When you are trying to solve an integration problem involving the product of two different types of functions, the regular integrations do not work; you need an advanced integration method like integration by parts. In exercise 7.6 of the chapter Integrals, we will learn about the integration by parts method, which will enable the students to solve complex integrals with the product of functions easily. This article on the NCERT Solutions for Exercise 7.6 of Class 12, Chapter 7 - Integrals, offers clear and easy-to-understand solutions for the problems given in the exercise. These solutions will clear all the doubts of the students regarding the integration by parts method and help them grasp the concepts and logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Integrate the functions $x \sin x$
Answer:
The given function is
$f(x)=x \sin x$
We will use integrate by parts method
$\int x\sin x \, dx = x \int \sin x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin x \, dx \right) dx$
$\int x\sin x \, dx = x(-\cos x) - \int (1 \cdot (-\cos x)) \, dx$
$\int x\sin x \, dx = -x\cos x + \sin x + C$
Therefore, the answer is $-x\cos x+\sin x + C$
Question 2: Integrate the functions $x \sin 3x$
Answer:
Given function is
$f(x)=x \sin 3x$
We will use integration by parts method
$\int x\sin 3x \, dx = x \int \sin 3x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin 3x \, dx \right) dx$
$\int x\sin 3x \, dx = x \cdot \left( \frac{-\cos 3x}{3} \right) - \int \left( 1 \cdot \frac{-\cos 3x}{3} \right) dx$
$\int x\sin 3x \, dx = -\frac{x\cos 3x}{3} + \frac{\sin 3x}{9} + C$
Therefore, the answer is $-\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C$
Question 3: Integrate the functions $x ^ 2 e ^x$
Answer:
The given function is
$f(x)=x^2e^x$
We will use the integration by parts method
$\int x^2 e^x \, dx = x^2 \int e^x \, dx - \int \left( \frac{d(x^2)}{dx} \cdot \int e^x \, dx \right) dx$
$\int x^2 e^x \, dx = x^2 e^x - \int (2x e^x) \, dx$
Again use integration by parts in $\int (2x.e^x)dx\\$
$\int (2x e^x) \, dx = 2x \int e^x \, dx - \int \left( \frac{d(2x)}{dx} \cdot \int e^x \, dx \right) dx$
$\int 2x e^x \, dx = 2x e^x - \int 2 e^x \, dx$
$\int 2x e^x \, dx = 2x e^x - 2e^x$
Put this value in our equation
we will get,
$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C$
$\int x^2 e^x \, dx = e^x (x^2 - 2x + 2) + C$
Therefore, answer is $e^x(x^2-2x+2)+ C$
Question 4: Integrate the functions $x \log x$
Answer:
Given function is
$f(x)=x.\log x$
We will use integration by parts method
$\int x \log x \, dx = \log x \cdot \int x \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \left( \frac{1}{x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\frac{x^2}{2}\log x- \frac{x^2}{4}+ C$
Question 5: Integrate the functions $x \log 2x$
Answer:
Given function is
$f(x)=x.\log 2 x$
We will use integration by parts method
$\int x \log 2x \, dx = \log 2x \cdot \int x \, dx - \int \left( \frac{d(\log 2x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \left( \frac{2}{2x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C$
Question 6: Integrate the functions $x^ 2 \log x$
Answer:
Given function is
$f(x)=x^2.\log x$
We will use integration by parts method
$\int x^2 \log x \, dx = \log x \cdot \int x^2 \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x^2 \, dx \right) dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \left( \frac{1}{x} \cdot \frac{x^3}{3} \right) dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \frac{x^2}{3} \, dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \frac{x^3}{9} + C$
Therefore, the answer is $\log x.\frac{x^3}{3}- \frac{x^3}{9}+ C$
Question 7: Integrate the functions $x \sin ^{ -1} x$
Answer:
Given function is
$f(x)=x.\sin^{-1} x$
We will use integration by parts method
$\int x \sin^{-1}x \, dx = \sin^{-1}x \int x \, dx - \int \left( \frac{d(\sin^{-1}x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \sin^{-1}x \, dx = \sin^{-1}x \cdot \frac{x^2}{2} - \int \left( \frac{1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1-x^2}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1-x^2} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1-x^2} \, dx - \int \frac{1}{\sqrt{1-x^2}} \, dx \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x - \sin^{-1} x \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1-x^2}}{4} - \frac{\sin^{-1} x}{4} + C$
Put this value in our equation
Therefore, the answer is $\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}$
Question 8: Integrate the functions $x \tan ^{-1} x$
Answer:
Given function is
$f(x)=x.\tan^{-1} x$
We will use integration by parts method
$\int x \tan^{-1} x \, dx = \tan^{-1} x \int x \, dx - \int \left( \frac{d(\tan^{-1} x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{1}{1 + x^2} \cdot \frac{x^2}{2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( \frac{x^2 + 1}{1 + x^2} - \frac{1}{1 + x^2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( 1 - \frac{1}{1 + x^2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \left( x - \tan^{-1} x \right) + C$
$\int x \tan^{-1} x \, dx = \frac{\tan^{-1} x}{2} \left( 2x^2 + 1 \right) - \frac{x}{2} + C$
Put this value in our equation
$\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \frac{x}{4\sqrt{1-x^2}}-\frac{\sin^{-1}x}{4}+C\\ \int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x}{4\sqrt{1-x^2}}$
Therefore, the answer is $\frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C$
Question 9: Integrate the functions $x\cos ^{ -1} x$
Answer:
Given function is
$f(x)=x.\cos^{-1} x$
We will use integration by parts method
$\int x \cos^{-1} x \, dx = \cos^{-1} x \int x \, dx - \int \left( \frac{d(\cos^{-1} x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \cos^{-1} x \, dx = \cos^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{-1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1 - x^2}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1 - x^2} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1 - x^2} \, dx - \int \frac{1}{\sqrt{1 - x^2}} \, dx \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1 - x^2} - \frac{1}{2} \cos^{-1} x + \cos^{-1} x \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1 - x^2}}{4} - \frac{\cos^{-1} x}{4} + \frac{\cos^{-1} x}{2} + C$
Put this value in our equation
$\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )\\ \\ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Therefore, the answer is $\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Question 10: Integrate the functions $( \sin ^{-1}x ) ^ 2$
Answer:
Given function is
$f(x)=( \sin ^{-1}x ) ^ 2$
we will use integration by parts method
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \int 1 \, dx - \int \left( \frac{d((\sin^{-1} x)^2)}{dx} \cdot \int 1 \, dx \right) dx$
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x - \int \left( \sin^{-1} x \cdot \frac{2x}{\sqrt{1 - x^2}} \right) dx$
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx - \int \left( \frac{d(\sin^{-1} x)}{dx} \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx \right) \right]$
$ = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot 2 \sqrt{1 - x^2} - \int \frac{1}{\sqrt{1 - x^2}} \cdot 2 \sqrt{1 - x^2} \, dx \right]$
$ = (\sin^{-1} x)^2 \cdot x + 2 \sin^{-1} x \sqrt{1 - x^2} - 2x + C$
Therefore, answer is $(\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C$
Question 11: Integrate the functions $\frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}$
Answer:
Consider $\int \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}dx =I$
So, we have then: $I = \frac{-1}{2}\int \frac{-2x}{\sqrt{1-x^2}}. \cos^{-1}x dx$
After taking $\cos ^{-1}x$ as a first function and $\left ( \frac{-2x}{\sqrt{1-x^2}} \right )$ as second function and integrating by parts, we get
$I =-\frac{1}{2}\left [ \cos^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx - \int\left \{ \left ( \frac{d}{dx}\cos^{-1}x \right )\int \frac{-2x}{\sqrt{1-x^2}}dx \right \}dx \right ]$ $=-\frac{1}{2}\left [ \cos^{-1}x.2{\sqrt{1-x^2}} + \int \frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-\int2dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-2x \right ]+C$
Or, $- \left( \sqrt{1 - x^2} \cos^{-1}x + x \right) + C$
Question 12: Integrate the functions $x \sec ^2 x$
Answer:
Consider $x \sec ^2 x$
So, we have then: $I =\int x\sec^2 x dx$
After taking $x$ as a first function and $\sec^2x$ as second function and integrating by parts, we get
$I =x\int \sec^2 x dx -\int \left \{ \left ( \frac{d}{dx}x \right )\int \sec^2 x dx \right \}dx$
$= x\tan x -\int1.\tan x dx$
$= x\tan x +\log|\cos x | +C$
Question 13: Integrate the functions $\tan ^{-1} x$
Answer:
Consider $\tan ^{-1} x$
So, we have then: $I =\int 1.\tan^{-1}x dx$
After taking $\tan^{-1}x$ as a first function and $1$ as second function and integrating by parts, we get
$I = \tan^{-1}x \int 1dx -\int \left \{ \left ( \frac{d}{dx}\tan^{-1}x \right )\int1.dx \right \}dx$
$= \tan^{-1}x.x -\int \frac{1}{1+x^2}.xdx$
$= x\tan^{-1}x -\frac{1}{2}\int \frac{2x}{1+x^2}dx$
$= x\tan^{-1}x -\frac{1}{2}\log|1+x^2|+C$
$= x\tan^{-1}x -\frac{1}{2}\log(1+x^2)+C$
Question 14: Integrate the functions $x ( \log x )^ 2$
Answer:
Consider $x ( \log x )^ 2$
So, we have then: $I = \int x(\log x)^2 dx$
After taking $(\log x )^2$ as a first function and $x$ as second function and integrating by parts, we get
$I = (\log x )^2 \int xdx -\int \left \{ \left ( \frac{d}{dx} (\log x)^2 \right )\int x.dx \right \}dx$
$= (\log x)^2 .\frac{x^2}{2} - \int \frac{2\log x }{x}.\frac{x^2}{2} dx$
$= (\log x)^2 .\frac{x^2}{2} - \int x\log x dx$
$= (\log x)^2 .\frac{x^2}{2} - \left ( \frac{x^2 \log x }{2} -\frac{x^2}{4} \right )+C$
Question 15: Integrate the functions $( x^2 + 1 ) \log x$
Answer:
Consider $( x^2 + 1 ) \log x$
So, we have then: $I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx$
Let us take $I = I_{1} +I_{2}$ ....................(1)
Where, $I_{1} = \int x^2\log x dx$ and $I_{2} = \int \log x dx$
So, $I_{1} = \int x^2\log x dx$
After taking $\log x$ as a first function and $x^2$ as second function and integrating by parts, we get
$I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx$
$= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx$
$= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1}$ ....................(2)
$I_{2} = \int \log x dx$
After taking $\log x$ as a first function and $1$ as second function and integrating by parts, we get
$I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx$
$= \log x .x -\int \frac{1}{x}. xdx$
$= x\log x -\int 1 dx$
$= x\log x -x +C_{2}$ ................(3)
Now, using the two equations (2) and (3) in (1) we get,
$I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}$
$= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})$
$=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C$
Question 16: Integrate the functions $e ^ x ( \sin x + \cos x )$
Answer:
Let suppose
$I =$ $e ^ x ( \sin x + \cos x )$
$f(x) = \sin x \Rightarrow f'(x) = \cos x$
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
Thus, the solution of the given integral is given by
$\therefore I = e^x\sin x +C$
Question 17: Integrate the functions $\frac{x e ^x }{( 1+ x )^2}$
Answer:
$\frac{x e ^x }{( 1+ x )^2}$
Let suppose
$I = \int \frac{e^x(x)}{(1+x)^2}dx$
by rearranging the equation, we get
$\Rightarrow \int e^x[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx$
let
$f(x)=\frac{1}{1+x} \Rightarrow f'(x)= -\frac{1}{(1+x)^2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
therefore the solution of the given integral is
$I = \frac{e^x}{1+x}+C$
Question 18: Integrate the functions $e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
Answer:
Let
$I =e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
substitute $1 =\sin ^2\frac{x}{2}+\cos^2\frac{x}{2}$ and $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$
$\\\Rightarrow e^x(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}})\\ =e^x(\frac{1}{2}\sec^2\frac{x}{2}+\tan\frac{x}{2})\\$
let
$f(x) =\tan\frac{x}{2} \Rightarrow f'(x)=\frac{1}{2}\sec^2\frac{x}{2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
Therefore the solution of the given integral is
$I = e^x\tan\frac{x}{2} +C$
Question 19: Integrate the functions $e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
Answer:
$e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
It is known that
$\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
let
$f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}$
Therefore the required solution of the given above integral is
$I = e^x.\frac{1}{x}+C$
Question 20: Integrate the functions $\frac{( x-3)e ^x }{( x-1)^3}$
Answer:
$\frac{( x-3)e ^x }{( x-1)^3}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
So, By adjusting the given equation, we get
$\int\frac{( x-3)e ^x }{( x-1)^3} =\int e^x(\frac{x-1-2}{(x-1)^3}) =\int e^x({\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3})}dx$
to let
$f(x)=\frac{1}{(x-1)^2}\Rightarrow f'(x)=-\frac{2}{(x-1)^3}$
Therefore the required solution of the given $I=\frac{e^x}{(x-1)^2}+C$ integral is
Question 21: Integrate the functions $e ^{ 2x } \sin x$
Answer:
Let
$I =e ^{ 2x } \sin x$
By using integrating by parts, we get
$\\ = \sin x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \sin x \cdot \int e^{2x} \, dx \right) dx$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \int e^{2x} \cos x \, dx$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \cos x \cdot \int e^{2x} \, dx \right) dx \right]$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \cdot \frac{e^{2x}}{2} + \frac{1}{2} \int e^{2x} \sin x \, dx \right]$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x} - \frac{1}{4} I$
$\Rightarrow \frac{5}{4} I = \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x}$
$I = \frac{e^{2x}}{5} \left( 2 \sin x - \cos x \right) + C$
Question 22: Integrate the functions $\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
Answer:
$\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
$\int \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
$\\=\int\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\\ = 2 \left[ \theta \int \sec^2 \theta \, d\theta - \int \left( \frac{d}{d\theta} \theta \cdot \int \sec^2 \theta \, d\theta \right) d\theta \right]$
$ = 2 \left[ \theta \tan \theta - \int \tan \theta \, d\theta \right] + C$
$ = 2 \left[ \theta \tan \theta + \log \left| \cos \theta \right| \right] + C$
$ = 2x \tan^{-1} x + 2 \log \left( (1 + x^2)^{-1/2} \right)$
$ = 2x \tan^{-1} x - \log (1 + x^2) + C$
Question 23: Choose the correct answer
$\int x ^ 2 e ^{x ^3 } dx \: \: equals$
$A)\ \frac{1}{3} e^{x^3} + C$
$B)\ \frac{1}{3} e^{x^2} + C$
$C)\ \frac{1}{2} e^{x^3} + C$
$D)\ \frac{1}{2} e^{x^2} + C$
Answer:
the integration can be done ass follows
Let $x^3 = t \Rightarrow 3x^2 \, dx = dt$
$\Rightarrow I = \frac{1}{3} \int e^t \, dt = \frac{1}{3} e^t + C = \frac{1}{3} e^{x^3} + C$
Question 24: Choose the correct answer
$\int e ^ x \sec ( 1+ \tan x ) dx \: \: \: equals$
$A)\ e^x \cos x + C$
$B)\ e^x \sec x + C$
$C)\ e^x \sin x + C$
$D)\ e^x \tan x + C$
Answer:
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
from above integral
let
$f(x)=\sec x\Rightarrow f'(x)= \sec x.\tan x$
thus, the solution of the above integral is
$I=e^x\sec x+C$
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.6 is:
Integration by parts: This method of integration is quite useful when integrating the product of functions, and this method follows a simple formula:
$\int f(x) g(x) d x=f(x) \int g(x) d x-\int\left[f^{\prime}(x) \int g(x) d x\right] d x$
Where $f(x)$ is the first function, $g(x)$ is the second function, and $f'(x)$ is the first derivative of the functions $f(x)$.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
There are broadly 2 types of integration, i.e Definite and indefinite Integrals.
Indefinite integrals are defined without upper and lower limits i.e its range is not defined.
Integrals can be used in finding the quantities of area, volume, displacement etc.
This exercise mainly deals with advanced level of problems which are important for competitive examinations only. In the board examination, 5 markers can be asked from this exercise.
Integrals of logarithmic, exponential and inverse trigonometric functions are discussed in this exercise.
There are 24 questions in this Exercise 7.6 Class 12 Maths.
On Question asked by student community
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters