CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
When you are trying to solve an integration problem involving the product of two different types of functions, the regular integrations do not work; you need an advanced integration method like integration by parts. In exercise 7.6 of the chapter Integrals, we will learn about the integration by parts method, which will enable the students to solve complex integrals with the product of functions easily. This article on the NCERT Solutions for Exercise 7.6 of Class 12, Chapter 7 - Integrals, offers clear and easy-to-understand solutions for the problems given in the exercise. These solutions will clear all the doubts of the students regarding the integration by parts method and help them grasp the concepts and logic behind the solutions. For syllabus, notes, and PDF, refer to this link: NCERT.
This Story also Contains
Question 1: Integrate the functions $x \sin x$
Answer:
The given function is
$f(x)=x \sin x$
We will use integrate by parts method
$\int x\sin x \, dx = x \int \sin x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin x \, dx \right) dx$
$\int x\sin x \, dx = x(-\cos x) - \int (1 \cdot (-\cos x)) \, dx$
$\int x\sin x \, dx = -x\cos x + \sin x + C$
Therefore, the answer is $-x\cos x+\sin x + C$
Question 2: Integrate the functions $x \sin 3x$
Answer:
Given function is
$f(x)=x \sin 3x$
We will use integration by parts method
$\int x\sin 3x \, dx = x \int \sin 3x \, dx - \int \left( \frac{d(x)}{dx} \cdot \int \sin 3x \, dx \right) dx$
$\int x\sin 3x \, dx = x \cdot \left( \frac{-\cos 3x}{3} \right) - \int \left( 1 \cdot \frac{-\cos 3x}{3} \right) dx$
$\int x\sin 3x \, dx = -\frac{x\cos 3x}{3} + \frac{\sin 3x}{9} + C$
Therefore, the answer is $-\frac{x\cos 3x}{3}+\frac{\sin 3x}{9} + C$
Question 3: Integrate the functions $x ^ 2 e ^x$
Answer:
The given function is
$f(x)=x^2e^x$
We will use the integration by parts method
$\int x^2 e^x \, dx = x^2 \int e^x \, dx - \int \left( \frac{d(x^2)}{dx} \cdot \int e^x \, dx \right) dx$
$\int x^2 e^x \, dx = x^2 e^x - \int (2x e^x) \, dx$
Again use integration by parts in $\int (2x.e^x)dx\\$
$\int (2x e^x) \, dx = 2x \int e^x \, dx - \int \left( \frac{d(2x)}{dx} \cdot \int e^x \, dx \right) dx$
$\int 2x e^x \, dx = 2x e^x - \int 2 e^x \, dx$
$\int 2x e^x \, dx = 2x e^x - 2e^x$
Put this value in our equation
we will get,
$\int x^2 e^x \, dx = x^2 e^x - 2x e^x + 2e^x + C$
$\int x^2 e^x \, dx = e^x (x^2 - 2x + 2) + C$
Therefore, answer is $e^x(x^2-2x+2)+ C$
Question 4: Integrate the functions $x \log x$
Answer:
Given function is
$f(x)=x.\log x$
We will use integration by parts method
$\int x \log x \, dx = \log x \cdot \int x \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \left( \frac{1}{x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log x \, dx = \log x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\frac{x^2}{2}\log x- \frac{x^2}{4}+ C$
Question 5: Integrate the functions $x \log 2x$
Answer:
Given function is
$f(x)=x.\log 2 x$
We will use integration by parts method
$\int x \log 2x \, dx = \log 2x \cdot \int x \, dx - \int \left( \frac{d(\log 2x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \left( \frac{2}{2x} \cdot \frac{x^2}{2} \right) dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \int \frac{x}{2} \, dx$
$\int x \log 2x \, dx = \log 2x \cdot \frac{x^2}{2} - \frac{x^2}{4} + C$
Therefore, the answer is $\log 2x.\frac{x^2}{2}- \frac{x^2}{4}+ C$
Question 6: Integrate the functions $x^ 2 \log x$
Answer:
Given function is
$f(x)=x^2.\log x$
