A system of linear equations has two types of solutions in general, ie, consistent (unique solution and infinitely many solutions) and inconsistent (No solutions). Earlier in class 10, we had solved these using algebraic methods, but in class 12, we will learn to solve these using matrices and determinants. NCERT Class 12 Maths Chapter 4 – Determinants, Exercise 4.5 introduces the concept of solving a system of linear equations using the inverse of a matrix and explains how to determine whether the system is consistent or inconsistent. This article on the NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.
Question:1 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+2y=2$
$\small 2x+3y=3$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A= \begin{bmatrix} 1 &2 \\ 2&3 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 2\\3 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(3) -2(2) = -1 \neq 0$
Here A is non -singular therefore there exists $A^{-1}$.
Hence, the given system of equations is consistent.
Question:2 Examine the consistency of the system of equations
Answer:
We have given the system of equations:
$\small 2x-y=5$
$\small x+y=4$
The given system of equations can be written in the form of matrix; $AX =B$
where $A= \begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 5\\4 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 2(1) -1(-1) = 3 \neq 0$
Here A is non -singular therefore there exists $A^{-1}$.
Hence, the given system of equations is consistent.
Question:3 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+3y=5$
$\small 2x+6y=8$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A= \begin{bmatrix} 1 &3 \\ 2&6 \end{bmatrix}$,
$X= \begin{bmatrix} x\\y \end{bmatrix}$ and
$B = \begin{bmatrix} 5\\8 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(6) -2(3) = 0$
Here A is singular matrix therefore now we will check whether the $(adjA)B$ is zero or non-zero.
$adjA= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}$
So, $(adjA)B= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 30-24\\-10+8 \end{bmatrix}=\begin{bmatrix} 6\\-2 \end{bmatrix} \neq 0$
As, $(adjA)B \neq 0$ , the solution of the given system of equations does not exist.
Hence, the given system of equations is inconsistent.
Question:4 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small x+y+z=1$
$\small 2x+3y+2z=2$
$\small ax+ay+2az=4$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A = \begin{bmatrix} 1& 1&1 \\ 2& 3& 2\\ a& a &2a \end{bmatrix}$,
$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and
$B = \begin{bmatrix} 1\\2 \\ 4 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 1(6a-2a) -1(4a-2a)+1(2a-3a)$
$= 4a -2a-a = 4a -3a =a \neq 0$
[If zero then it won't satisfy the third equation]
Here A is non- singular matrix therefore there exist $A^{-1}$.
Hence, the given system of equations is consistent.
Question:5 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small 3x-y-2z=2$
$\small 2y-z=-1$
$\small 3x-5y=3$
The given system of equations can be written in the form of matrix; $AX =B$
where $A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix}$,
$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and
$B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 3(0-5) -(-1)(0+3)-2(0-6)$
$= -15 +3+12 = 0$
Therefore matrix A is a singular matrix.
So, we will then check $(adjA)B,$
$(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}$
$\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0$
As, $(adjA)B$ is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.
Question:6 Examine the consistency of the system of equations.
Answer:
We have given the system of equations:
$\small 5x-y+4z=5$
$\small 2x+3y+5z=2$
$\small 5x-2y+6z=-1$
The given system of equations can be written in the form of the matrix; $AX =B$
where $A = \begin{bmatrix} 5& -1&4 \\ 2& 3& 5\\ 5& -2 &6 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\2 \\ -1 \end{bmatrix}$.
So, we want to check for the consistency of the equations;
$|A| = 5(18+10) +1(12-25)+4(-4-15)$
$= 140-13-76 = 51 \neq 0$
Here A is non- singular matrix therefore there exist $A^{-1}$.
Hence, the given system of equations is consistent.
Question:7 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 5x+2y=4$
$\small 7x+3y=5$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 5 &4 \\ 7& 3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 4\\5 \end{bmatrix}$
we have,
$|A| = 15-14=1 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = (adjA) = \begin{bmatrix} 3 &-2 \\ -7& 5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 3 &-2 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 4\\5 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 12-10\\ -28+25 \end{bmatrix} = \begin{bmatrix} 2\\-3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2 and y =-3.
Question:8 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$2x-y=-2$
$3x+4y=3$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$
we have,
$|A| = 8+3=11 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -5/11 and y = 12/11.
Question:9 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 4x-3y=3$
$\small 3x-5y=7$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 4 &-3 \\ 3& -5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\7 \end{bmatrix}$
we have,
$|A| = -20+9=-11 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{-1}{11}\begin{bmatrix} -5 &3 \\ -3& 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 &-3 \\ 3& -4 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 5 &-3 \\ 3 & -4 \end{bmatrix}\begin{bmatrix} 3\\7 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 15-21\\ 9-28 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -6\\-19 \end{bmatrix}= \begin{bmatrix} -\frac{6}{11}\\ \\-\frac{19}{11} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -6/11 and y = -19/11.
Question:10 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 5x+2y=3$
$\small 3x+2y=5$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$
we have,
$|A| = 10-6=4 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$
$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = -1 and y = 4
Question:11 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 2x+y+z=1$
$\small x-2y-z= \frac{3}{2}$
$\small 3y-5z=9$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &1 &1 \\ 1 & -2 &-1 \\ 0& 3 &-5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ and $B =\begin{bmatrix} 1\\ \\ \frac{3}{2} \\ \\ 9 \end{bmatrix}$
we have,
$|A| =2(10+3)-1(-5-0)+1(3-0) = 26+5+3 = 34 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(10+3) = 13$ $A_{12} =(-1)^{1+2}(-5-0) = 5$
$A_{13} =(-1)^{1+3}(3-0) = 3$ $A_{21} =(-1)^{2+1}(-5-3) = 8$
$A_{22} =(-1)^{2+2}(-10-0) = -10$ $A_{23} =(-1)^{2+3}(6-0) = -6$
$A_{31} =(-1)^{3+1}(-1+2) = 1$ $A_{32} =(-1)^{3+2}(-2-1) = 3$
$A_{33} =(-1)^{3+3}(-4-1) = -5$
$(adjA) =\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}\begin{bmatrix} 1\\\frac{3}{2} \\ 9 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 13+12+9\\5-15+27 \\ 3-9-45 \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 34\\17 \\ -51 \end{bmatrix}= \begin{bmatrix} 1\\\frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 1/2, and z = -3/2.
Question:12 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small x-y+z=4$
$\small 2x+y-3z=0$
$\small x+y+z=2$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 1 &-1 &1 \\ 2 & 1 &-3 \\ 1& 1 &1 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 4\\ 0 \\ 2 \end{bmatrix}.$
we have,
$|A| =1(1+3)+1(2+3)+1(2-1) = 4+5+1= 10 \neq 0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(1+3) = 4$ $A_{12} =(-1)^{1+2}(2+3) = -5$
$A_{13} =(-1)^{1+3}(2-1) = 1$ $A_{21} =(-1)^{2+1}(-1-1) = 2$
$A_{22} =(-1)^{2+2}(1-1) = 0$ $A_{23} =(-1)^{2+3}(1+1) = -2$
$A_{31} =(-1)^{3+1}(3-1) = 2$ $A_{32} =(-1)^{3+2}(-3-2) = 5$
$A_{33} =(-1)^{3+3}(1+2) = 3$
$(adjA) =\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}\begin{bmatrix} 4\\0 \\ 2 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 16+0+4\\-20+0+10 \\ 4+0+6 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 20\\-10 \\ 10 \end{bmatrix}= \begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2, y = -1, and z = 1.
Question:13 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small 2x+3y+3z=5$
$\small x-2y+z=-4$
$\small 3x-y-2z=3$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 2 &3 &3 \\ 1 & -2 &1 \\ 3& -1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 5\\ -4 \\ 3 \end{bmatrix}.$
we have,
$|A| =2(4+1) -3(-2-3)+3(-1+6) = 10+15+15 = 40$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{1+1}(4+1) = 5$ $A_{12} =(-1)^{1+2}(-2-3) = 5$
$A_{13} =(-1)^{1+3}(-1+6) = 5$ $A_{21} =(-1)^{2+1}(-6+3) = 3$
$A_{22} =(-1)^{2+2}(-4-9) = -13$ $A_{23} =(-1)^{2+3}(-2-9) = 11$
$A_{31} =(-1)^{3+1}(3+6) = 9$ $A_{32} =(-1)^{3+2}(2-3) = 1$
$A_{33} =(-1)^{3+3}(-4-3) = -7$
$(adjA) =\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5&11 & -7 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}\begin{bmatrix} 5\\-4 \\ 3 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25-12+27\\25+52+3 \\ 25-44-21 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 40\\80 \\ -40 \end{bmatrix}= \begin{bmatrix} 1\\2 \\ -1 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 2, and z = -1.
Question:14 Solve system of linear equations, using matrix method.
Answer:
The given system of equations
$\small x-y+2z=7$
$\small 3x+4y-5z=-5$
$\small 2x-y+3z=12$
can be written in the matrix form of AX =B, where
$A = \begin{bmatrix} 1 &-1 &2 \\ 3 & 4 &-5 \\ 2& -1 &3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 7\\ -5 \\ 12 \end{bmatrix}.$
we have,
$|A| =1(12-5) +1(9+10)+2(-3-8) = 7+19-22 = 4 \neq0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{12-5} = 7$ $A_{12} =(-1)^{1+2}(9+10) = -19$
$A_{13} =(-1)^{1+3}(-3-8) = -11$ $A_{21} =(-1)^{2+1}(-3+2) = 1$
$A_{22} =(-1)^{2+2}(3-4) = -1$ $A_{23} =(-1)^{2+3}(-1+2) = -1$
$A_{31} =(-1)^{3+1}(5-8) = -3$ $A_{32} =(-1)^{3+2}(-5-6) = 11$
$A_{33} =(-1)^{3+3}(4+3) = 7$
$(adjA) =\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B =\frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}\begin{bmatrix} 7\\-5 \\ 12 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 49-5-36\\-133+5+132 \\ -77+5+84 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 8\\4 \\ 12 \end{bmatrix}= \begin{bmatrix} 2\\1 \\ 3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 2, y = 1, and z = 3.
Answer:
The given system of equations
$2x-3y+5z=11$
$3x+2y-4z=-5$
$x+y-2z=-3$
can be written in the matrix form of AX =B, where
$A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 11\\ -5 \\ -3 \end{bmatrix}.$
we have,
$|A| =2(-4+4) +3(-6+4)+5(3-2) = 0-6+5 = -1 \neq0$.
So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.
as we know $A^{-1} = \frac{1}{|A|} (adjA)$
Now, we will find the cofactors;
$A_{11} =(-1)^{-4+4} = 0$ $A_{12} =(-1)^{1+2}(-6+4) = 2$
$A_{13} =(-1)^{1+3}(3-2) = 1$ $A_{21} =(-1)^{2+1}(6-5) = -1$
$A_{22} =(-1)^{2+2}(-4-5) = -9$ $A_{23} =(-1)^{2+3}(2+3) = -5$
$A_{31} =(-1)^{3+1}(12-10) = 2$ $A_{32} =(-1)^{3+2}(-8-15) = 23$
$A_{33} =(-1)^{3+3}(4+9) = 13$
$(adjA) =\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = -1\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix} = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}$
So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}\begin{bmatrix} 11\\-5 \\ -3 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-5+6\\-22-45+69 \\ -11-25+39 \end{bmatrix} = \begin{bmatrix} 1\\2 \\ 3 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 1, y = 2, and z = 3.
Answer:
So, let us assume the cost of onion, wheat, and rice be x, y and z respectively.
Then we have the equations for the given situation :
$4x+3y+2z = 60$
$2x+4y+6z = 90$
$6x+2y+3y = 70$
We can find the cost of each item per Kg by the matrix method as follows;
Taking the coefficients of x, y, and z as a matrix $A$.
We have;
$A = \begin{bmatrix} 4 &3 &2 \\ 2& 4 &6 \\ 6 & 2 & 3 \end{bmatrix},$ $X= \begin{bmatrix} x\\y \\ z \end{bmatrix}$ $and\ B = \begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}.$
$|A| = 4(12-12) -3(6-36)+2(4-24) = 0 +90-40 = 50 \neq 0$
Now, we will find the cofactors of A;
$A_{11} = (-1)^{1+1}(12-12) = 0$ $A_{12} = (-1)^{1+2}(6-36) = 30$
$A_{13} = (-1)^{1+3}(4-24) = -20$ $A_{21} = (-1)^{2+1}(9-4) = -5$
$A_{22} = (-1)^{2+2}(12-12) = 0$ $A_{23} = (-1)^{2+3}(8-18) = 10$
$A_{31} = (-1)^{3+1}(18-8) = 10$ $A_{32} = (-1)^{3+2}(24-4) = -20$
$A_{33} = (-1)^{3+3}(16-6) = 10$
Now we have adjA;
$adjA = \begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$
$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$s
So, the solutions can be found by $X = A^{-1}B = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}\begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}$
$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-450+700\\1800+0-1400 \\ -1200+900+700 \end{bmatrix} =\frac{1}{50} \begin{bmatrix} 250\\400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5\\8 \\ 8 \end{bmatrix}$
Hence the solutions of the given system of equations;
x = 5, y = 8, and z = 8
Therefore, we have the cost of onions is Rs. 5 per Kg, the cost of wheat is Rs. 8 per Kg, and the cost of rice is Rs. 8 per kg.
Also read,
Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.5.
1. System of Linear Equations in Matrix Form: A system like
$\begin{aligned} & a_1 x+b_1 y+c_1 z=d_1 \\ & a_2 x+b_2 y+c_2 z=d_2 \\ & a_3 x+b_3 y+c_3 z=d_3\end{aligned}$
is written in matrix form as: $AX=B$
Where:
- $A$ is the coefficient matrix,
- $X$ is the variable matrix,
- $B$ is the constant matrix.
2. Solution Using Matrix Inverse: If $A^{-1}$ exists, then the unique solution of the system is given by: $X=A^{-1} B$
3. Consistency Conditions:
- Consistent System (Unique Solution): $\operatorname{det} A \neq 0$
- Inconsistent or Dependent System: Requires further analysis when $\operatorname{det} A=0$
Also, read,
Given below are some useful links for subject-wise NCERT solutions of class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
If the solution of a system of equations doesn't exist then it is called a inconsistent system.
There are 16 questions in the exercise 4.6 Class 12 Maths. The questions are solved with all the necessary steps. Students can follow the NCERT syllabus to get a good score in the board exam.
The transpose of the row matrix is the column matrix.
The transpose of the column matrix is the row matrix.
If the determinant of matrix A is zero then matrix A is called singular matrix.
|A^T| = |A| = 2
If three-point are collinear then the area of triangle formed by these points is zero.
If solutions of a system of equations exist then it is called a consistent system.
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters