

So the value of $\left | \vec x \right |$ is $\sqrt{13}$

Question 10: If $\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$ are such that $\vec a + \lambda \vec b$ is perpendicular to $\vec c$ , then find the value of $\lambda$

Answer:

Given in the question is

$\vec a = 2 \hat i + 2 \hat j + 3 \hat k , \vec b = - \hat i + 2 \hat j + \hat k \: \: and \: \: \vec c = 3 \hat i + \hat j$

and $\vec a + \lambda \vec b$ is perpendicular to $\vec c$

and we need to find the value of $\lambda$ ,

so the value of $\vec a + \lambda \vec b$ -

$\vec a + \lambda \vec b=2\hat i +2\hat j +3\hat k+\lambda (-\hat i+2\hat j+\hat k)$

$\vec a + \lambda \vec b=(2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k$

As $\vec a + \lambda \vec b$ is perpendicular to $\vec c$

$(\vec a + \lambda \vec b).\vec c=0$

$((2-\lambda)\hat i +(2+2\lambda)\hat j +(3+\lambda)\hat k)(3\hat i+\hat j)=0$

$3(2-\lambda)+2+2\lambda=0$

$6-3\lambda+2+2\lambda=0$

$\lambda=8$

the value of $\lambda=8$ ,

Question 11: Show that $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ , for any two nonzero vectors $\vec a \: \: \: and \: \: \vec b$ .

Answer:

Given in the question that -

$\vec a \: \: \: and \: \: \vec b$ are two non-zero vectors

According to the question

$\left ( |\vec a | \vec b + |\vec b | \vec a\right )\left (|\vec a | \vec b - |\vec b | \vec a \right )$

$=|\vec a |^2 |\vec b|^2 - |\vec b |^2 |\vec a|^2+|\vec b||\vec a|\vec a.\vec b-|\vec a||\vec b|\vec b.\vec a=0$

Hence $|\vec a | \vec b + |\vec b | \vec a$ is perpendicular to $|\vec a | \vec b - |\vec b | \vec a$ .

Question 12: If $\vec a . \vec a = 0 \: \: and \: \: \vec a . \vec b = 0$ , then what can be concluded about the vector $\vec b$ ?

Answer:

Given in the question

$\\\vec a . \vec a = 0 \\|\vec a|^2=0$

$\\|\vec a|=0$

Therefore $\vec a$ is a zero vector. Hence any vector $\vec b$ will satisfy $\vec a . \vec b = 0$

Question 13: If $\vec a , \vec b , \vec c$ are unit vectors such that $\vec a + \vec b + \vec c = \vec 0$ , find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$

Answer:

Given in the question

$\vec a , \vec b , \vec c$ are unit vectors $\Rightarrow |\vec a|=|\vec b|=|\vec c|=1$

and $\vec a + \vec b + \vec c = \vec 0$

and we need to find the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$

$(\vec a + \vec b + \vec c)^2 = \vec 0$

$\vec a^2 + \vec b^2 + \vec c ^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$|\vec a|^2 + |\vec b|^2 + |\vec c |^2+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$1+1+1+2(\vec a . \vec b + \vec b. \vec c + \vec c . \vec a)=0$

$\vec a . \vec b + \vec b. \vec c + \vec c . \vec a=\frac{-3}{2}$

Answer- the value of $\vec a . \vec b + \vec b. \vec c + \vec c . \vec a$ is $\frac{-3}{2}$

Question 14: If either vector $\vec a = 0 \: \: or \: \: \vec b = 0 \: \: then \: \: \vec a . \vec b = 0$ . But the converse need not be true. Justify your answer with an example

Answer:

Let

$\vec a=\hat i-2\hat j +3\hat k$

$\vec b=5\hat i+4\hat j +1\hat k$

we see that

$\vec a.\vec b=(\hat i-2\hat j +3\hat k)(5\hat i+4\hat j +1\hat k)=5-8+3=0$

we now observe that

$|\vec a|=\sqrt{1^2+(-2)^2+3^2}=\sqrt{14}$

$|\vec b|=\sqrt{5^2+4^2+1^2}=\sqrt{42}$

Hence here converse of the given statement is not true.

Question 15: If the vertices A, B, C of a triangle ABC are (1, 2, 3), (–1, 0, 0), (0, 1, 2), respectively, then find $\angle ABC , [\angle ABC$ is the angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC} ]$ .

Answer:

Given points,

A=(1, 2, 3),

B=(–1, 0, 0),

C=(0, 1, 2),

As need to find Angle between $\overline{BA}\: \: and\: \: \overline{BC} ]$

$\vec {BA}=(1-(-1))\hat i+(2-0)\hat j+(3-0)\hat k=2\hat i+2\hat j+3\hat k$

$\vec {BC}=(0-(-1))\hat i+(1-0)\hat j+(2-0)\hat k=\hat i+\hat j+2\hat k$

Hence angle between them ;

$\theta=cos^{-1}(\frac{\vec {BA}.\vec {BC}}{\left | \vec {BA} \right |\left | \vec {BC} \right |})$

$\theta=cos^{-1}\frac{2+2+6}{\sqrt{17}\sqrt{6}}$

$\theta=cos^{-1}\frac{10}{\sqrt{102}}$

Answer - Angle between the vectors $\overline{BA}\: \: and\: \: \overline{BC}$ is $\theta=cos^{-1}\frac{10}{\sqrt{102}}$

Question 16: Show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear.

Answer:

Given in the question

A=(1, 2, 7), B=(2, 6, 3) and C(3, 10, –1)

To show that the points A(1, 2, 7), B(2, 6, 3) and C(3, 10, –1) are collinear

$\vec {AB}=(2-1)\hat i+(6-2)\hat j+(3-7)\hat k$

$\vec {AB}=\hat i+4\hat j-4\hat k$

$\vec {BC}=(3-2)\hat i+(10-6)\hat j+(-1-3)\hat k$

$\vec {BC}=\hat i+4\hat j-4\hat k$

$\vec {AC}=(3-1)\hat i+(10-2)\hat j+(-1-7)\hat k$

$\vec {AC}=2\hat i+8\hat j-8\hat k$

$|\vec {AB}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$

$|\vec {BC}|=\sqrt{1^2+4^2+(-4)^2}=\sqrt{33}$

$|\vec {AC}|=\sqrt{2^2+8^2+(-8)^2}=2\sqrt{33}$

As we see that

$|\vec {AC}|=|\vec {AB}|+|\vec {BC}|$

Hence point A, B , and C are colinear.

Question 17: Show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle.

Answer:

Given the position vector of A, B , and C are

$2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$

To show that the vectors $2 \hat i - \hat j + \hat k , \hat i - 3 \hat j - 5 \hat k \: \: and \: \: 3 \hat i - 4 \hat j - 4 \hat k$ form the vertices of a right angled triangle

$\vec {AB}=(1-2)\hat i + (-3-(-1))\hat j+(-5-1)\hat k=-1\hat i -2\hat j-6\hat k$

$\vec {BC}=(3-1)\hat i + (-4-(-3))\hat j+(-4-(-5))\hat k=-2\hat i -\hat j+\hat k$

$\vec {AC}=(3-2)\hat i + (-4-(-1))\hat j+(-4-(1))\hat k=\hat i -3\hat j-5\hat k$

$|\vec {AB}|=\sqrt{(-1)^2+(-2)^2+(-6)^2}=\sqrt{41}$

$|\vec {BC}|=\sqrt{(-2)^2+(-1)^2+(1)^2}=\sqrt{6}$

$|\vec {AC}|=\sqrt{(1)^2+(-3)^2+(-5)^2}=\sqrt{35}$

Here we see that

$|\vec {AC}|^2+|\vec {BC}|^2=|\vec {AB}|^2$

Hence A,B, and C are the vertices of a right angle triangle.

Question 18: If $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar, then $\lambda \vec a$ is unit vector if

$\\A ) \lambda = 1 \\\\ B ) \lambda = -1 \\\\ C ) a = |\lambda | \\\\ D ) a = 1 / |\lambda |$

Answer:

Given $\vec a$ is a nonzero vector of magnitude ‘a’ and $\lambda$ a nonzero scalar

$\lambda \vec a$ is a unit vector when

$|\lambda \vec a|=1$

$|\lambda|| \vec a|=1$

$| \vec a|=\frac{1}{|\lambda|}$

Hence the correct option is D.

Topics Covered in Chapter 10 Vector Algebra: Exercise 10.3

Product of Two Vectors

  • Dot Product (Scalar Product): When two vectors are multiplied and the result is a scalar (just a number).
    Example: $\mathbf{a} \cdot \mathbf{b}=|\mathbf{a}||\mathbf{b}| \cos \theta$
  • Cross Product (Vector Product): When two vectors are multiplied and the result is another vector.
    Example: $\mathbf{a} \times \mathbf{b}=|\mathbf{a}||\mathbf{b}| \sin \theta \mathbf{n}$, where $\mathbf{n}$ is a unit vector perpendicular to both $\mathbf{a}$ and $\mathbf{b}$.

Also Read-

Also see-

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Frequently Asked Questions (FAQs)

Q: What are the main topics covered in the chapter vector algebra?
A:

The main three topics are the addition of vectors, the dot product of vectors and the cross product of vectors. 

Q: Why work is a scalar quantity even though force and displacement are vectors?
A:

The work done is the dot product of force and displacement. The dot product of two vectors is a scalar (real number). 

Q: What is the quantity obtained from the dot product of force and velocity?
A:

The dot product of force and velocity gives power. 

Q: Why i.k=0?
A:

i.k=0 as the angle between them is 90 degrees

Q: Can dot product be a negative number?
A:

Yes, the dot product of two vectors can be either positive, negative or zero based on the angle between them.

Q: How many exercises are solved in NCERT Class 12 chapter vector algebra?
A:

There are a total of 5 exercises including miscellaneous. 

Q: Is it possible to have two vectors whose magnitude is non zero but their dot product is zero?
A:

Yes. For two perpendicular vectors, the dot product is zero.

Articles
|
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 27 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

10 Aug'25 - 27 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

The date of 12 exam is depends on which board you belongs to . You should check the exact date of your exam by visiting the official website of your respective board.

Hope this information is useful to you.

Hello,

Class 12 biology questions papers 2023-2025 are available on cbseacademic.nic.in , and other educational website. You can download PDFs of questions papers with solution for practice. For state boards, visit the official board site or trusted education portal.

Hope this information is useful to you.

Hello Pruthvi,

Taking a drop year to reappear for the Karnataka Common Entrance Test (KCET) is a well-defined process. As a repeater, you are fully eligible to take the exam again to improve your score and secure a better rank for admissions.

The main procedure involves submitting a new application for the KCET through the official Karnataka Examinations Authority (KEA) website when registrations open for the next academic session. You must pay the required application fee and complete all formalities just like any other candidate. A significant advantage for you is that you do not need to retake your 12th board exams. Your previously secured board marks in the qualifying subjects will be used again. Your new KCET rank will be calculated by combining these existing board marks with your new score from the KCET exam. Therefore, your entire focus during this year should be on preparing thoroughly for the KCET to achieve a higher score.

For more details about the KCET Exam preparation, CLICK HERE.

I hope this answer helps you. If you have more queries, feel free to share your questions with us, and we will be happy to assist you.

Thank you, and I wish you all the best in your bright future.

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.