We will use integration by parts method
$\int x^2 \log x \, dx = \log x \cdot \int x^2 \, dx - \int \left( \frac{d(\log x)}{dx} \cdot \int x^2 \, dx \right) dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \left( \frac{1}{x} \cdot \frac{x^3}{3} \right) dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \int \frac{x^2}{3} \, dx$
$\int x^2 \log x \, dx = \log x \cdot \frac{x^3}{3} - \frac{x^3}{9} + C$
Therefore, the answer is $\log x.\frac{x^3}{3}- \frac{x^3}{9}+ C$
Question 7: Integrate the functions $x \sin ^{ -1} x$
Answer:
Given function is
$f(x)=x.\sin^{-1} x$
We will use integration by parts method
$\int x \sin^{-1}x \, dx = \sin^{-1}x \int x \, dx - \int \left( \frac{d(\sin^{-1}x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \sin^{-1}x \, dx = \sin^{-1}x \cdot \frac{x^2}{2} - \int \left( \frac{1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1-x^2}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1-x^2} - \frac{1}{\sqrt{1-x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1-x^2} \, dx - \int \frac{1}{\sqrt{1-x^2}} \, dx \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1-x^2} + \frac{1}{2} \sin^{-1} x - \sin^{-1} x \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1-x^2}}{4} - \frac{\sin^{-1} x}{4} + C$
Put this value in our equation
Therefore, the answer is $\int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x\sqrt{1-x^2}}{4}$
Question 8: Integrate the functions $x \tan ^{-1} x$
Answer:
Given function is
$f(x)=x.\tan^{-1} x$
We will use integration by parts method
$\int x \tan^{-1} x \, dx = \tan^{-1} x \int x \, dx - \int \left( \frac{d(\tan^{-1} x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{1}{1 + x^2} \cdot \frac{x^2}{2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( \frac{x^2 + 1}{1 + x^2} - \frac{1}{1 + x^2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \int \left( 1 - \frac{1}{1 + x^2} \right) dx$
$\int x \tan^{-1} x \, dx = \tan^{-1} x \cdot \frac{x^2}{2} - \frac{1}{2} \left( x - \tan^{-1} x \right) + C$
$\int x \tan^{-1} x \, dx = \frac{\tan^{-1} x}{2} \left( 2x^2 + 1 \right) - \frac{x}{2} + C$
Put this value in our equation
$\int x\sin^{-1} xdx = \sin^{-1} x.\frac{x^2}{2}- \frac{x}{4\sqrt{1-x^2}}-\frac{\sin^{-1}x}{4}+C\\ \int x\sin^{-1} xdx =\frac{\sin^{-1}x}{4}(2x^2-1)-\frac{x}{4\sqrt{1-x^2}}$
Therefore, the answer is $\frac{\tan^{-1}x}{2}(2x^2+1)-\frac{x}{2}+C$
Question 9: Integrate the functions $x\cos ^{ -1} x$
Answer:
Given function is
$f(x)=x.\cos^{-1} x$
We will use integration by parts method
$\int x \cos^{-1} x \, dx = \cos^{-1} x \int x \, dx - \int \left( \frac{d(\cos^{-1} x)}{dx} \cdot \int x \, dx \right) dx$
$\int x \cos^{-1} x \, dx = \cos^{-1} x \cdot \frac{x^2}{2} - \int \left( \frac{-1}{\sqrt{1 - x^2}} \cdot \frac{x^2}{2} \right) dx$
Now, we need to integrate $\int (\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2})dx\\$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \frac{1 - x^2}{\sqrt{1 - x^2}} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \int \left( \sqrt{1 - x^2} - \frac{1}{\sqrt{1 - x^2}} \right) \, dx$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \int \sqrt{1 - x^2} \, dx - \int \frac{1}{\sqrt{1 - x^2}} \, dx \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{1}{2} \left( \frac{x}{2} \sqrt{1 - x^2} - \frac{1}{2} \cos^{-1} x + \cos^{-1} x \right)$
$\int \frac{-x^2}{2\sqrt{1-x^2}} \, dx = \frac{x \sqrt{1 - x^2}}{4} - \frac{\cos^{-1} x}{4} + \frac{\cos^{-1} x}{2} + C$
Put this value in our equation
