When you are trying to solve an integration problem involving the product of two different types of functions, the regular integrations do not work; you need an advanced integration method like integration by parts. In exercise 7.6 of the chapter Integrals, we will learn about the integration by parts method, which will enable the students to solve complex integrals with the product of functions easily. This article on the NCERT Solutions for Exercise 7.6 of Class 12, Chapter 7 - Integrals, offers clear and easy-to-understand solutions for the problems given in the exercise. These solutions will clear all the doubts of the students regarding the integration by parts method and help them grasp the concepts and logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Integrate the functions $x \sin x$
Answer:
The given function is
$f(x)=x \sin x$
We will use integrate by parts method
$\int x\sin x \, dx = x \int \sin x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin x \, dx \right) dx$
$\int x\sin x \, dx = x(-\cos x) - \int (1 \cdot (-\cos x)) \, dx$
$\int x\sin x \, dx = -x\cos x + \sin x + C$
Therefore, the answer is $-x\cos x+\sin x + C$
Question 2: Integrate the functions $x \sin 3x$
Answer:
Given function is
$f(x)=x \sin 3x$
We will use integration by parts method
$\int x\sin 3x \, dx = x \int \sin 3x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin 3x \, dx \right) dx$
$\int x\sin 3x \, dx = x \cdot \left( \frac{-\cos 3x}{3} \right) - \int \left( 1 \cdot \frac{-\cos 3x}{3} \right) dx$
$\int x\sin 3x \, dx = -\frac{x\cos 3x}{3} + \frac{\sin 3x}{9} + C$
Therefore, the answer is $-\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C$
Question 3: Integrate the functions $x ^ 2 e ^x$
Answer:
The given function is
$f(x)=x^2e^x$
We will use the integration by parts method
$\int x^2 e^x \, dx = x^2 \int e^x \, dx - \int \left( \frac{d(x^2)}{dx} \cdot \int e^x \, dx \right) dx$
$\int x^2 e^x \, dx = x^2 e^x - \int (2x e^x) \, dx$
Again use integration by parts in $\int (2x.e^x)dx\\$
$\int (2x e^x) \, dx = 2x \int e^x \, dx - \int \left( \frac{d(2x)}{dx} \cdot \int e^x \, dx \right) dx$
$\int 2x e^x \, dx = 2x e^x - \int 2 e^x \, dx$
$\int 2x e^x \, dx = 2x e^x - 2e^x$
Put this value in our equation
we will get,
$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C$
$\int x^2 e^x \, dx = e^x (x^2 - 2x + 2) + C$
Therefore, answer is $e^x(x^2-2x+2)+ C$
Question 4: Integrate the functions $x \log x$
Answer:
Given function is
$f(x)=x.\log x$
We will use integration by parts method
$\int x \log x \, dx = \log x \cdot \int x \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \left( \frac{1}{x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\frac{x^2}{2}\log x- \frac{x^2}{4}+ C$
Question 5: Integrate the functions $x \log 2x$
Answer:
Given function is
$f(x)=x.\log 2 x$
We will use integration by parts method
$\int x \log 2x \, dx = \log 2x \cdot \int x \, dx - \int \left( \frac{d(\log 2x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \left( \frac{2}{2x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C$
Question 6: Integrate the functions $x^ 2 \log x$
Answer:
Given function is
$f(x)=x^2.\log x$
We will use integration by parts method
$\int x^2 \log x \, dx = \log x \cdot \int x^2 \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x^2 \, dx \right) dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \left( \frac{1}{x} \cdot \frac{x^3}{3} \right) dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \frac{x^2}{3} \, dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \frac{x^3}{9} + C$
Therefore, the answer is $\log x.\frac{x^3}{3}- \frac{x^3}{9}+ C$
Question 7: Integrate the functions $x \sin ^{ -1} x$
Answer:
Given function is
$f(x)=x.\sin^{-1} x$
We will use integration by parts method
$\int x \sin^{-1}x \, dx = \sin^{-1}x \int x \, dx - \int \left( \frac{d(\sin^{-1}x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \sin^{-1}x \, dx = \sin^{-1}x \cdot \frac{x^2}{2} - \int \left( \frac{1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1-x^2}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1-x^2} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1-x^2} \, dx - \int \frac{1}{\sqrt{1-x^2}} \, dx \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x - \sin^{-1} x \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1-x^2}}{4} - \frac{\sin^{-1} x}{4} + C$
