NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.2 - Integrals

NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.2 - Integrals

Komal MiglaniUpdated on 08 May 2025, 02:33 PM IST

In the world of calculus, integrals teach us the power of accumulation—a minor change at a time adds up to something big. NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.2 are significant in the learning process of integrals. This exercise helps students get accustomed to one of the important integration methods: Substitution. Integration by substitution is like the reverse chain rule in calculus. These NCERT solutions follow the latest CBSE guidelines.

This Story also Contains

  1. Class 12 Maths Chapter 7 Exercise 7.2 Solutions: Download PDF
  2. Integrals Class 12 Chapter 7 Exercise 7.2
  3. Topics covered in Chapter 1 Integrals: Exercise 7.2
  4. NCERT Solutions Subject Wise
  5. Subject-Wise NCERT Exemplar Solutions

The main purpose of 12th class Maths exercise 7.2 of NCERT is to help students understand how to simplify complex integrals by changing variables to make the expression easier to integrate. Careers360 experts supplied in-depth explanations and structured answers to ensure no step went unexplained.

Class 12 Maths Chapter 7 Exercise 7.2 Solutions: Download PDF

Download PDF

Integrals Class 12 Chapter 7 Exercise 7.2

Question 1: Integrate the function $\frac{2x}{1 + x^2}$

Answer:

Given to integrate $\frac{2x}{1 + x^2}\frac{2x}{1 + x^2}$ function,

Let us assume $1 + x^2 = t$

we get, $2x\,dx = dt$

$\implies \int \frac{2x}{1+x^2} \, dx = \int \frac{1}{t} \, dt$

$= \log|t| + C$

$= \log|1 + x^2| + C$ now back substituting the value of $t = 1 + x^2$

as $(1 + x^2)$ is positive we can write

$= \log(1 + x^2) + C$

Question 2: Integrate the function $\frac{( \log x )^2}{x}$

Answer:

Given to integrate $\frac{( \log x )^2}{x}$ function,

Let us assume $\log |x| = t$

we get, $\frac{1}{x}dx= dt$

$\implies \int \frac{\left ( \log|x| \right )^2}{x}\ dx = \int t^2dt$

$= \frac{t^3}{3}+C$

$= \frac{(\log|x|)^3}{3}+C$

Question 3: Integrate the function $\frac{1}{x+ x \log x }$

Answer:

Given to integrate $\frac{1}{x+ x \log x }$ function,

Let us assume $1+\log x = t$

we get, $\frac{1}{x}dx= dt$

$\implies \int \frac{1}{x(1+\log x )} dx = \int \frac{1}{t} dt$

$= \log|t| +C$

$= \log |1+ \log x | +C$

Question 4: Integrate the function $\sin x \sin ( \cos x )$

Answer:

Given to integrate $\sin x \sin ( \cos x )$ function,

Let us assume $\cos x =t$

we get, $-\sin x dx =dt$

$\implies \int \sin x \sin(\cos x)dx = -\int \sin t dt$

$= -\left ( -\cos t \right ) +C$

$= \cos t +C$

Back substituting the value of t we get,

$= \cos (\cos x ) +C$

Question 5: Integrate the function $\sin ( ax + b ) \cos ( ax + b )$

Answer:

Given to integrate $\sin ( ax + b ) \cos ( ax + b )$ function,

$\sin ( ax + b ) \cos ( ax + b ) = \frac{2\sin ( ax + b ) \cos ( ax + b )}{2} = \frac{\sin 2(ax+b)}{2}$

Let us assume $2(ax+b) = t$

we get, $2adx =dt$

$\int \frac{\sin 2(ax+b)}{2} dx = \frac{1}{2}\int \frac{\sin t}{2a} dt$

$= \frac{1}{4a}[-cos t] +C$

Now, by back substituting the value of t,

$= \frac{-1}{4a}[cos 2(ax+b)] +C$

Question 6: Integrate the function $\sqrt { ax + b }$

Answer:

Given to integrate $\sqrt { ax + b }$ function,

Let us assume $(ax+b) = t$

we get, $adx =dt$

$dx = \frac{1}{a}dt$

$\Rightarrow \int(ax+b)^{\frac{1}{2}} dx = \frac{1}{a}\int t^{\frac{1}{2}}dt$

Now, by back substituting the value of t,

$= \frac{1}{a}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$

$= \frac{2(ax+b)^\frac{3}{2}}{3a} +C$

Question 7: Integrate the functions $x \sqrt { x +2 }$

Answer:

Given function $x \sqrt { x +2 }$ ,

$\int x\sqrt{x+2}$

Assume the $(x+2) = t$ 19634

$\therefore dx =dt$

$\Rightarrow \int x\sqrt{x+2} dx = \int (t-2) \sqrt{t} dt$

$= \int (t-2) \sqrt{t} dt$

$= \int \left ( t^{\frac{3}{2}}-2t^{\frac{1}{2}} \right )dt$

$= \int t^{\frac{3}{2}}dt -2\int t^{\frac{1}{2}}dt$

$= \frac{t^{\frac{5}{2}}}{\frac{5}{2}} -2\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$

$= \frac{2}{5}t^{\frac{5}{2}} -\frac{4}{3}t^{\frac{3}{2}} +C$

Back substituting the value of t in the above equation.

or, $\frac{2}{5}(x+2)^{\frac{5}{2}}- \frac{4}{3}(x+2)^\frac{3}{2} +C$ , where C is any constant value.

Question 8: Integrate the function $x \sqrt { 1+ 2 x^2 }$

Answer:

Given function $x \sqrt { 1+ 2 x^2 }$ ,

$\int x \sqrt { 1+ 2 x^2 }\ dx$

Assume the $1+2x^2= t$

$\therefore 4xdx =dt$

$\Rightarrow \int x\sqrt{1+2x^2}dx = \int \frac{\sqrt {t}}{4} dt$

Or $= \frac{1}{4}\int t^{\frac{1}{2}} dt = \frac{1}{4}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$

$= \frac{1}{6}(1+2x^2)^{\frac{3}{2}} +C$ , where C is any constant value.

Question 9: Integrate the function $( 4x +2 ) \sqrt { x ^ 2 + x + 1 }$

Answer:

Given function $( 4x +2 ) \sqrt { x ^ 2 + x + 1 }$ ,

$\int ( 4x +2 ) \sqrt { x ^ 2 + x + 1 } dx$

Assume the $1+x+x^2 = t$

$\therefore (2x+1)dx =dt$

$\Rightarrow \int (4x+2)\sqrt{1+x+x^2} dx$

$= \int 2\sqrt {t}dt = 2\int \sqrt{t}dt$

$= 2\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$

Now, back substituting the value of t in the above equation,

$= \frac{4}{3}(1+x+x^2)^{\frac{3}{2}} +C$ , where C is any constant value.

Question 10: Integrate the function $\frac{1}{x - \sqrt x }$

Answer:

Given function $\frac{1}{x - \sqrt x }$ ,

$\int \frac{1}{x - \sqrt x } dx$

Can be written in the form:

$\frac{1}{x - \sqrt x } = \frac{1}{\sqrt {x}(\sqrt{x}-1)}$

Assume the $(\sqrt{x}-1) =t$

$\therefore \frac{1}{2\sqrt{x}}dx =dt$

$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)}dx = \int \frac{2}{t}dt$

$= 2\log|t| +C$

$= 2\log|\sqrt{x}-1| +C$ , where C is any constant value.

Question 11: Integrate the function $\frac{x }{ \sqrt{ x +4} }$ , x > 0

Answer:

Given function $\frac{x }{ \sqrt{ x +4} }$ ,

$\int \frac{x }{ \sqrt{ x +4} }dx$

Assume the $x+4 =t$ so, $x =t-4$

$\therefore dx=dt$

$\int \frac{x}{\sqrt{x+4}}dx = \int \frac{t-4}{\sqrt{t}}dt$

$\int t^\frac{1}{2}dt -4\int t^{\frac{-1}{2}}dt$

$= \frac{2}{3}t^{\frac{3}{2}} - 4\left ( 2t^{\frac{1}{2}} \right )+C$

$= \frac{2}{3}(x+4)^{\frac{3}{2}} -16(x+4)^{\frac{1}{2}}+C$

, where C is any constant value.

Question 12: Integrate the function $( x ^3 - 1 ) ^{1/3} x ^ 5$

Answer:

Given function $( x ^3 - 1 ) ^{1/3} x ^ 5$ ,

$\int ( x ^3 - 1 ) ^{1/3} x ^ 5 dx$

Assume the $x^3-1 = t$

$\therefore 3x^2dx=dt$

$\implies \int(x^3-1)^{\frac{1}{3}} x^5 dx = \int (x^3-1)^{\frac{1}{3}}x^3.x^2dx$

$= \int t^{\frac{1}{3}}(t+1)\frac{dt}{3}$

$= \frac{1}{3} \int \left ( t^\frac{4}{3}+t^\frac{1}{3} \right )dt$

$= \frac{1}{3}\left [ \frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}} \right ]+C$

$= \frac{1}{3}\left [ \frac{3}{7}t^{\frac{7}{3}}+\frac{3}{4}t^{\frac{4}{3}} \right ]+C$

$= \frac{1}{7}(x^3-1)^{\frac{7}{3}} + \frac{1}{4}(x^3-1)^{\frac{4}{3}} +C$ , where C is any constant value.

Question 13: Integrate the function $\frac{x ^2 }{(2+3x^3)^3}$

Answer:

Given function $\frac{x ^2 }{(2+3x^3)^3}$ ,

$\int \frac{x ^2 }{(2+3x^3)^3} dx$

Assume the $2+3x^3 =t$

$\therefore 9x^2dx=dt$

$\implies \int\frac{x^2}{(2+3x^2)}dx = \frac{1}{9}\int \frac{dt}{t^3}$

$= \frac{1}{9}\left ( \frac{t^{-2}}{-2} \right ) +C$

$= \frac{-1}{18}\left ( \frac{1}{t^2} \right )+C$

$= \frac{-1}{18(2+3x^3)^2}+C$ , where C is any constant value.

Question 14: Integrate the function $\frac{1}{x (\log x )^m} , x > 0 , m \neq 1$

Answer:

Given function $\frac{1}{x (\log x )^m} , x > 0 , m \neq 1$ ,

Assume the $\log x =t$

$\therefore \frac{1}{x}dx =dt$

$\implies \int\frac{1}{x(logx)^m}dx = \int\frac{dt}{t^m}$

$=\left ( \frac{t^{-m+1}}{1-m} \right ) +C$

$= \frac{(log x )^{1-m}}{(1-m)} +C$ , where C is any constant value.

Question 15: Integrate the function $\frac{x}{9- 4 x ^2 }$

Answer:

Given function $\frac{x}{9- 4 x ^2 }$ ,

Assume the $9-4x^2 =t$

$\therefore -8xdx =dt$

$\implies \int\frac{x}{9-4x^2} = -\frac{1}{8}\int \frac{1}{t}dt$

$= \frac{-1}{8}\log|t| +C$

Now back substituting the value of t ;

$= \frac{-1}{8}\log|9-4x^2| +C$ , where C is any constant value.

Question 16: Integrate the function $e ^{ 2 x +3 }$

Answer:

Given function $e ^{ 2 x +3 }$ ,

Assume the $2x+3 =t$

$\therefore 2dx =dt$

$\implies \int e^{2x+3} dx = \frac{1}{2}\int e^t dt$

$= \frac{1}{2}e^t +C$

Now back substituting the value of t ;

$= \frac{1}{2}e^{2x+3}+C$ , where C is any constant value.