$\int x\cos^{-1} xdx = \cos^{-1} x.\frac{x^2}{2}-\left ( \frac{x\sqrt{1-x^2}}{4} -\frac{\cos^{-1}x}{4}+\frac{\cos^{-1}x}{2}+C \right )\\ \\ \int x\cos^{-1} xdx =\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Therefore, the answer is $\frac{\cos^{-1}x}{4}(2x^2-1)- \frac{x\sqrt{1-x^2}}{4}$
Question 10: Integrate the functions $( \sin ^{-1}x ) ^ 2$
Answer:
Given function is
$f(x)=( \sin ^{-1}x ) ^ 2$
we will use integration by parts method
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \int 1 \, dx - \int \left( \frac{d((\sin^{-1} x)^2)}{dx} \cdot \int 1 \, dx \right) dx$
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x - \int \left( \sin^{-1} x \cdot \frac{2x}{\sqrt{1 - x^2}} \right) dx$
$\int (\sin^{-1} x)^2 \, dx = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx - \int \left( \frac{d(\sin^{-1} x)}{dx} \cdot \int \frac{-2x}{\sqrt{1 - x^2}} \, dx \right) \right]$
$ = (\sin^{-1} x)^2 \cdot x + \left[ \sin^{-1} x \cdot 2 \sqrt{1 - x^2} - \int \frac{1}{\sqrt{1 - x^2}} \cdot 2 \sqrt{1 - x^2} \, dx \right]$
$ = (\sin^{-1} x)^2 \cdot x + 2 \sin^{-1} x \sqrt{1 - x^2} - 2x + C$
Therefore, answer is $(\sin^{-1}x)^2.x + 2\sin^{-1}x\sqrt{1-x^2}-2x+C$
Question 11: Integrate the functions $\frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}$
Answer:
Consider $\int \frac{x \cos ^{-1}}{\sqrt { 1- x^2 }}dx =I$
So, we have then: $I = \frac{-1}{2}\int \frac{-2x}{\sqrt{1-x^2}}. \cos^{-1}x dx$
After taking $\cos ^{-1}x$ as a first function and $\left ( \frac{-2x}{\sqrt{1-x^2}} \right )$ as second function and integrating by parts, we get
$I =-\frac{1}{2}\left [ \cos^{-1}x\int\frac{-2x}{\sqrt{1-x^2}}dx - \int\left \{ \left ( \frac{d}{dx}\cos^{-1}x \right )\int \frac{-2x}{\sqrt{1-x^2}}dx \right \}dx \right ]$ $=-\frac{1}{2}\left [ \cos^{-1}x.2{\sqrt{1-x^2}} + \int \frac{-1}{\sqrt{1-x^2}}.2\sqrt{1-x^2}dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-\int2dx \right ]$
$=\frac{-1}{2}\left [ 2\sqrt{1-x^2}\cos^{-1}x-2x \right ]+C$
Or, $- \left( \sqrt{1 - x^2} \cos^{-1}x + x \right) + C$
Question 12: Integrate the functions $x \sec ^2 x$
Answer:
Consider $x \sec ^2 x$
So, we have then: $I =\int x\sec^2 x dx$
After taking $x$ as a first function and $\sec^2x$ as second function and integrating by parts, we get
$I =x\int \sec^2 x dx -\int \left \{ \left ( \frac{d}{dx}x \right )\int \sec^2 x dx \right \}dx$
$= x\tan x -\int1.\tan x dx$
$= x\tan x +\log|\cos x | +C$
Question 13: Integrate the functions $\tan ^{-1} x$
Answer:
Consider $\tan ^{-1} x$
So, we have then: $I =\int 1.\tan^{-1}x dx$
After taking $\tan^{-1}x$ as a first function and $1$ as second function and integrating by parts, we get
$I = \tan^{-1}x \int 1dx -\int \left \{ \left ( \frac{d}{dx}\tan^{-1}x \right )\int1.dx \right \}dx$
$= \tan^{-1}x.x -\int \frac{1}{1+x^2}.xdx$
$= x\tan^{-1}x -\frac{1}{2}\int \frac{2x}{1+x^2}dx$
$= x\tan^{-1}x -\frac{1}{2}\log|1+x^2|+C$
$= x\tan^{-1}x -\frac{1}{2}\log(1+x^2)+C$
Question 14: Integrate the functions $x ( \log x )^ 2$
Answer:
Consider $x ( \log x )^ 2$
So, we have then: $I = \int x(\log x)^2 dx$
After taking $(\log x )^2$ as a first function and $x$ as second function and integrating by parts, we get
$I = (\log x )^2 \int xdx -\int \left \{ \left ( \frac{d}{dx} (\log x)^2 \right )\int x.dx \right \}dx$
$= (\log x)^2 .\frac{x^2}{2} - \int \frac{2\log x }{x}.\frac{x^2}{2} dx$
$= (\log x)^2 .\frac{x^2}{2} - \int x\log x dx$
$= (\log x)^2 .\frac{x^2}{2} - \left ( \frac{x^2 \log x }{2} -\frac{x^2}{4} \right )+C$
Question 15: Integrate the functions $( x^2 + 1 ) \log x$
Answer:
Consider $( x^2 + 1 ) \log x$
So, we have then: $I = \int (x^2+1) \log x dx = \int x^2 \log x dx +\int \log x dx$
Let us take $I = I_{1} +I_{2}$ ....................(1)
Where, $I_{1} = \int x^2\log x dx$ and $I_{2} = \int \log x dx$
So, $I_{1} = \int x^2\log x dx$
After taking $\log x$ as a first function and $x^2$ as second function and integrating by parts, we get
$I = \log x \int x^2dx -\int \left \{ \left ( \frac{d}{dx} \log x \right )\int x^2.dx \right \}dx$
$= \log x .\frac{x^3}{3} - \int \frac{1}{x}.\frac{x^3}{3} dx$
$= \log x .\frac{x^3}{3} - \frac{x^3}{9} +C_{1}$ ....................(2)
$I_{2} = \int \log x dx$
After taking $\log x$ as a first function and $1$ as second function and integrating by parts, we get
$I_{2} = \log x \int 1.dx - \int \left \{ \left ( \frac{d}{dx}\log x \right ) \int 1.dx \right \}dx$
$= \log x .x -\int \frac{1}{x}. xdx$
$= x\log x -\int 1 dx$
$= x\log x -x +C_{2}$ ................(3)
Now, using the two equations (2) and (3) in (1) we get,
$I = \frac{x^3}{3}\log x -\frac{x^3}{9} +C_{1} +x\log x - x +C_{2}$
$= \frac{x^3}{3}\log x -\frac{x^3}{9} +x\log x - x +(C_{1}+C_{2})$
$=\left ( \frac{x^3}{3}+x \right ) \log x -\frac{x^3}{9} -x+C$
Question 16: Integrate the functions $e ^ x ( \sin x + \cos x )$
Answer:
Let suppose
$I =$ $e ^ x ( \sin x + \cos x )$
$f(x) = \sin x \Rightarrow f'(x) = \cos x$
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
Thus, the solution of the given integral is given by
$\therefore I = e^x\sin x +C$
Question 17: Integrate the functions $\frac{x e ^x }{( 1+ x )^2}$
Answer:
$\frac{x e ^x }{( 1+ x )^2}$
Let suppose
$I = \int \frac{e^x(x)}{(1+x)^2}dx$
by rearranging the equation, we get
$\Rightarrow \int e^x[\frac{1}{1+x}-\frac{1}{(1+x)^2}]dx$
let
$f(x)=\frac{1}{1+x} \Rightarrow f'(x)= -\frac{1}{(1+x)^2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
therefore the solution of the given integral is
$I = \frac{e^x}{1+x}+C$
Question 18: Integrate the functions $e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
Answer:
Let
$I =e ^x \left ( \frac{1+ \sin x }{1+ \cos x } \right )$
substitute $1 =\sin ^2\frac{x}{2}+\cos^2\frac{x}{2}$ and $\sin x = 2\sin\frac{x}{2}\cos\frac{x}{2}$
$\\\Rightarrow e^x(\frac{\sin^2\frac{x}{2}+\cos^2\frac{x}{2}+2\sin\frac{x}{2}\cos\frac{x}{2}}{2\cos^2\frac{x}{2}})\\ =e^x(\frac{1}{2}\sec^2\frac{x}{2}+\tan\frac{x}{2})\\$
let
$f(x) =\tan\frac{x}{2} \Rightarrow f'(x)=\frac{1}{2}\sec^2\frac{x}{2}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
Therefore the solution of the given integral is
$I = e^x\tan\frac{x}{2} +C$
Question 19: Integrate the functions $e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
Answer:
$e ^ x \left ( \frac{1 }{x} - \frac{1}{x^2}\right )$
It is known that
$\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
let
$f(x)=\frac{1}{x}\Rightarrow f'(x)=-\frac{1}{x^2}$
Therefore the required solution of the given above integral is
$I = e^x.\frac{1}{x}+C$
Question 20: Integrate the functions $\frac{( x-3)e ^x }{( x-1)^3}$
Answer:
$\frac{( x-3)e ^x }{( x-1)^3}$
It is known that $\int e^x[f(x)+f'(x)]=e^x[f(x)]+C$
So, By adjusting the given equation, we get
$\int\frac{( x-3)e ^x }{( x-1)^3} =\int e^x(\frac{x-1-2}{(x-1)^3}) =\int e^x({\frac{1}{(x-1)^2}-\frac{2}{(x-1)^3})}dx$
to let
$f(x)=\frac{1}{(x-1)^2}\Rightarrow f'(x)=-\frac{2}{(x-1)^3}$
Therefore the required solution of the given $I=\frac{e^x}{(x-1)^2}+C$ integral is
Question 21: Integrate the functions $e ^{ 2x } \sin x$
Answer:
Let
$I =e ^{ 2x } \sin x$
By using integrating by parts, we get
$\\ = \sin x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \sin x \cdot \int e^{2x} \, dx \right) dx$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \int e^{2x} \cos x \, dx$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \int e^{2x} \, dx - \int \left( \frac{d}{dx} \cos x \cdot \int e^{2x} \, dx \right) dx \right]$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{2} \left[ \cos x \cdot \frac{e^{2x}}{2} + \frac{1}{2} \int e^{2x} \sin x \, dx \right]$
$= \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x} - \frac{1}{4} I$
$\Rightarrow \frac{5}{4} I = \frac{\sin x \cdot e^{2x}}{2} - \frac{1}{4} \cos x \cdot e^{2x}$
$I = \frac{e^{2x}}{5} \left( 2 \sin x - \cos x \right) + C$
Question 22: Integrate the functions $\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
Answer:
$\sin ^ { -1} \left ( \frac{2x}{1+x^2 } \right )$
$\int \sin^{-1}\left(\frac{2x}{1+x^2} \right )dx$
let $x = \tan\theta\Rightarrow dx =\sec^2\theta d\theta$
$\\=\int\sin^{-1}(\frac{2\tan\theta}{1+\tan\theta})\sec^2\theta d\theta\\ =\int\sin^{-1}(\sin 2\theta)\sec^2\theta d\theta\\ =\int2\theta \sec^2\theta d\theta\\$
Taking $\theta$ as a first function and $\sec^2\theta$ as a second function, by using by parts method
$\\ = 2 \left[ \theta \int \sec^2 \theta \, d\theta - \int \left( \frac{d}{d\theta} \theta \cdot \int \sec^2 \theta \, d\theta \right) d\theta \right]$
$ = 2 \left[ \theta \tan \theta - \int \tan \theta \, d\theta \right] + C$
$ = 2 \left[ \theta \tan \theta + \log \left| \cos \theta \right| \right] + C$
$ = 2x \tan^{-1} x + 2 \log \left( (1 + x^2)^{-1/2} \right)$
$ = 2x \tan^{-1} x - \log (1 + x^2) + C$
Question 23: Choose the correct answer
$\int x ^ 2 e ^{x ^3 } dx \: \: equals$
$A)\ \frac{1}{3} e^{x^3} + C$
$B)\ \frac{1}{3} e^{x^2} + C$
$C)\ \frac{1}{2} e^{x^3} + C$
$D)\ \frac{1}{2} e^{x^2} + C$
Answer:
the integration can be done ass follows
Let $x^3 = t \Rightarrow 3x^2 \, dx = dt$
$\Rightarrow I = \frac{1}{3} \int e^t \, dt = \frac{1}{3} e^t + C = \frac{1}{3} e^{x^3} + C$
Question 24: Choose the correct answer
$\int e ^ x \sec ( 1+ \tan x ) dx \: \: \: equals$
$A)\ e^x \cos x + C$
$B)\ e^x \sec x + C$
$C)\ e^x \sin x + C$
$D)\ e^x \tan x + C$
Answer:
we know that,
$I =\int e^x[f(x)+f'(x)]dx = e^x[f(x)]+C$
from above integral
let
$f(x)=\sec x\Rightarrow f'(x)= \sec x.\tan x$
thus, the solution of the above integral is
$I=e^x\sec x+C$
Also Read,
The main topic covered in class 12 maths chapter 7 of Integrals, exercise 7.6 is:
Integration by parts: This method of integration is quite useful when integrating the product of functions, and this method follows a simple formula:
$\int f(x) g(x) d x=f(x) \int g(x) d x-\int\left[f^{\prime}(x) \int g(x) d x\right] d x$
Where $f(x)$ is the first function, $g(x)$ is the second function, and $f'(x)$ is the first derivative of the functions $f(x)$.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
There are broadly 2 types of integration, i.e Definite and indefinite Integrals.
Indefinite integrals are defined without upper and lower limits i.e its range is not defined.
Integrals can be used in finding the quantities of area, volume, displacement etc.
This exercise mainly deals with advanced level of problems which are important for competitive examinations only. In the board examination, 5 markers can be asked from this exercise.
Integrals of logarithmic, exponential and inverse trigonometric functions are discussed in this exercise.
There are 24 questions in this Exercise 7.6 Class 12 Maths.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters