NCERT Solutions for Exercise 7.6 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.6 Class 12 Maths Chapter 7 - Integrals

Komal MiglaniUpdated on 25 Apr 2025, 09:58 AM IST

When you are trying to solve an integration problem involving the product of two different types of functions, the regular integrations do not work; you need an advanced integration method like integration by parts. In exercise 7.6 of the chapter Integrals, we will learn about the integration by parts method, which will enable the students to solve complex integrals with the product of functions easily. This article on the NCERT Solutions for Exercise 7.6 of Class 12, Chapter 7 - Integrals, offers clear and easy-to-understand solutions for the problems given in the exercise. These solutions will clear all the doubts of the students regarding the integration by parts method and help them grasp the concepts and logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.6 Solutions: Download PDF
  2. Integrals Class 12 Chapter 7 Exercise: 7.6
  3. Topics covered in Chapter 7, Integrals: Exercise 7.6
  4. NCERT Solutions Subject Wise
  5. NCERT Exemplar Solutions Subject Wise

Class 12 Maths Chapter 7 Exercise 7.6 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.6

Question 1: Integrate the functions $x \sin x$

Answer:

The given function is
$f(x)=x \sin x$
We will use integrate by parts method

$\int x\sin x \, dx = x \int \sin x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin x \, dx \right) dx$
$\int x\sin x \, dx = x(-\cos x) - \int (1 \cdot (-\cos x)) \, dx$
$\int x\sin x \, dx = -x\cos x + \sin x + C$
Therefore, the answer is $-x\cos x+\sin x + C$

Question 2: Integrate the functions $x \sin 3x$

Answer:

Given function is
$f(x)=x \sin 3x$
We will use integration by parts method

$\int x\sin 3x \, dx = x \int \sin 3x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin 3x \, dx \right) dx$

$\int x\sin 3x \, dx = x \cdot \left( \frac{-\cos 3x}{3} \right) - \int \left( 1 \cdot \frac{-\cos 3x}{3} \right) dx$

$\int x\sin 3x \, dx = -\frac{x\cos 3x}{3} + \frac{\sin 3x}{9} + C$
Therefore, the answer is $-\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C$

Question 3: Integrate the functions $x ^ 2 e ^x$

Answer:

The given function is
$f(x)=x^2e^x$
We will use the integration by parts method

$\int x^2 e^x \, dx = x^2 \int e^x \, dx - \int \left( \frac{d(x^2)}{dx} \cdot \int e^x \, dx \right) dx$

$\int x^2 e^x \, dx = x^2 e^x - \int (2x e^x) \, dx$
Again use integration by parts in $\int (2x.e^x)dx\\$

$\int (2x e^x) \, dx = 2x \int e^x \, dx - \int \left( \frac{d(2x)}{dx} \cdot \int e^x \, dx \right) dx$

$\int 2x e^x \, dx = 2x e^x - \int 2 e^x \, dx$

$\int 2x e^x \, dx = 2x e^x - 2e^x$
Put this value in our equation
we will get,

$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C$

$\int x^2 e^x \, dx = e^x (x^2 - 2x + 2) + C$

Therefore, answer is $e^x(x^2-2x+2)+ C$

Question 4: Integrate the functions $x \log x$

Answer:

Given function is
$f(x)=x.\log x$
We will use integration by parts method
$\int x \log x \, dx = \log x \cdot \int x \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \left( \frac{1}{x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$

Therefore, the answer is $\frac{x^2}{2}\log x- \frac{x^2}{4}+ C$

Question 5: Integrate the functions $x \log 2x$

Answer:

Given function is
$f(x)=x.\log 2 x$
We will use integration by parts method

$\int x \log 2x \, dx = \log 2x \cdot \int x \, dx - \int \left( \frac{d(\log 2x)}{dx} \cdot \int x \, dx \right) dx$

$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \left( \frac{2}{2x} \cdot \frac{x^2}{2} \right) dx$

$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$

$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C$

Question 6: Integrate the functions $x^ 2 \log x$

Answer:

Given function is
$f(x)=x^2.\log x$
We will use integration by parts method

$\int x^2 \log x \, dx = \log x \cdot \int x^2 \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x^2 \, dx \right) dx$

$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \left( \frac{1}{x} \cdot \frac{x^3}{3} \right) dx$

$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \frac{x^2}{3} \, dx$

$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \frac{x^3}{9} + C$
Therefore, the answer is $\log x.\frac{x^3}{3}- \frac{x^3}{9}+ C$

Question 7: Integrate the functions $x \sin ^{ -1} x$

Answer:

Given function is
$f(x)=x.\sin^{-1} x$
We will use integration by parts method

$\int x \sin^{-1}x \, dx = \sin^{-1}x \int x \, dx - \int \left( \frac{d(\sin^{-1}x)}{dx} \cdot \int x \, dx \right) dx$

$\int x \sin^{-1}x \, dx = \sin^{-1}x \cdot \frac{x^2}{2} - \int \left( \frac{1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1-x^2}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1-x^2} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1-x^2} \, dx - \int \frac{1}{\sqrt{1-x^2}} \, dx \right)$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x - \sin^{-1} x \right)$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1-x^2}}{4} - \frac{\sin^{-1} x}{4} + C$

Put this value in our equation

Therefore, the answer is $\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}$

Question 8: Integrate the functions $x \tan ^{-1} x$

Answer:

Given function is
$f(x)=x.\tan^{-1} x$
We will use integration by parts method

$\int x \tan^{-1} x \, dx = \tan^{-1} x \int x \, dx - \int \left( \frac{d(\tan^{-1} x)}{dx} \cdot \int x \, dx \right) dx$

$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{1}{1 + x^2} \cdot \frac{x^2}{2} \right) dx$

$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( \frac{x^2 + 1}{1 + x^2} - \frac{1}{1 + x^2} \right) dx$

$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( 1 - \frac{1}{1 + x^2} \right) dx$

$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \left( x - \tan^{-1} x \right) + C$

$\int x \tan^{-1} x \, dx = \frac{\tan^{-1} x}{2} \left( 2x^2 + 1 \right) - \frac{x}{2} + C$
Put this value in our equation
$\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \frac{x}{4\sqrt{1-x^2}}-\frac{\sin^{-1}x}{4}+C\\ \int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x}{4\sqrt{1-x^2}}$

Therefore, the answer is $\frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C$

Question 9: Integrate the functions $x\cos ^{ -1} x$

Answer:

Given function is
$f(x)=x.\cos^{-1} x$
We will use integration by parts method

$\int x \cos^{-1} x \, dx = \cos^{-1} x \int x \, dx - \int \left( \frac{d(\cos^{-1} x)}{dx} \cdot \int x \, dx \right) dx$

$\int x \cos^{-1} x \, dx = \cos^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{-1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1 - x^2}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1 - x^2} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1 - x^2} \, dx - \int \frac{1}{\sqrt{1 - x^2}} \, dx \right)$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1 - x^2} - \frac{1}{2} \cos^{-1} x + \cos^{-1} x \right)$

$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1 - x^2}}{4} - \frac{\cos^{-1} x}{4} + \frac{\cos^{-1} x}{2} + C$
Put this value in our equation
$\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )\\ \\ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$

Therefore, the answer is $\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$

Question 10: Integrate the functions $( \sin ^{-1}x ) ^ 2$

Answer:

Given function is
$f(x)=( \sin ^{-1}x ) ^ 2$
we will use integration by parts method

$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \int 1 \, dx - \int \left( \frac{d((\sin^{-1} x)^2)}{dx} \cdot \int 1 \, dx \right) dx$

$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x - \int \left( \sin^{-1} x \cdot \frac{2x}{\sqrt{1 - x^2}} \right) dx$

$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx - \int \left( \frac{d(\sin^{-1} x)}{dx} \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx \right) \right]$

$ = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot 2 \sqrt{1 - x^2} - \int \frac{1}{\sqrt{1 - x^2}} \cdot 2 \sqrt{1 - x^2} \, dx \right]$

$ = (\sin^{-1} x)^2 \cdot x + 2 \sin^{-1} x \sqrt{1 - x^2} - 2x + C$
Therefore, answer is $(\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C$

Question 11: Integrate the functions $\frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}$

Answer:

Consider $\int \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}dx =I$

So, we have then: $I = \frac{-1}{2}\int \frac{-2x}{\sqrt{1-x^2}}. \cos^{-1}x dx$

After taking $\cos ^{-1}x$ as a first function and $\left ( \frac{-2x}{\sqrt{1-x^2}} \right )$ as second function and integrating by parts, we get

$I =-\frac{1}{2}\left [ \cos^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx - \int\left \{ \left ( \frac{d}{dx}\cos^{-1}x \right )\int \frac{-2x}{\sqrt{1-x^2}}dx \right \}dx \right ]$ $=-\frac{1}{2}\left [ \cos^{-1}x.2{\sqrt{1-x^2}} + \int \frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]$

$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-\int2dx \right ]$

$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-2x \right ]+C$

Or, $- \left( \sqrt{1 - x^2} \cos^{-1}x + x \right) + C$

Question 12: Integrate the functions $x \sec ^2 x$

Answer:

Consider $x \sec ^2 x$

So, we have then: $I =\int x\sec^2 x dx$

After taking $x$ as a first function and $\sec^2x$ as second function and integrating by parts, we get

$I =x\int \sec^2 x dx -\int \left \{ \left ( \frac{d}{dx}x \right )\int \sec^2 x dx \right \}dx$

$= x\tan x -\int1.\tan x dx$

$= x\tan x +\log|\cos x | +C$

Question 13: Integrate the functions $\tan ^{-1} x$

Answer:

Consider $\tan ^{-1} x$

So, we have then: $I =\int 1.\tan^{-1}x dx$

After taking $\tan^{-1}x$ as a first function and $1$ as second function and integrating by parts, we get

$I = \tan^{-1}x \int 1dx -\int \left \{ \left ( \frac{d}{dx}\tan^{-1}x \right )\int1.dx \right \}dx$

$= \tan^{-1}x.x -\int \frac{1}{1+x^2}.xdx$

$= x\tan^{-1}x -\frac{1}{2}\int \frac{2x}{1+x^2}dx$

$= x\tan^{-1}x -\frac{1}{2}\log|1+x^2|+C$

$= x\tan^{-1}x -\frac{1}{2}\log(1+x^2)+C$

Question 14: Integrate the functions $x ( \log x )^ 2$

Answer:

Consider $x ( \log x )^ 2$

So, we have then: $I = \int x(\log x)^2 dx$

After taking $(\log x )^2$ as a first function and $x$ as second function and integrating by parts, we get

$I = (\log x )^2 \int xdx -\int \left \{ \left ( \frac{d}{dx} (\log x)^2 \right )\int x.dx \right \}dx$

$= (\log x)^2 .\frac{x^2}{2} - \int \frac{2\log x }{x}.\frac{x^2}{2} dx$

$= (\log x)^2 .\frac{x^2}{2} - \int x\log x dx$

$= (\log x)^2 .\frac{x^2}{2} - \left ( \frac{x^2 \log x }{2} -\frac{x^2}{4} \right )+C$

Question 15: Integrate the functions $( x^2 + 1 ) \log x$

Answer:

Consider $( x^2 + 1 ) \log x$

So, we have then: $I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx$

Let us take $I = I_{1} +I_{2}$ ....................(1)

Where, $I_{1} = \int x^2\log x dx$ and $I_{2} = \int \log x dx$

So, $I_{1} = \int x^2\log x dx$

After taking $\log x$ as a first function and $x^2$ as second function and integrating by parts, we get

$I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx$

$= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx$

$= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1}$ ....................(2)

$I_{2} = \int \log x dx$

After taking $\log x$ as a first function and $1$ as second function and integrating by parts, we get

$I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx$

$= \log x .x -\int \frac{1}{x}. xdx$

$= x\log x -\int 1 dx$

$= x\log x -x +C_{2}$ ................(3)

Now, using the two equations (2) and (3) in (1) we get,

$I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}$

$= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})$

$=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C$

Question 16: Integrate the functions $e ^ x ( \sin x + \cos x )$

Answer:

Let suppose
$I =$ $e ^ x ( \sin x + \cos x )$
$f(x) = \sin x \Rightarrow f'(x) = \cos x$
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
Thus, the solution of the given integral is given by

$\therefore I = e^x\sin x +C$

Question 17: Integrate the functions $\frac{x e ^x }{( 1+ x )^2}$

Answer:

$\frac{x e ^x }{( 1+ x )^2}$
Let suppose
$I = \int \frac{e^x(x)}{(1+x)^2}dx$
by rearranging the equation, we get
$\Rightarrow \int e^x[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx$
let
$f(x)=\frac{1}{1+x} \Rightarrow f'(x)= -\frac{1}{(1+x)^2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
therefore the solution of the given integral is

$I = \frac{e^x}{1+x}+C$

Question 18: Integrate the functions $e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$

Answer:

Let
$I =e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
substitute $1 =\sin ^2\frac{x}{2}+\cos^2\frac{x}{2}$ and $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$

$\\\Rightarrow e^x(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}})\\ =e^x(\frac{1}{2}\sec^2\frac{x}{2}+\tan\frac{x}{2})\\$
let
$f(x) =\tan\frac{x}{2} \Rightarrow f'(x)=\frac{1}{2}\sec^2\frac{x}{2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
Therefore the solution of the given integral is

$I = e^x\tan\frac{x}{2} +C$

Question 19: Integrate the functions $e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$

Answer:

$e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
It is known that
$\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$

let
$f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}$
Therefore the required solution of the given above integral is
$I = e^x.\frac{1}{x}+C$

Question 20: Integrate the functions $\frac{( x-3)e ^x }{( x-1)^3}$

Answer:

$\frac{( x-3)e ^x }{( x-1)^3}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$

So, By adjusting the given equation, we get
$\int\frac{( x-3)e ^x }{( x-1)^3} =\int e^x(\frac{x-1-2}{(x-1)^3}) =\int e^x({\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3})}dx$

to let
$f(x)=\frac{1}{(x-1)^2}\Rightarrow f'(x)=-\frac{2}{(x-1)^3}$
Therefore the required solution of the given $I=\frac{e^x}{(x-1)^2}+C$ integral is

Question 21: Integrate the functions $e ^{ 2x } \sin x$

Answer:

Let
$I =e ^{ 2x } \sin x$
By using integrating by parts, we get

$\\ = \sin x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \sin x \cdot \int e^{2x} \, dx \right) dx$

$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \int e^{2x} \cos x \, dx$

$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \cos x \cdot \int e^{2x} \, dx \right) dx \right]$

$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \cdot \frac{e^{2x}}{2} + \frac{1}{2} \int e^{2x} \sin x \, dx \right]$

$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x} - \frac{1}{4} I$

$\Rightarrow \frac{5}{4} I = \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x}$

$I = \frac{e^{2x}}{5} \left( 2 \sin x - \cos x \right) + C$

Question 22: Integrate the functions $\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$

Answer:

$\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$

$\int \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$

$\\=\int\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method

$\\ = 2 \left[ \theta \int \sec^2 \theta \, d\theta - \int \left( \frac{d}{d\theta} \theta \cdot \int \sec^2 \theta \, d\theta \right) d\theta \right]$

$ = 2 \left[ \theta \tan \theta - \int \tan \theta \, d\theta \right] + C$

$ = 2 \left[ \theta \tan \theta + \log \left| \cos \theta \right| \right] + C$

$ = 2x \tan^{-1} x + 2 \log \left( (1 + x^2)^{-1/2} \right)$

$ = 2x \tan^{-1} x - \log (1 + x^2) + C$

Question 23: Choose the correct answer

$\int x ^ 2 e ^{x ^3 } dx \: \: equals$

$A)\ \frac{1}{3} e^{x^3} + C$

$B)\ \frac{1}{3} e^{x^2} + C$

$C)\ \frac{1}{2} e^{x^3} + C$

$D)\ \frac{1}{2} e^{x^2} + C$

Answer:

the integration can be done ass follows

Let $x^3 = t \Rightarrow 3x^2 \, dx = dt$

$\Rightarrow I = \frac{1}{3} \int e^t \, dt = \frac{1}{3} e^t + C = \frac{1}{3} e^{x^3} + C$

Question 24: Choose the correct answer

$\int e ^ x \sec ( 1+ \tan x ) dx \: \: \: equals$

$A)\ e^x \cos x + C$

$B)\ e^x \sec x + C$

$C)\ e^x \sin x + C$

$D)\ e^x \tan x + C$

Answer:

we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
from above integral
let
$f(x)=\sec x\Rightarrow f'(x)= \sec x.\tan x$
thus, the solution of the above integral is
$I=e^x\sec x+C$


Also Read,

Topics covered in Chapter 7, Integrals: Exercise 7.6

The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.6 is:

Integration by parts: This method of integration is quite useful when integrating the product of functions, and this method follows a simple formula:

$\int f(x) g(x) d x=f(x) \int g(x) d x-\int\left[f^{\prime}(x) \int g(x) d x\right] d x$

Where $f(x)$ is the first function, $g(x)$ is the second function, and $f'(x)$ is the first derivative of the functions $f(x)$.

Also Read,

NCERT Solutions Subject Wise

Below are some useful links for subject-wise NCERT solutions for class 12.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook
CBSE Class 12th Syllabus: Subjects & Chapters
Select your preferred subject to view the chapters

NCERT Exemplar Solutions Subject Wise

Here are some links to subject-wise solutions for the NCERT exemplar class 12.

Frequently Asked Questions (FAQs)

Q: What are different types of Integration ?
A:

There are broadly 2 types of integration, i.e Definite and indefinite Integrals. 

Q: What are indefinite integrals ?
A:

Indefinite integrals are defined without upper and lower limits i.e its range is not defined. 

Q: What are the applications of Integrals ?
A:

Integrals can be used in finding the quantities of area, volume, displacement etc. 

Q: Are questions given here very difficult ?
A:

This exercise mainly deals with advanced level of problems which are important for competitive examinations only. In the board examination, 5 markers can be asked from this exercise. 

Q: Mention some of the topics in Exercise 7.6 Class 12 Maths.
A:

Integrals of logarithmic, exponential and inverse trigonometric functions are discussed in this exercise. 

Q: Mention the total number of questions in this Exercise 7.6 Class 12 Maths.
A:

There are 24 questions in this Exercise 7.6 Class 12 Maths.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified

HELLO,

Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF

Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths

Hope this will help you!

Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your

The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.

The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the