Question 17: Integrate the function $\frac{x }{e^{x^{2}}}$

Answer:

Given function $\frac{x }{e^{x^{2}}}$ ,

Assume the $x^2=t$

$\therefore 2xdx =dt$

$\implies \int \frac{x}{e^{x^2}}dx = \frac{1}{2}\int \frac{1}{e^t}dt$

$= \frac{1}{2}\int e^{-t} dt$

$= \frac{1}{2}\left ( \frac{e^{-t}}{-1} \right ) +C$

$= \frac{-1}{2}e^{-x^2} +C$

$= \frac{-1}{2e^{x^2} }+C$ , where C is any constant value.

Question 18: Integrate the function $\frac{e ^{\tan ^{-1}x}}{1+ x^2 }$

Answer:

Given,

$\frac{e ^{\tan ^{-1}x}}{1+ x^2 }$

Let's do the following substitution

$\text{tan}^{-1}x = t \implies \frac{1}{1 + x^2} \, dx = dt$

$\therefore \int \frac{e ^{\tan ^{-1}x}}{1+ x^2 }dx = \int e ^{t}dt = e^t + C$

$= e^{tan^{-1}x} + C$

Question 19: Integrate the function $\frac{e ^{2x}-1}{e ^{2x}+1}$

Answer:

Given function $\frac{e ^{2x}-1}{e ^{2x}+1}$ ,

Simplifying it by dividing both numerator and denominator by $e^x$ , we obtain

$\frac{\frac{e^{2x}-1}{e^x}}{\frac{e^{2x}+1}{e^x}} = \frac{e^x-e^{-x}}{e^x+e^{-x}}$

Assume the $e^{x}+e^{-x} =t$

$\therefore (e^x-e^{-x})dx =dt$

$\implies \int \frac{e^{2x}-1}{e^{2x}+1}dx = \int \frac{e^x-e^{-x}}{e^x+e^{-x}}dx$

$= \int \frac{dt}{t}$

$= \log |t| +C$

Now, back substituting the value of t,

$= \log |e^x+e^{-x}| +C$ , where C is any constant value.

Question 20: Integrate the function $\frac{e ^{2x}- e ^{-2x }}{e ^ {2x }+ e ^{ -2 x }}$

Answer:

Given function $\frac{e ^{2x}- e ^{-2x }}{e ^ {2x }+ e ^{ -2 x }}$ ,

Assume the $e^{2x}+e^{-2x} =t$

$\therefore (2e^{2x}-2e^{-2x})dx =dt$

$\implies \int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}dx = \int \frac{dt}{2t}$

$= \frac{1}{2}\int \frac{1}{t}dt$

$= \frac{1}{2}\log|t| +C$

Now, back substituting the value of t,

$= \frac{1}{2}\log|e^{2x}+e^{-2x}| +C$ , where C is any constant value.

Question 21: Integrate the function $\tan ^2 ( 2x-3 )$

Answer:

Given function $\tan ^2 ( 2x-3 )$ ,

Assume the $2x-3 =t$

$\therefore 2dx =dt$

$\implies \int \tan^2(2x-3) dx = \frac{\int \tan^2(t)}{2}dt$

$=\frac{1}{2}\int (\sec^2t -1) dt$ $\left [\because \tan^2t+1 = \sec^2 t \right ]$

$= \frac{1}{2}\left [ \tan t - t \right ] +C$

Now, back substituting the value of t,

$= \frac{1}{2}\left [ \tan(2x-3)-2x+3 \right ]+C$

or $\frac{1}{2} \tan(2x-3)-x+C$ , where C is any constant value.

Question 22: Integrate the function $\sec ^2 ( 7- 4x )$

Answer

Given function $\sec ^2 ( 7- 4x )$ ,

Assume the $7-4x=t$

$\therefore -4dx =dt$

$\implies \int \sec^2(7-4x)dx = \frac{-1}{4}\int \sec^2t dt$

$=-\frac{1}{4}(\tan t) +C$

Now, back substituted the value of t.

$=-\frac{1}{4}\tan(7-4x)+C$ , where C is any constant value.

Question 23: Integrate the function $\frac{\sin ^{-1}x}{\sqrt { 1- x^2 }}$

Answer:

Given function $\frac{\sin ^{-1}x}{\sqrt { 1- x^2 }}$ ,

Assume the $\sin^{-1}x =t$

$\therefore \frac{1}{\sqrt{1-x^2}}dx = dt$

$\implies \int \frac{\sin^{-1}x}{\sqrt{1-x^2}}dx =\int t dt$

$= \frac{t^2}{2}+C$

Now, back substituted the value of t.

$= \frac{(\sin^{-1}x)^2}{2}+C$ , where C is any constant value.

Question 24: Integrate the function $\frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }$

Answer:

Given function $\frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }$ ,

or simplified as $\frac{2 \cos x - 3\sin x }{2(3 \cos x + 2 \sin x) }$

Assume the $3\cos x +2\sin x =t$

$\therefore (-3\sin x + 2\cos x )dx =dt$

$\implies \int \frac{2\cos x - 3\sin x }{6\cos x +4\sin x }dx = \int \frac{dt}{2t}$

$= \frac{1}{2}\int \frac{dt}{t}$

$= \frac{1}{2}\log|t| +C$

Now, back substituted the value of t.

$= \frac{1}{2}\log|3\cos x +2\sin x| +C$ , where C is any constant value.

Question 25: Integrate the function $\frac{1 }{ \cos ^2 x (1-\tan x )^2}$

Answer:

Given function $\frac{1 }{ \cos ^2 x (1-\tan x )^2}$ ,

or simplified as $\frac{1 }{ \cos ^2 x (1-\tan x )^2} = \frac{\sec^2x}{(1-\tan x)^2}$

Assume the $(1-\tan x)=t$

$\therefore -\sec^2xdx =dt$

$\implies \int \frac{\sec^2x}{(1-\tan x)^2}dx = \int\frac{-dt}{t^2}$

$= -\int t^{-2} dt$

$= \frac{1}{t} +C$

Now, back substituted the value of t.

$= \frac{1}{1-\tan x}+C$

where C is any constant value.

Question 26: Integrate the function $\frac{\cos \sqrt x }{\sqrt x }$

Answer:

Given function $\frac{\cos \sqrt x }{\sqrt x }$ ,

Assume the $\sqrt x =t$

$\therefore \frac{1}{2\sqrt x}dx =dt$

$\implies \int \frac{\cos \sqrt{x}}{\sqrt{x}}dx = 2\int \cos t dt$

$= 2\sin t +C$

Now, back substituted the value of t.

$= 2\sin \sqrt{x}+C$ , where C is any constant value.

Question 27: Integrate the function $\sqrt { \sin 2x } \cos 2x$

Answer:

Given function $\sqrt { \sin 2x } \cos 2x$ ,

Assume the $\sin 2x = t$

$\therefore 2\cos 2x dx =dt$

$\implies \int \sqrt{\sin 2x }\cos 2x dx = \frac{1}{2}\int \sqrt t dt$

$= \frac{1}{2}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right )+C$

$= \frac{1}{3}t^{\frac{3}{2}}+C$

Now, back substituted the value of t.

$= \frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+C$ , where C is any constant value.

Question 28: Integrate the function $\frac{\cos x }{\sqrt { 1+ \sin x }}$

Answer:

Given function $\frac{\cos x }{\sqrt { 1+ \sin x }}$ ,

Assume the $1+\sin x =t$

$\therefore \cos x dx = dt$

$\implies \int \frac{\cos x }{\sqrt{1+\sin x}}dx = \int \frac{dt}{\sqrt t}$

$= \frac{t^{\frac{1}{2}}}{\frac{1}{2}} +C$

$= 2\sqrt t +C$

Now, back substituted the value of t.

$= 2{\sqrt{1+\sin x}} +C$ , where C is any constant value.

Question 29: Integrate the function $\cot x \: log \sin x$

Answer:

Given function $\cot x \: log \sin x$ ,

Assume the $\log \sin x =t$

$\therefore \frac{1}{\sin x }.\cos x dx =dt$

$\cot x dx =dt$

$\implies \int \cot x \log \sin x dx =\int t dt$

$= \frac{t^2}{2}+C$

Now, back substituted the value of t.

$= \frac{1}{2}(\log \sin x )^2+C$ , where C is any constant value.

Question 30: Integrate the function $\frac{\sin x }{1+ \cos x }$

Answer:

Given function $\frac{\sin x }{1+ \cos x }$ ,

Assume the $1+\cos x =t$

$\therefore -\sin x dx =dt$

$\implies \int \frac{\sin x}{1+\cos x}dx = \int -\frac{dt}{t}$

$= -\log|t| +C$

Now, back substituted the value of t.

$= -\log|1+\cos x | +C$ , where C is any constant value.

Question 31: Integrate the function $\frac{\sin x }{( 1+ \cos x )^2}$

Answer:

Given function $\frac{\sin x }{( 1+ \cos x )^2}$ ,

Assume the $1+\cos x =t$

$\therefore -\sin x dx =dt$

$\implies \int \frac{\sin x}{(1+\cos x)^2}dx = \int -\frac{dt}{t^2}$

$= -\int t^{-2}dt$

$= \frac{1}{t}+C$

Now, back substituted the value of t.

$= \frac{1}{1+\cos x} +C$ , where C is any constant value.

Question 32: Integrate the function $\frac{1}{1+ \cot x }$

Answer:

Given function $\frac{1}{1+ \cot x }$

Assume that $I = \int \frac{1}{1+ \cot x } dx$

Now solving the assumed integral;

$I = \int \frac{1}{1+ \frac{\cos x }{\sin x} } dx$

$= \int \frac{\sin x }{\sin x + \cos x } dx$

$= \frac{1}{2}\int \frac{2\sin x }{\sin x + \cos x } dx$

$= \frac{1}{2}\int \frac{(\sin x+ \cos x ) +(\sin x -\cos x ) }{(\sin x + \cos x) } dx$

$=\frac{1}{2}\int 1 dx + \frac{1}{2} \int \frac{\sin x -\cos x }{\sin x +\cos x } dx$

$=\frac{1}{2}(x) + \frac{1}{2} \int \frac{\sin x -\cos x }{\sin x +\cos x } dx$

Now, to solve further we will assume $\sin x + \cos x =t$

Or, $(\cos x -\sin x)dx =dt$

$\therefore I = \frac{x}{2}+ \frac{1}{2}\int \frac{-(dt)}{t}$

$= \frac{x}{2}- \frac{1}{2}\log|t| +C$

Now, back substituting the value of t,

$= \frac{x}{2}- \frac{1}{2}\log|\sin x + \cos x| +C$

Question 33: Integrate the function $\frac{1}{1- \tan x }$

Answer:

Given function $\frac{1}{1- \tan x }$

Assume that $I = \int \frac{1}{1- \tan x } dx$

Now solving the assumed integral;

$I = \int \frac{1}{1-\frac{\sin x}{\cos x }} dx$

$= \int \frac{\cos x }{\cos x - \sin x } dx$

$= \frac{1}{2}\int \frac{2\cos x }{\cos x - \sin x } dx$

$= \frac{1}{2}\int \frac{(\cos x -\sin x ) +(\cos x +\sin x ) }{(\cos x - \sin x) } dx$

$=\frac{1}{2}\int 1 dx + \frac{1}{2} \int \frac{\cos x +\sin x }{\cos x -\sin x } dx$

$=\frac{1}{2}(x) + \frac{1}{2} \int \frac{\cos x +\sin x }{\cos x -\sin x } dx$

Now, to solve further we will assume $\cos x - \sin x =t$

Or, $(-\sin x-\cos x )dx =dt$

$\therefore I = \frac{x}{2}+ \frac{1}{2}\int \frac{-(dt)}{t}$

$= \frac{x}{2}- \frac{1}{2}\log|t| +C$

Now, back substituting the value of t,

$= \frac{x}{2}- \frac{1}{2}\log|\cos x - \sin x| +C$

Question 34: Integrate the function $\frac{\sqrt { \tan x } }{\sin x \cos x }$

Answer:

Given function $\frac{\sqrt { \tan x } }{\sin x \cos x }$

Assume that $I = \int \frac{\sqrt { \tan x } }{\sin x \cos x }dx$

Now solving the assumed integral;

Multiplying numerator and denominator by $\cos x$ ;

$I = \int \frac{\sqrt{\tan x }\times\cos x}{\sin x \cos x\times \cos x}dx$

$= \int \frac{\sqrt{\tan x }}{\tan x \cos^2 x } dx$

$= \int \frac{\sec^2 x }{\sqrt{\tan x }}dx$

Now, to solve further we will assume $\tan x =t$

Or, $\sec^2{x}dx =dt$

$\therefore I =\int \frac{dt}{\sqrt t}$

$=2\sqrt t +C$

Now, back substituting the value of t,

$= 2\sqrt{\tan x } +C$

Question 35: Integrate the function $\frac{( 1+ \log x )^2}{x}$

Answer:

Given function $\frac{( 1+ \log x )^2}{x}$

Assume that $1+\log x =t$

$\therefore \frac{1}{x}dx =dt$

$= \int \frac{(1+\log x )^2}{x}dx = \int t^2 dt$

$= \frac{t^3}{3}+C$

Now, back substituting the value of t,

$= \frac{(1+\log x )^3}{3}+C$

Question 36: Integrate the function $\frac{( x+1)( x+ \log x )^2}{x }$

Answer:

Given function $\frac{( x+1)( x+ \log x )^2}{x }$

Simplifying to solve easier;

$\frac{( x+1)( x+ \log x )^2}{x } = \left ( \frac{x+1}{x} \right )\left ( x+\log x \right )^2$

$=\left ( 1+\frac{1}{x} \right )\left ( x+\log x \right )^2$

Assume that $x+\log x =t$

$\therefore \left ( 1+\frac{1}{x} \right )dx = dt$

$= \int \left ( 1+\frac{1}{x} \right )\left ( x+\log x \right )^2 dx = \int t^2 dt$

$= \frac{t^3}{3}+C$

Now, back substituting the value of t,

$= \frac{(x+\log x )^3}{3}+C$

Question 37: Integrate the function $\frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }$

Answer:

Given function $\frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }$

Assume that $x^4 =t$

$\therefore 4x^3 dx =dt$

$\Rightarrow \int \frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }dx = \frac{1}{4} \int \frac{\sin(\tan^{-1} t)}{1+t^2}dt$ ......................(1)

Now to solve further we take $\tan ^{-1} t = u$

$\therefore \frac{1}{1+t^2} dt =du$

So, from the equation (1), we will get

$\Rightarrow \int \frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }dx =\frac{1}{4}\int \sin u\ du$

$= \frac{1}{4}(-\cos u) +C$

Now back substitute the value of u,

$= \frac{-1}{4}\cos (\tan^{-1} t) +C$

and then back substituting the value of t,

$= \frac{-1}{4}\cos (\tan^{-1} x^4) +C$

Question 38: Choose the correct answer $\int \frac{10x^9 + 10^x \log_e 10 \, dx}{x^{10} + 10^x}$ equals

$ (A) \ 10^x - x^{10} + C $

$ (B) \ 10^x + x^{10} + C $

$ (C) \ (10^x - x^{10})^{-1} + C $

$ (D) \ \log(10^x + x^{10}) + C $

Answer:

Given integral $\int \frac{10 x^ 9 + 10 ^x \log _ e 10 dx }{x ^{10}+ 10 ^x }dx$

Taking the denominator $x^{10} +10^x = t$

Now differentiating both sides we get

$\therefore \left ( 10x^9+10^x\log_{e}10 \right )dx = dt$

$\implies \int \frac{10x^9+10^x\log_{e}10}{x^{10}+10^x} dx = \int \frac{dt}{t}$

$= \log t +C$

Back substituting the value of t,

$= \log (x^{10}+10^x) +C$

Therefore the correct answer is $\log(10^x + x^{10}) + C$.

Question 39: Choose the correct answer $\int \frac{dx}{\sin^2 x \cos^2 x}$ equals

$(A) \tan x + \cot x + C$

$(B) \tan x - \cot x + C$

$(C) \tan x \cot x + C$

$(D) \tan x - \cot 2x + C$

Answer:

Given integral $\int \frac{dx }{\sin ^ 2 x \cos ^ 2x }$

$\int \frac{dx }{\sin ^ 2 x \cos ^ 2x } = \int \frac{1}{\sin ^2 x \cos ^2 x } dx$

$=\int \frac{\sin ^2 x +\cos^2 x }{\sin^2 x \cos^2 x}dx$ $\left ( \because \sin ^2 x +\cos^2 x =1 \right )$

$=\int \frac{\sin^2 x }{\sin^2 x \cos^2 x}dx + \int \frac{\cos^2 x}{\sin^2 x \cos^2 x}dx$

$=\int \sec^2 x dx + \int cosec^2 x dx$

$=\tan x -\cot x +C$

Therefore, the correct answer is $\tan x - \cot x + C$.

Also, read

Topics covered in Chapter 1 Integrals: Exercise 7.2

Integration by substitution

It is a method used to simplify integration by changing the variable. It helps solve integrals involving composite functions by making the substitution for part of the expression.

If $I=\int f(g(x)) \cdot g^{\prime}(x) d x$, let $u=g(x)$ so that $d u=g^{\prime}(x) d x$, then:
$I=\int f(u) d u$


Also, read,

Subject-Wise NCERT Exemplar Solutions

Students can refer to the NCERT Exemplar solutions from other subjects listed below for additional support and better concept clarity.

Frequently Asked Questions (FAQs)

Q: What is the importance of chapter integration from Boards perspective?
A:

Integration is a topic which has varied applications, it is used heavily in application of Integrals, physics as well as sometimes in chemistry (quantum chemistry). Hence it has a significant role in Board examination.

Q: Should we memorise values of basic integral functions?
A:

It can help in solving questions faster. Hence integrals of basic functions can be memorised.

Q: Define Integration ?
A:

Integration is the process of finding the antiderivative of a function which gives the area of the curve formed by a function. It is useful in finding the area, centre of mass etc. 

Q: What is the use of Integration?
A:

Integration is used to find the area, centre of mass etc. It has great application in Physics also. 

Q: What is the weightage of Integrals in Board examination ?
A:

Integration along with Application of Derivatives, holds good weightage in the examination. Aroung 20% marks questions are asked from these 2 chapters. 

Q: How difficult is the chapter Integrals ?
A:

Initial concepts are quite easy to grasp but in later exercises, significant hard work is required to understand the concepts in a holistic manner. 

Q: What are the topics covered in Exercise 7.2 Class 12 Maths ?
A:

Topics like integrals of root functions and trigonometric functions are discussed in this chapter.

Q: How many questions are there in the exercise 7.2 Class 12 Maths ?
A:

There are 39 questions in exercise 7.2 Class 12 Maths

Articles
|
Upcoming School Exams
Ongoing Dates
Maharashtra SSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Maharashtra HSC Board Late Fee Application Date

1 Nov'25 - 31 Dec'25 (Online)

Ongoing Dates
Goa Board HSSC Late Fee Application Date

11 Nov'25 - 5 Dec'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Hello,

You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the direct link to your query.

LINK: https://school.careers360.com/boards/cbse/cbse-class-11-english-syllabus

Hello,

No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.

Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.

However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.

So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.

Hope it helps.

Hello,

The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.

You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)

Hope it helps !

Hi dear candidate,

On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.

Kindly refer to the link attached below to download:

CBSE Class 12 Accountancy Question Paper 2025

CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF

CBSE Class 12 Business Studies Question Paper 2025

CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme

BEST REGARDS

Hello,

Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:

1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.

2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.

So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.

Hope you understand.