NCERT Solutions for Exercise 4.6 Class 12 Maths Chapter 4 - Determinants

NCERT Solutions for Exercise 4.6 Class 12 Maths Chapter 4 - Determinants

Komal MiglaniUpdated on 25 Apr 2025, 08:52 AM IST

A system of linear equations has two types of solutions in general, ie, consistent (unique solution and infinitely many solutions) and inconsistent (No solutions). Earlier in class 10, we had solved these using algebraic methods, but in class 12, we will learn to solve these using matrices and determinants. NCERT Class 12 Maths Chapter 4 – Determinants, Exercise 4.5 introduces the concept of solving a system of linear equations using the inverse of a matrix and explains how to determine whether the system is consistent or inconsistent. This article on the NCERT Solutions for Exercise 4.5 Class 12 Maths Chapter 4 offers clear and step-by-step solutions for the exercise problems to help the students understand the method and logic behind it. For syllabus, notes, and PDF, refer to this link: NCERT.

Class 12 Maths Chapter 4 Exercise 4.5 Solutions: Download PDF

Download PDF

Determinants Exercise: 4.5

Question:1 Examine the consistency of the system of equations.

$\small x+2y=2$

$\small 2x+3y=3$

Answer:

We have given the system of equations:

$\small x+2y=2$

$\small 2x+3y=3$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A= \begin{bmatrix} 1 &2 \\ 2&3 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 2\\3 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(3) -2(2) = -1 \neq 0$

Here A is non -singular therefore there exists $A^{-1}$.

Hence, the given system of equations is consistent.

Question:2 Examine the consistency of the system of equations

$\small 2x-y=5$

$\small x+y=4$

Answer:

We have given the system of equations:

$\small 2x-y=5$

$\small x+y=4$

The given system of equations can be written in the form of matrix; $AX =B$

where $A= \begin{bmatrix} 2 &-1 \\ 1&1 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 5\\4 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 2(1) -1(-1) = 3 \neq 0$

Here A is non -singular therefore there exists $A^{-1}$.

Hence, the given system of equations is consistent.

Question:3 Examine the consistency of the system of equations.

$\small x+3y=5$

$\small 2x+6y=8$

Answer:

We have given the system of equations:

$\small x+3y=5$

$\small 2x+6y=8$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A= \begin{bmatrix} 1 &3 \\ 2&6 \end{bmatrix}$,

$X= \begin{bmatrix} x\\y \end{bmatrix}$ and

$B = \begin{bmatrix} 5\\8 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(6) -2(3) = 0$

Here A is singular matrix therefore now we will check whether the $(adjA)B$ is zero or non-zero.

$adjA= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}$

So, $(adjA)B= \begin{bmatrix} 6 &-3 \\ -2& 1 \end{bmatrix}\begin{bmatrix} 5\\8 \end{bmatrix} = \begin{bmatrix} 30-24\\-10+8 \end{bmatrix}=\begin{bmatrix} 6\\-2 \end{bmatrix} \neq 0$

As, $(adjA)B \neq 0$ , the solution of the given system of equations does not exist.

Hence, the given system of equations is inconsistent.

Question:4 Examine the consistency of the system of equations.

$\small x+y+z=1$

$\small 2x+3y+2z=2$

$\small ax+ay+2az=4$

Answer:

We have given the system of equations:

$\small x+y+z=1$

$\small 2x+3y+2z=2$

$\small ax+ay+2az=4$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A = \begin{bmatrix} 1& 1&1 \\ 2& 3& 2\\ a& a &2a \end{bmatrix}$,

$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and

$B = \begin{bmatrix} 1\\2 \\ 4 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 1(6a-2a) -1(4a-2a)+1(2a-3a)$

$= 4a -2a-a = 4a -3a =a \neq 0$

[If zero then it won't satisfy the third equation]

Here A is non- singular matrix therefore there exist $A^{-1}$.

Hence, the given system of equations is consistent.

Question:5 Examine the consistency of the system of equations.

$\small 3x-y-2z=2$

$\small 2y-z=-1$

$\small 3x-5y=3$

Answer:

We have given the system of equations:

$\small 3x-y-2z=2$

$\small 2y-z=-1$

$\small 3x-5y=3$

The given system of equations can be written in the form of matrix; $AX =B$

where $A = \begin{bmatrix} 3& -1&-2 \\ 0& 2& -1\\ 3& -5 &0 \end{bmatrix}$,

$X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and

$B = \begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 3(0-5) -(-1)(0+3)-2(0-6)$

$= -15 +3+12 = 0$

Therefore matrix A is a singular matrix.

So, we will then check $(adjA)B,$

$(adjA) = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}$

$\therefore (adjA)B = \begin{bmatrix} -5 &10 &5 \\ -3& 6 & 3\\ -6& 12 & 6 \end{bmatrix}\begin{bmatrix} 2\\-1 \\ 3 \end{bmatrix} = \begin{bmatrix} -10-10+15\\ -6-6+9 \\ -12-12+18 \end{bmatrix} = \begin{bmatrix} -5\\-3 \\ -6 \end{bmatrix} \neq 0$

As, $(adjA)B$ is non-zero thus the solution of the given system of the equation does not exist. Hence, the given system of equations is inconsistent.

Question:6 Examine the consistency of the system of equations.

$\small 5x-y+4z=5$

$\small 2x+3y+5z=2$

$\small 5x-2y+6z=-1$

Answer:

We have given the system of equations:

$\small 5x-y+4z=5$

$\small 2x+3y+5z=2$

$\small 5x-2y+6z=-1$

The given system of equations can be written in the form of the matrix; $AX =B$

where $A = \begin{bmatrix} 5& -1&4 \\ 2& 3& 5\\ 5& -2 &6 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\ z \end{bmatrix}$ and $B = \begin{bmatrix} 5\\2 \\ -1 \end{bmatrix}$.

So, we want to check for the consistency of the equations;

$|A| = 5(18+10) +1(12-25)+4(-4-15)$

$= 140-13-76 = 51 \neq 0$

Here A is non- singular matrix therefore there exist $A^{-1}$.

Hence, the given system of equations is consistent.

Question:7 Solve system of linear equations, using matrix method.

$\small 5x+2y=4$

$\small 7x+3y=5$

Answer:

The given system of equations

$\small 5x+2y=4$

$\small 7x+3y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &4 \\ 7& 3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 4\\5 \end{bmatrix}$

we have,

$|A| = 15-14=1 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = (adjA) = \begin{bmatrix} 3 &-2 \\ -7& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 3 &-2 \\ -7 & 5 \end{bmatrix}\begin{bmatrix} 4\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 12-10\\ -28+25 \end{bmatrix} = \begin{bmatrix} 2\\-3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2 and y =-3.

Question:8 Solve system of linear equations, using matrix method.

$2x-y=-2$

$3x+4y=3$

Answer:

The given system of equations

$2x-y=-2$

$3x+4y=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &-1 \\ 3& 4 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} -2\\3 \end{bmatrix}$

we have,

$|A| = 8+3=11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3& 2 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 4 &1 \\ -3 & 2 \end{bmatrix}\begin{bmatrix} -2\\3 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -8+3\\ 6+6 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -5\\12 \end{bmatrix}= \begin{bmatrix} -\frac{5}{11}\\ \\-\frac{12}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -5/11 and y = 12/11.

Question:9 Solve system of linear equations, using matrix method.

$\small 4x-3y=3$

$\small 3x-5y=7$

Answer:

The given system of equations

$\small 4x-3y=3$

$\small 3x-5y=7$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 4 &-3 \\ 3& -5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\7 \end{bmatrix}$

we have,

$|A| = -20+9=-11 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{-1}{11}\begin{bmatrix} -5 &3 \\ -3& 4 \end{bmatrix} = \frac{1}{11} \begin{bmatrix} 5 &-3 \\ 3& -4 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{11}\begin{bmatrix} 5 &-3 \\ 3 & -4 \end{bmatrix}\begin{bmatrix} 3\\7 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{11}\begin{bmatrix} 15-21\\ 9-28 \end{bmatrix} = \frac{1}{11}\begin{bmatrix} -6\\-19 \end{bmatrix}= \begin{bmatrix} -\frac{6}{11}\\ \\-\frac{19}{11} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -6/11 and y = -19/11.

Question:10 Solve system of linear equations, using matrix method.

$\small 5x+2y=3$

$\small 3x+2y=5$

Answer:

The given system of equations

$\small 5x+2y=3$

$\small 3x+2y=5$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 5 &2 \\ 3& 2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \end{bmatrix}$ and $B = \begin{bmatrix} 3\\5 \end{bmatrix}$

we have,

$|A| = 10-6=4 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3& 5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{4}\begin{bmatrix} 2 &-2 \\ -3 & 5 \end{bmatrix}\begin{bmatrix} 3\\5 \end{bmatrix}$

$\Rightarrow \begin{bmatrix} x\\y \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 6-10\\ -9+25 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} -4\\16 \end{bmatrix}= \begin{bmatrix} -1\\4 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = -1 and y = 4

Question:11 Solve system of linear equations, using matrix method.

$\small 2x+y+z=1$

$\small x-2y-z= \frac{3}{2}$

$\small 3y-5z=9$

Answer:

The given system of equations

$\small 2x+y+z=1$

$\small x-2y-z= \frac{3}{2}$

$\small 3y-5z=9$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &1 &1 \\ 1 & -2 &-1 \\ 0& 3 &-5 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ and $B =\begin{bmatrix} 1\\ \\ \frac{3}{2} \\ \\ 9 \end{bmatrix}$

we have,

$|A| =2(10+3)-1(-5-0)+1(3-0) = 26+5+3 = 34 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(10+3) = 13$ $A_{12} =(-1)^{1+2}(-5-0) = 5$

$A_{13} =(-1)^{1+3}(3-0) = 3$ $A_{21} =(-1)^{2+1}(-5-3) = 8$

$A_{22} =(-1)^{2+2}(-10-0) = -10$ $A_{23} =(-1)^{2+3}(6-0) = -6$

$A_{31} =(-1)^{3+1}(-1+2) = 1$ $A_{32} =(-1)^{3+2}(-2-1) = 3$

$A_{33} =(-1)^{3+3}(-4-1) = -5$

$(adjA) =\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \frac{1}{34}\begin{bmatrix} 13 &8 &1 \\ 5& -10 & 3\\ 3& -6 & -5 \end{bmatrix}\begin{bmatrix} 1\\\frac{3}{2} \\ 9 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 13+12+9\\5-15+27 \\ 3-9-45 \end{bmatrix} = \frac{1}{34}\begin{bmatrix} 34\\17 \\ -51 \end{bmatrix}= \begin{bmatrix} 1\\\frac{1}{2} \\ -\frac{3}{2} \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 1/2, and z = -3/2.

Question:12 Solve system of linear equations, using matrix method.

$\small x-y+z=4$

$\small 2x+y-3z=0$

$\small x+y+z=2$

Answer:

The given system of equations

$\small x-y+z=4$

$\small 2x+y-3z=0$

$\small x+y+z=2$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 1 &-1 &1 \\ 2 & 1 &-3 \\ 1& 1 &1 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 4\\ 0 \\ 2 \end{bmatrix}.$

we have,

$|A| =1(1+3)+1(2+3)+1(2-1) = 4+5+1= 10 \neq 0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(1+3) = 4$ $A_{12} =(-1)^{1+2}(2+3) = -5$

$A_{13} =(-1)^{1+3}(2-1) = 1$ $A_{21} =(-1)^{2+1}(-1-1) = 2$

$A_{22} =(-1)^{2+2}(1-1) = 0$ $A_{23} =(-1)^{2+3}(1+1) = -2$

$A_{31} =(-1)^{3+1}(3-1) = 2$ $A_{32} =(-1)^{3+2}(-3-2) = 5$

$A_{33} =(-1)^{3+3}(1+2) = 3$

$(adjA) =\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{10}\begin{bmatrix} 4 &2 &2 \\ -5& 0 & 5\\ 1& -2 & 3 \end{bmatrix}\begin{bmatrix} 4\\0 \\ 2 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 16+0+4\\-20+0+10 \\ 4+0+6 \end{bmatrix} = \frac{1}{10}\begin{bmatrix} 20\\-10 \\ 10 \end{bmatrix}= \begin{bmatrix} 2\\-1 \\ 1 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2, y = -1, and z = 1.

Question:13 Solve system of linear equations, using matrix method.

$\small 2x+3y+3z=5$

$\small x-2y+z=-4$

$\small 3x-y-2z=3$

Answer:

The given system of equations

$\small 2x+3y+3z=5$

$\small x-2y+z=-4$

$\small 3x-y-2z=3$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 2 &3 &3 \\ 1 & -2 &1 \\ 3& -1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 5\\ -4 \\ 3 \end{bmatrix}.$

we have,

$|A| =2(4+1) -3(-2-3)+3(-1+6) = 10+15+15 = 40$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{1+1}(4+1) = 5$ $A_{12} =(-1)^{1+2}(-2-3) = 5$

$A_{13} =(-1)^{1+3}(-1+6) = 5$ $A_{21} =(-1)^{2+1}(-6+3) = 3$

$A_{22} =(-1)^{2+2}(-4-9) = -13$ $A_{23} =(-1)^{2+3}(-2-9) = 11$

$A_{31} =(-1)^{3+1}(3+6) = 9$ $A_{32} =(-1)^{3+2}(2-3) = 1$

$A_{33} =(-1)^{3+3}(-4-3) = -7$

$(adjA) =\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5&11 & -7 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{40}\begin{bmatrix} 5 &3 &9 \\ 5& -13 & 1\\ 5& 11 & -7 \end{bmatrix}\begin{bmatrix} 5\\-4 \\ 3 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 25-12+27\\25+52+3 \\ 25-44-21 \end{bmatrix} = \frac{1}{40}\begin{bmatrix} 40\\80 \\ -40 \end{bmatrix}= \begin{bmatrix} 1\\2 \\ -1 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 2, and z = -1.

Question:14 Solve system of linear equations, using matrix method.

$\small x-y+2z=7$

$\small 3x+4y-5z=-5$

$\small 2x-y+3z=12$

Answer:

The given system of equations

$\small x-y+2z=7$

$\small 3x+4y-5z=-5$

$\small 2x-y+3z=12$

can be written in the matrix form of AX =B, where

$A = \begin{bmatrix} 1 &-1 &2 \\ 3 & 4 &-5 \\ 2& -1 &3 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 7\\ -5 \\ 12 \end{bmatrix}.$

we have,

$|A| =1(12-5) +1(9+10)+2(-3-8) = 7+19-22 = 4 \neq0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{12-5} = 7$ $A_{12} =(-1)^{1+2}(9+10) = -19$

$A_{13} =(-1)^{1+3}(-3-8) = -11$ $A_{21} =(-1)^{2+1}(-3+2) = 1$

$A_{22} =(-1)^{2+2}(3-4) = -1$ $A_{23} =(-1)^{2+3}(-1+2) = -1$

$A_{31} =(-1)^{3+1}(5-8) = -3$ $A_{32} =(-1)^{3+2}(-5-6) = 11$

$A_{33} =(-1)^{3+3}(4+3) = 7$

$(adjA) =\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B =\frac{1}{4}\begin{bmatrix} 7 &1 &-3 \\ -19& -1 & 11\\ -11&-1 & 7 \end{bmatrix}\begin{bmatrix} 7\\-5 \\ 12 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 49-5-36\\-133+5+132 \\ -77+5+84 \end{bmatrix} = \frac{1}{4}\begin{bmatrix} 8\\4 \\ 12 \end{bmatrix}= \begin{bmatrix} 2\\1 \\ 3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 2, y = 1, and z = 3.

Question:15 If $A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$ , find $A^{-1}$. Using $A^{-1}$ solve the system of equations

$2x-3y+5z=11$

$3x+2y-4z=-5$

$x+y-2z=-3$

Answer:

The given system of equations

$2x-3y+5z=11$

$3x+2y-4z=-5$

$x+y-2z=-3$

can be written in the matrix form of AX =B, where

$A=\begin{bmatrix} 2 &-3 &5 \\ 3 & 2 &-4 \\ 1 &1 &-2 \end{bmatrix}$, $X = \begin{bmatrix} x\\y \\z \end{bmatrix}$ $and\ B =\begin{bmatrix} 11\\ -5 \\ -3 \end{bmatrix}.$

we have,

$|A| =2(-4+4) +3(-6+4)+5(3-2) = 0-6+5 = -1 \neq0$.

So, A is non-singular, Therefore, its inverse $A^{-1}$ exists.

as we know $A^{-1} = \frac{1}{|A|} (adjA)$

Now, we will find the cofactors;

$A_{11} =(-1)^{-4+4} = 0$ $A_{12} =(-1)^{1+2}(-6+4) = 2$

$A_{13} =(-1)^{1+3}(3-2) = 1$ $A_{21} =(-1)^{2+1}(6-5) = -1$

$A_{22} =(-1)^{2+2}(-4-5) = -9$ $A_{23} =(-1)^{2+3}(2+3) = -5$

$A_{31} =(-1)^{3+1}(12-10) = 2$ $A_{32} =(-1)^{3+2}(-8-15) = 23$

$A_{33} =(-1)^{3+3}(4+9) = 13$

$(adjA) =\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = -1\begin{bmatrix} 0 &-1 &2 \\ 2& -9 & 23\\ 1&-5 & 13 \end{bmatrix} = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}$

So, the solutions can be found by $X = A^{-1}B = \begin{bmatrix} 0 &1 &-2 \\ -2& 9 & -23\\ -1&5 & -13 \end{bmatrix}\begin{bmatrix} 11\\-5 \\ -3 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-5+6\\-22-45+69 \\ -11-25+39 \end{bmatrix} = \begin{bmatrix} 1\\2 \\ 3 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 1, y = 2, and z = 3.

Question:16 The cost of 4 kg onion, 3 kg wheat and 2 kg rice is Rs 60. The cost of 2 kg onion, 4 kg wheat and 6 kg rice is Rs 90. The cost of 6 kg onion 2 kg wheat and 3 kg rice is Rs 70. Find cost of each item per kg by matrix method.

Answer:

So, let us assume the cost of onion, wheat, and rice be x, y and z respectively.

Then we have the equations for the given situation :

$4x+3y+2z = 60$

$2x+4y+6z = 90$

$6x+2y+3y = 70$

We can find the cost of each item per Kg by the matrix method as follows;

Taking the coefficients of x, y, and z as a matrix $A$.

We have;

$A = \begin{bmatrix} 4 &3 &2 \\ 2& 4 &6 \\ 6 & 2 & 3 \end{bmatrix},$ $X= \begin{bmatrix} x\\y \\ z \end{bmatrix}$ $and\ B = \begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}.$

$|A| = 4(12-12) -3(6-36)+2(4-24) = 0 +90-40 = 50 \neq 0$

Now, we will find the cofactors of A;

$A_{11} = (-1)^{1+1}(12-12) = 0$ $A_{12} = (-1)^{1+2}(6-36) = 30$

$A_{13} = (-1)^{1+3}(4-24) = -20$ $A_{21} = (-1)^{2+1}(9-4) = -5$

$A_{22} = (-1)^{2+2}(12-12) = 0$ $A_{23} = (-1)^{2+3}(8-18) = 10$

$A_{31} = (-1)^{3+1}(18-8) = 10$ $A_{32} = (-1)^{3+2}(24-4) = -20$

$A_{33} = (-1)^{3+3}(16-6) = 10$

Now we have adjA;

$adjA = \begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$

$A^{-1} = \frac{1}{|A|} (adjA) = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}$s

So, the solutions can be found by $X = A^{-1}B = \frac{1}{50}\begin{bmatrix} 0 &-5 &10 \\ 30 & 0 &-20 \\ -20 & 10 & 10 \end{bmatrix}\begin{bmatrix} 60\\90 \\ 70 \end{bmatrix}$

$\Rightarrow\begin{bmatrix} x\\y \\ z \end{bmatrix} = \begin{bmatrix} 0-450+700\\1800+0-1400 \\ -1200+900+700 \end{bmatrix} =\frac{1}{50} \begin{bmatrix} 250\\400 \\ 400 \end{bmatrix} = \begin{bmatrix} 5\\8 \\ 8 \end{bmatrix}$

Hence the solutions of the given system of equations;

x = 5, y = 8, and z = 8

Therefore, we have the cost of onions is Rs. 5 per Kg, the cost of wheat is Rs. 8 per Kg, and the cost of rice is Rs. 8 per kg.


Also read,

Topics Covered in Chapter 4, Determinants: Exercise 4.5

Here are the main topics covered in NCERT Class 12 Chapter 4, Determinants: Exercise 4.5.

1. System of Linear Equations in Matrix Form: A system like

$\begin{aligned} & a_1 x+b_1 y+c_1 z=d_1 \\ & a_2 x+b_2 y+c_2 z=d_2 \\ & a_3 x+b_3 y+c_3 z=d_3\end{aligned}$

is written in matrix form as: $AX=B$

Where:

- $A$ is the coefficient matrix,

- $X$ is the variable matrix,

- $B$ is the constant matrix.

2. Solution Using Matrix Inverse: If $A^{-1}$ exists, then the unique solution of the system is given by: $X=A^{-1} B$

3. Consistency Conditions:

- Consistent System (Unique Solution): $\operatorname{det} A \neq 0$

- Inconsistent or Dependent System: Requires further analysis when $\operatorname{det} A=0$

Also, read,

Aakash Repeater Courses

Take Aakash iACST and get instant scholarship on coaching programs.

NCERT Solutions of Class 12 Subject Wise

Given below are some useful links for subject-wise NCERT solutions of class 12.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Frequently Asked Questions (FAQs)

Q: What is the definition of inconsistent system ?
A:

If the solution of a system of equations doesn't exist then it is called a inconsistent system.

Q: How many questions are there in the exercise 4.6 Class 12 Maths?
A:

There are 16 questions in the exercise 4.6 Class 12 Maths. The questions are solved with all the necessary steps. Students can follow the NCERT syllabus to get a good score in the board exam.

Q: The transpose of the row matrix is ?
A:

The transpose of the row matrix is the column matrix.

Q: The transpose of the column matrix is ?
A:

The transpose of the column matrix is the row matrix.

Q: If the determinant of matrix A is zero then matrix A is called ?
A:

If the determinant of matrix A is zero then matrix A is called singular matrix.

Q: If A is a square matrix of order 2 and |A| = 2 then det( transpose(A)) ?​
A:

|A^T| = |A| = 2

Q: If three-point are collinear then find area of triangle formed by these points ?
A:

If three-point are collinear then the area of triangle formed by these points is zero.

Q: What is the definition of consistent system ?
A:

If solutions of a system of equations exist then it is called a consistent system.

Articles
|
Next
Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 1 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello

Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.

Hello Aspirant,

Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.

Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.

From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .

If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.

The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.