Put this value in our equation
Therefore, the answer is $\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}$
Question 8: Integrate the functions $x \tan ^{-1} x$
Answer:
Given function is
$f(x)=x.\tan^{-1} x$
We will use integration by parts method
$\int x \tan^{-1} x \, dx = \tan^{-1} x \int x \, dx - \int \left( \frac{d(\tan^{-1} x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{1}{1 + x^2} \cdot \frac{x^2}{2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( \frac{x^2 + 1}{1 + x^2} - \frac{1}{1 + x^2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( 1 - \frac{1}{1 + x^2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \left( x - \tan^{-1} x \right) + C$
$\int x \tan^{-1} x \, dx = \frac{\tan^{-1} x}{2} \left( 2x^2 + 1 \right) - \frac{x}{2} + C$
Put this value in our equation
$\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \frac{x}{4\sqrt{1-x^2}}-\frac{\sin^{-1}x}{4}+C\\ \int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x}{4\sqrt{1-x^2}}$
Therefore, the answer is $\frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C$
Question 9: Integrate the functions $x\cos ^{ -1} x$
Answer:
Given function is
$f(x)=x.\cos^{-1} x$
We will use integration by parts method
$\int x \cos^{-1} x \, dx = \cos^{-1} x \int x \, dx - \int \left( \frac{d(\cos^{-1} x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \cos^{-1} x \, dx = \cos^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{-1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1 - x^2}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1 - x^2} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1 - x^2} \, dx - \int \frac{1}{\sqrt{1 - x^2}} \, dx \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1 - x^2} - \frac{1}{2} \cos^{-1} x + \cos^{-1} x \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1 - x^2}}{4} - \frac{\cos^{-1} x}{4} + \frac{\cos^{-1} x}{2} + C$
Put this value in our equation
$\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )\\ \\ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Therefore, the answer is $\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Question 10: Integrate the functions $( \sin ^{-1}x ) ^ 2$
Answer:
Given function is
$f(x)=( \sin ^{-1}x ) ^ 2$
we will use integration by parts method
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \int 1 \, dx - \int \left( \frac{d((\sin^{-1} x)^2)}{dx} \cdot \int 1 \, dx \right) dx$
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x - \int \left( \sin^{-1} x \cdot \frac{2x}{\sqrt{1 - x^2}} \right) dx$
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx - \int \left( \frac{d(\sin^{-1} x)}{dx} \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx \right) \right]$
$ = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot 2 \sqrt{1 - x^2} - \int \frac{1}{\sqrt{1 - x^2}} \cdot 2 \sqrt{1 - x^2} \, dx \right]$
$ = (\sin^{-1} x)^2 \cdot x + 2 \sin^{-1} x \sqrt{1 - x^2} - 2x + C$
Therefore, answer is $(\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C$
Question 11: Integrate the functions $\frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}$
Answer:
Consider $\int \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}dx =I$
So, we have then: $I = \frac{-1}{2}\int \frac{-2x}{\sqrt{1-x^2}}. \cos^{-1}x dx$
After taking $\cos ^{-1}x$ as a first function and $\left ( \frac{-2x}{\sqrt{1-x^2}} \right )$ as second function and integrating by parts, we get
$I =-\frac{1}{2}\left [ \cos^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx - \int\left \{ \left ( \frac{d}{dx}\cos^{-1}x \right )\int \frac{-2x}{\sqrt{1-x^2}}dx \right \}dx \right ]$ $=-\frac{1}{2}\left [ \cos^{-1}x.2{\sqrt{1-x^2}} + \int \frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-\int2dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-2x \right ]+C$
Or, $- \left( \sqrt{1 - x^2} \cos^{-1}x + x \right) + C$
Question 12: Integrate the functions $x \sec ^2 x$
Answer:
Consider $x \sec ^2 x$
So, we have then: $I =\int x\sec^2 x dx$
After taking $x$ as a first function and $\sec^2x$ as second function and integrating by parts, we get
$I =x\int \sec^2 x dx -\int \left \{ \left ( \frac{d}{dx}x \right )\int \sec^2 x dx \right \}dx$
$= x\tan x -\int1.\tan x dx$
$= x\tan x +\log|\cos x | +C$
Question 13: Integrate the functions $\tan ^{-1} x$
Answer:
Consider $\tan ^{-1} x$
So, we have then: $I =\int 1.\tan^{-1}x dx$
After taking $\tan^{-1}x$ as a first function and $1$ as second function and integrating by parts, we get
$I = \tan^{-1}x \int 1dx -\int \left \{ \left ( \frac{d}{dx}\tan^{-1}x \right )\int1.dx \right \}dx$
$= \tan^{-1}x.x -\int \frac{1}{1+x^2}.xdx$
$= x\tan^{-1}x -\frac{1}{2}\int \frac{2x}{1+x^2}dx$
$= x\tan^{-1}x -\frac{1}{2}\log|1+x^2|+C$
$= x\tan^{-1}x -\frac{1}{2}\log(1+x^2)+C$
Question 14: Integrate the functions $x ( \log x )^ 2$
Answer:
Consider $x ( \log x )^ 2$
So, we have then: $I = \int x(\log x)^2 dx$
After taking $(\log x )^2$ as a first function and $x$ as second function and integrating by parts, we get
$I = (\log x )^2 \int xdx -\int \left \{ \left ( \frac{d}{dx} (\log x)^2 \right )\int x.dx \right \}dx$
$= (\log x)^2 .\frac{x^2}{2} - \int \frac{2\log x }{x}.\frac{x^2}{2} dx$
$= (\log x)^2 .\frac{x^2}{2} - \int x\log x dx$
$= (\log x)^2 .\frac{x^2}{2} - \left ( \frac{x^2 \log x }{2} -\frac{x^2}{4} \right )+C$
Question 15: Integrate the functions $( x^2 + 1 ) \log x$
Answer:
Consider $( x^2 + 1 ) \log x$
So, we have then: $I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx$
Let us take $I = I_{1} +I_{2}$ ....................(1)
Where, $I_{1} = \int x^2\log x dx$ and $I_{2} = \int \log x dx$
So, $I_{1} = \int x^2\log x dx$
After taking $\log x$ as a first function and $x^2$ as second function and integrating by parts, we get
$I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx$
$= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx$
$= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1}$ ....................(2)
$I_{2} = \int \log x dx$
After taking $\log x$ as a first function and $1$ as second function and integrating by parts, we get
$I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx$
$= \log x .x -\int \frac{1}{x}. xdx$
$= x\log x -\int 1 dx$
$= x\log x -x +C_{2}$ ................(3)
Now, using the two equations (2) and (3) in (1) we get,
$I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}$
$= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})$
$=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C$
Question 16: Integrate the functions $e ^ x ( \sin x + \cos x )$
Answer:
Let suppose
$I =$ $e ^ x ( \sin x + \cos x )$
$f(x) = \sin x \Rightarrow f'(x) = \cos x$
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
Thus, the solution of the given integral is given by
$\therefore I = e^x\sin x +C$
Question 17: Integrate the functions $\frac{x e ^x }{( 1+ x )^2}$
Answer:
$\frac{x e ^x }{( 1+ x )^2}$
Let suppose
$I = \int \frac{e^x(x)}{(1+x)^2}dx$
by rearranging the equation, we get
$\Rightarrow \int e^x[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx$
let
$f(x)=\frac{1}{1+x} \Rightarrow f'(x)= -\frac{1}{(1+x)^2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
therefore the solution of the given integral is
$I = \frac{e^x}{1+x}+C$
Question 18: Integrate the functions $e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
Answer:
Let
$I =e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
substitute $1 =\sin ^2\frac{x}{2}+\cos^2\frac{x}{2}$ and $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$
$\\\Rightarrow e^x(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}})\\ =e^x(\frac{1}{2}\sec^2\frac{x}{2}+\tan\frac{x}{2})\\$
let
$f(x) =\tan\frac{x}{2} \Rightarrow f'(x)=\frac{1}{2}\sec^2\frac{x}{2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
Therefore the solution of the given integral is
$I = e^x\tan\frac{x}{2} +C$
Question 19: Integrate the functions $e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
Answer:
$e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
It is known that
$\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
let
$f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}$
Therefore the required solution of the given above integral is
$I = e^x.\frac{1}{x}+C$
Question 20: Integrate the functions $\frac{( x-3)e ^x }{( x-1)^3}$
Answer:
$\frac{( x-3)e ^x }{( x-1)^3}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
So, By adjusting the given equation, we get
$\int\frac{( x-3)e ^x }{( x-1)^3} =\int e^x(\frac{x-1-2}{(x-1)^3}) =\int e^x({\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3})}dx$
to let
$f(x)=\frac{1}{(x-1)^2}\Rightarrow f'(x)=-\frac{2}{(x-1)^3}$
Therefore the required solution of the given $I=\frac{e^x}{(x-1)^2}+C$ integral is
Question 21: Integrate the functions $e ^{ 2x } \sin x$
Answer:
Let
$I =e ^{ 2x } \sin x$
By using integrating by parts, we get
$\\ = \sin x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \sin x \cdot \int e^{2x} \, dx \right) dx$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \int e^{2x} \cos x \, dx$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \cos x \cdot \int e^{2x} \, dx \right) dx \right]$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \cdot \frac{e^{2x}}{2} + \frac{1}{2} \int e^{2x} \sin x \, dx \right]$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x} - \frac{1}{4} I$
$\Rightarrow \frac{5}{4} I = \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x}$
$I = \frac{e^{2x}}{5} \left( 2 \sin x - \cos x \right) + C$
Question 22: Integrate the functions $\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
Answer:
$\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
$\int \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
$\\=\int\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\\ = 2 \left[ \theta \int \sec^2 \theta \, d\theta - \int \left( \frac{d}{d\theta} \theta \cdot \int \sec^2 \theta \, d\theta \right) d\theta \right]$
$ = 2 \left[ \theta \tan \theta - \int \tan \theta \, d\theta \right] + C$
$ = 2 \left[ \theta \tan \theta + \log \left| \cos \theta \right| \right] + C$
$ = 2x \tan^{-1} x + 2 \log \left( (1 + x^2)^{-1/2} \right)$
$ = 2x \tan^{-1} x - \log (1 + x^2) + C$
Question 23: Choose the correct answer
$\int x ^ 2 e ^{x ^3 } dx \: \: equals$
$A)\ \frac{1}{3} e^{x^3} + C$
$B)\ \frac{1}{3} e^{x^2} + C$
$C)\ \frac{1}{2} e^{x^3} + C$
$D)\ \frac{1}{2} e^{x^2} + C$
Answer:
the integration can be done ass follows
Let $x^3 = t \Rightarrow 3x^2 \, dx = dt$
$\Rightarrow I = \frac{1}{3} \int e^t \, dt = \frac{1}{3} e^t + C = \frac{1}{3} e^{x^3} + C$
Question 24: Choose the correct answer
$\int e ^ x \sec ( 1+ \tan x ) dx \: \: \: equals$
$A)\ e^x \cos x + C$
$B)\ e^x \sec x + C$
$C)\ e^x \sin x + C$
$D)\ e^x \tan x + C$
Answer:
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
from above integral
let
$f(x)=\sec x\Rightarrow f'(x)= \sec x.\tan x$
thus, the solution of the above integral is
$I=e^x\sec x+C$
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.6 is:
Integration by parts: This method of integration is quite useful when integrating the product of functions, and this method follows a simple formula:
$\int f(x) g(x) d x=f(x) \int g(x) d x-\int\left[f^{\prime}(x) \int g(x) d x\right] d x$
Where $f(x)$ is the first function, $g(x)$ is the second function, and $f'(x)$ is the first derivative of the functions $f(x)$.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
There are broadly 2 types of integration, i.e Definite and indefinite Integrals.
Indefinite integrals are defined without upper and lower limits i.e its range is not defined.
Integrals can be used in finding the quantities of area, volume, displacement etc.
This exercise mainly deals with advanced level of problems which are important for competitive examinations only. In the board examination, 5 markers can be asked from this exercise.
Integrals of logarithmic, exponential and inverse trigonometric functions are discussed in this exercise.
There are 24 questions in this Exercise 7.6 Class 12 Maths.
On Question asked by student community
Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.
Hello
For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.
Hello,
If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.
I hope it will clear your query!!
For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.
You can download it in pdf form from below link
all the best for your exam!!
Hii neeraj!
You can check CBSE class 12th registration number in:
Hope it helps!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters