Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
In the world of calculus, integrals teach us the power of accumulation—a minor change at a time adds up to something big. NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.2 are significant in the learning process of integrals. This exercise helps students get accustomed to one of the important integration methods: Substitution. Integration by substitution is like the reverse chain rule in calculus. These NCERT solutions follow the latest CBSE guidelines.
This Story also Contains
The main purpose of 12th class Maths exercise 7.2 of NCERT is to help students understand how to simplify complex integrals by changing variables to make the expression easier to integrate. Careers360 experts supplied in-depth explanations and structured answers to ensure no step went unexplained.
Question 1: Integrate the function $\frac{2x}{1 + x^2}$
Answer:
Given to integrate $\frac{2x}{1 + x^2}\frac{2x}{1 + x^2}$ function,
Let us assume $1 + x^2 = t$
we get, $2x\,dx = dt$
$\implies \int \frac{2x}{1+x^2} \, dx = \int \frac{1}{t} \, dt$
$= \log|t| + C$
$= \log|1 + x^2| + C$ now back substituting the value of $t = 1 + x^2$
as $(1 + x^2)$ is positive we can write
$= \log(1 + x^2) + C$
Question 2: Integrate the function $\frac{( \log x )^2}{x}$
Answer:
Given to integrate $\frac{( \log x )^2}{x}$ function,
Let us assume $\log |x| = t$
we get, $\frac{1}{x}dx= dt$
$\implies \int \frac{\left ( \log|x| \right )^2}{x}\ dx = \int t^2dt$
$= \frac{t^3}{3}+C$
$= \frac{(\log|x|)^3}{3}+C$
Question 3: Integrate the function $\frac{1}{x+ x \log x }$
Answer:
Given to integrate $\frac{1}{x+ x \log x }$ function,
Let us assume $1+\log x = t$
we get, $\frac{1}{x}dx= dt$
$\implies \int \frac{1}{x(1+\log x )} dx = \int \frac{1}{t} dt$
$= \log|t| +C$
$= \log |1+ \log x | +C$
Question 4: Integrate the function $\sin x \sin ( \cos x )$
Answer:
Given to integrate $\sin x \sin ( \cos x )$ function,
Let us assume $\cos x =t$
we get, $-\sin x dx =dt$
$\implies \int \sin x \sin(\cos x)dx = -\int \sin t dt$
$= -\left ( -\cos t \right ) +C$
$= \cos t +C$
Back substituting the value of t we get,
$= \cos (\cos x ) +C$
Question 5: Integrate the function $\sin ( ax + b ) \cos ( ax + b )$
Answer:
Given to integrate $\sin ( ax + b ) \cos ( ax + b )$ function,
$\sin ( ax + b ) \cos ( ax + b ) = \frac{2\sin ( ax + b ) \cos ( ax + b )}{2} = \frac{\sin 2(ax+b)}{2}$
Let us assume $2(ax+b) = t$
we get, $2adx =dt$
$\int \frac{\sin 2(ax+b)}{2} dx = \frac{1}{2}\int \frac{\sin t}{2a} dt$
$= \frac{1}{4a}[-cos t] +C$
Now, by back substituting the value of t,
$= \frac{-1}{4a}[cos 2(ax+b)] +C$
Question 6: Integrate the function $\sqrt { ax + b }$
Answer:
Given to integrate $\sqrt { ax + b }$ function,
Let us assume $(ax+b) = t$
we get, $adx =dt$
$dx = \frac{1}{a}dt$
$\Rightarrow \int(ax+b)^{\frac{1}{2}} dx = \frac{1}{a}\int t^{\frac{1}{2}}dt$
Now, by back substituting the value of t,
$= \frac{1}{a}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{2(ax+b)^\frac{3}{2}}{3a} +C$
Question 7: Integrate the functions $x \sqrt { x +2 }$
Answer:
Given function $x \sqrt { x +2 }$ ,
$\int x\sqrt{x+2}$
Assume the $(x+2) = t$ 19634
$\therefore dx =dt$
$\Rightarrow \int x\sqrt{x+2} dx = \int (t-2) \sqrt{t} dt$
$= \int (t-2) \sqrt{t} dt$
$= \int \left ( t^{\frac{3}{2}}-2t^{\frac{1}{2}} \right )dt$
$= \int t^{\frac{3}{2}}dt -2\int t^{\frac{1}{2}}dt$
$= \frac{t^{\frac{5}{2}}}{\frac{5}{2}} -2\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{2}{5}t^{\frac{5}{2}} -\frac{4}{3}t^{\frac{3}{2}} +C$
Back substituting the value of t in the above equation.
or, $\frac{2}{5}(x+2)^{\frac{5}{2}}- \frac{4}{3}(x+2)^\frac{3}{2} +C$ , where C is any constant value.
Question 8: Integrate the function $x \sqrt { 1+ 2 x^2 }$
Answer:
Given function $x \sqrt { 1+ 2 x^2 }$ ,
$\int x \sqrt { 1+ 2 x^2 }\ dx$
Assume the $1+2x^2= t$
$\therefore 4xdx =dt$
$\Rightarrow \int x\sqrt{1+2x^2}dx = \int \frac{\sqrt {t}}{4} dt$
Or $= \frac{1}{4}\int t^{\frac{1}{2}} dt = \frac{1}{4}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
$= \frac{1}{6}(1+2x^2)^{\frac{3}{2}} +C$ , where C is any constant value.
Question 9: Integrate the function $( 4x +2 ) \sqrt { x ^ 2 + x + 1 }$
Answer:
Given function $( 4x +2 ) \sqrt { x ^ 2 + x + 1 }$ ,
$\int ( 4x +2 ) \sqrt { x ^ 2 + x + 1 } dx$
Assume the $1+x+x^2 = t$
$\therefore (2x+1)dx =dt$
$\Rightarrow \int (4x+2)\sqrt{1+x+x^2} dx$
$= \int 2\sqrt {t}dt = 2\int \sqrt{t}dt$
$= 2\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right ) +C$
Now, back substituting the value of t in the above equation,
$= \frac{4}{3}(1+x+x^2)^{\frac{3}{2}} +C$ , where C is any constant value.
Question 10: Integrate the function $\frac{1}{x - \sqrt x }$
Answer:
Given function $\frac{1}{x - \sqrt x }$ ,
$\int \frac{1}{x - \sqrt x } dx$
Can be written in the form:
$\frac{1}{x - \sqrt x } = \frac{1}{\sqrt {x}(\sqrt{x}-1)}$
Assume the $(\sqrt{x}-1) =t$
$\therefore \frac{1}{2\sqrt{x}}dx =dt$
$\Rightarrow \int \frac{1}{\sqrt{x}(\sqrt{x}-1)}dx = \int \frac{2}{t}dt$
$= 2\log|t| +C$
$= 2\log|\sqrt{x}-1| +C$ , where C is any constant value.
Question 11: Integrate the function $\frac{x }{ \sqrt{ x +4} }$ , x > 0
Answer:
Given function $\frac{x }{ \sqrt{ x +4} }$ ,
$\int \frac{x }{ \sqrt{ x +4} }dx$
Assume the $x+4 =t$ so, $x =t-4$
$\therefore dx=dt$
$\int \frac{x}{\sqrt{x+4}}dx = \int \frac{t-4}{\sqrt{t}}dt$
$\int t^\frac{1}{2}dt -4\int t^{\frac{-1}{2}}dt$
$= \frac{2}{3}t^{\frac{3}{2}} - 4\left ( 2t^{\frac{1}{2}} \right )+C$
$= \frac{2}{3}(x+4)^{\frac{3}{2}} -16(x+4)^{\frac{1}{2}}+C$
, where C is any constant value.
Question 12: Integrate the function $( x ^3 - 1 ) ^{1/3} x ^ 5$
Answer:
Given function $( x ^3 - 1 ) ^{1/3} x ^ 5$ ,
$\int ( x ^3 - 1 ) ^{1/3} x ^ 5 dx$
Assume the $x^3-1 = t$
$\therefore 3x^2dx=dt$
$\implies \int(x^3-1)^{\frac{1}{3}} x^5 dx = \int (x^3-1)^{\frac{1}{3}}x^3.x^2dx$
$= \int t^{\frac{1}{3}}(t+1)\frac{dt}{3}$
$= \frac{1}{3} \int \left ( t^\frac{4}{3}+t^\frac{1}{3} \right )dt$
$= \frac{1}{3}\left [ \frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}} \right ]+C$
$= \frac{1}{3}\left [ \frac{3}{7}t^{\frac{7}{3}}+\frac{3}{4}t^{\frac{4}{3}} \right ]+C$
$= \frac{1}{7}(x^3-1)^{\frac{7}{3}} + \frac{1}{4}(x^3-1)^{\frac{4}{3}} +C$ , where C is any constant value.
Question 13: Integrate the function $\frac{x ^2 }{(2+3x^3)^3}$
Answer:
Given function $\frac{x ^2 }{(2+3x^3)^3}$ ,
$\int \frac{x ^2 }{(2+3x^3)^3} dx$
Assume the $2+3x^3 =t$
$\therefore 9x^2dx=dt$
$\implies \int\frac{x^2}{(2+3x^2)}dx = \frac{1}{9}\int \frac{dt}{t^3}$
$= \frac{1}{9}\left ( \frac{t^{-2}}{-2} \right ) +C$
$= \frac{-1}{18}\left ( \frac{1}{t^2} \right )+C$
$= \frac{-1}{18(2+3x^3)^2}+C$ , where C is any constant value.
Question 14: Integrate the function $\frac{1}{x (\log x )^m} , x > 0 , m \neq 1$
Answer:
Given function $\frac{1}{x (\log x )^m} , x > 0 , m \neq 1$ ,
Assume the $\log x =t$
$\therefore \frac{1}{x}dx =dt$
$\implies \int\frac{1}{x(logx)^m}dx = \int\frac{dt}{t^m}$
$=\left ( \frac{t^{-m+1}}{1-m} \right ) +C$
$= \frac{(log x )^{1-m}}{(1-m)} +C$ , where C is any constant value.
Question 15: Integrate the function $\frac{x}{9- 4 x ^2 }$
Answer:
Given function $\frac{x}{9- 4 x ^2 }$ ,
Assume the $9-4x^2 =t$
$\therefore -8xdx =dt$
$\implies \int\frac{x}{9-4x^2} = -\frac{1}{8}\int \frac{1}{t}dt$
$= \frac{-1}{8}\log|t| +C$
Now back substituting the value of t ;
$= \frac{-1}{8}\log|9-4x^2| +C$ , where C is any constant value.
Question 16: Integrate the function $e ^{ 2 x +3 }$
Answer:
Given function $e ^{ 2 x +3 }$ ,
Assume the $2x+3 =t$
$\therefore 2dx =dt$
$\implies \int e^{2x+3} dx = \frac{1}{2}\int e^t dt$
$= \frac{1}{2}e^t +C$
Now back substituting the value of t ;
$= \frac{1}{2}e^{2x+3}+C$ , where C is any constant value.
Question 17: Integrate the function $\frac{x }{e^{x^{2}}}$
Answer:
Given function $\frac{x }{e^{x^{2}}}$ ,
Assume the $x^2=t$
$\therefore 2xdx =dt$
$\implies \int \frac{x}{e^{x^2}}dx = \frac{1}{2}\int \frac{1}{e^t}dt$
$= \frac{1}{2}\int e^{-t} dt$
$= \frac{1}{2}\left ( \frac{e^{-t}}{-1} \right ) +C$
$= \frac{-1}{2}e^{-x^2} +C$
$= \frac{-1}{2e^{x^2} }+C$ , where C is any constant value.
Question 18: Integrate the function $\frac{e ^{\tan ^{-1}x}}{1+ x^2 }$
Answer:
Given,
$\frac{e ^{\tan ^{-1}x}}{1+ x^2 }$
Let's do the following substitution
$\text{tan}^{-1}x = t \implies \frac{1}{1 + x^2} \, dx = dt$
$\therefore \int \frac{e ^{\tan ^{-1}x}}{1+ x^2 }dx = \int e ^{t}dt = e^t + C$
$= e^{tan^{-1}x} + C$
Question 19: Integrate the function $\frac{e ^{2x}-1}{e ^{2x}+1}$
Answer:
Given function $\frac{e ^{2x}-1}{e ^{2x}+1}$ ,
Simplifying it by dividing both numerator and denominator by $e^x$ , we obtain
$\frac{\frac{e^{2x}-1}{e^x}}{\frac{e^{2x}+1}{e^x}} = \frac{e^x-e^{-x}}{e^x+e^{-x}}$
Assume the $e^{x}+e^{-x} =t$
$\therefore (e^x-e^{-x})dx =dt$
$\implies \int \frac{e^{2x}-1}{e^{2x}+1}dx = \int \frac{e^x-e^{-x}}{e^x+e^{-x}}dx$
$= \int \frac{dt}{t}$
$= \log |t| +C$
Now, back substituting the value of t,
$= \log |e^x+e^{-x}| +C$ , where C is any constant value.
Question 20: Integrate the function $\frac{e ^{2x}- e ^{-2x }}{e ^ {2x }+ e ^{ -2 x }}$
Answer:
Given function $\frac{e ^{2x}- e ^{-2x }}{e ^ {2x }+ e ^{ -2 x }}$ ,
Assume the $e^{2x}+e^{-2x} =t$
$\therefore (2e^{2x}-2e^{-2x})dx =dt$
$\implies \int \frac{e^{2x}-e^{-2x}}{e^{2x}+e^{-2x}}dx = \int \frac{dt}{2t}$
$= \frac{1}{2}\int \frac{1}{t}dt$
$= \frac{1}{2}\log|t| +C$
Now, back substituting the value of t,
$= \frac{1}{2}\log|e^{2x}+e^{-2x}| +C$ , where C is any constant value.
Question 21: Integrate the function $\tan ^2 ( 2x-3 )$
Answer:
Given function $\tan ^2 ( 2x-3 )$ ,
Assume the $2x-3 =t$
$\therefore 2dx =dt$
$\implies \int \tan^2(2x-3) dx = \frac{\int \tan^2(t)}{2}dt$
$=\frac{1}{2}\int (\sec^2t -1) dt$ $\left [\because \tan^2t+1 = \sec^2 t \right ]$
$= \frac{1}{2}\left [ \tan t - t \right ] +C$
Now, back substituting the value of t,
$= \frac{1}{2}\left [ \tan(2x-3)-2x+3 \right ]+C$
or $\frac{1}{2} \tan(2x-3)-x+C$ , where C is any constant value.
Question 22: Integrate the function $\sec ^2 ( 7- 4x )$
Answer
Given function $\sec ^2 ( 7- 4x )$ ,
Assume the $7-4x=t$
$\therefore -4dx =dt$
$\implies \int \sec^2(7-4x)dx = \frac{-1}{4}\int \sec^2t dt$
$=-\frac{1}{4}(\tan t) +C$
Now, back substituted the value of t.
$=-\frac{1}{4}\tan(7-4x)+C$ , where C is any constant value.
Question 23: Integrate the function $\frac{\sin ^{-1}x}{\sqrt { 1- x^2 }}$
Answer:
Given function $\frac{\sin ^{-1}x}{\sqrt { 1- x^2 }}$ ,
Assume the $\sin^{-1}x =t$
$\therefore \frac{1}{\sqrt{1-x^2}}dx = dt$
$\implies \int \frac{\sin^{-1}x}{\sqrt{1-x^2}}dx =\int t dt$
$= \frac{t^2}{2}+C$
Now, back substituted the value of t.
$= \frac{(\sin^{-1}x)^2}{2}+C$ , where C is any constant value.
Question 24: Integrate the function $\frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }$
Answer:
Given function $\frac{2 \cos x - 3\sin x }{6 \cos x + 4 \sin x }$ ,
or simplified as $\frac{2 \cos x - 3\sin x }{2(3 \cos x + 2 \sin x) }$
Assume the $3\cos x +2\sin x =t$
$\therefore (-3\sin x + 2\cos x )dx =dt$
$\implies \int \frac{2\cos x - 3\sin x }{6\cos x +4\sin x }dx = \int \frac{dt}{2t}$
$= \frac{1}{2}\int \frac{dt}{t}$
$= \frac{1}{2}\log|t| +C$
Now, back substituted the value of t.
$= \frac{1}{2}\log|3\cos x +2\sin x| +C$ , where C is any constant value.
Question 25: Integrate the function $\frac{1 }{ \cos ^2 x (1-\tan x )^2}$
Answer:
Given function $\frac{1 }{ \cos ^2 x (1-\tan x )^2}$ ,
or simplified as $\frac{1 }{ \cos ^2 x (1-\tan x )^2} = \frac{\sec^2x}{(1-\tan x)^2}$
Assume the $(1-\tan x)=t$
$\therefore -\sec^2xdx =dt$
$\implies \int \frac{\sec^2x}{(1-\tan x)^2}dx = \int\frac{-dt}{t^2}$
$= -\int t^{-2} dt$
$= \frac{1}{t} +C$
Now, back substituted the value of t.
$= \frac{1}{1-\tan x}+C$
where C is any constant value.
Question 26: Integrate the function $\frac{\cos \sqrt x }{\sqrt x }$
Answer:
Given function $\frac{\cos \sqrt x }{\sqrt x }$ ,
Assume the $\sqrt x =t$
$\therefore \frac{1}{2\sqrt x}dx =dt$
$\implies \int \frac{\cos \sqrt{x}}{\sqrt{x}}dx = 2\int \cos t dt$
$= 2\sin t +C$
Now, back substituted the value of t.
$= 2\sin \sqrt{x}+C$ , where C is any constant value.
Question 27: Integrate the function $\sqrt { \sin 2x } \cos 2x$
Answer:
Given function $\sqrt { \sin 2x } \cos 2x$ ,
Assume the $\sin 2x = t$
$\therefore 2\cos 2x dx =dt$
$\implies \int \sqrt{\sin 2x }\cos 2x dx = \frac{1}{2}\int \sqrt t dt$
$= \frac{1}{2}\left ( \frac{t^{\frac{3}{2}}}{\frac{3}{2}} \right )+C$
$= \frac{1}{3}t^{\frac{3}{2}}+C$
Now, back substituted the value of t.
$= \frac{1}{3}(\sin 2 x)^{\frac{3}{2}}+C$ , where C is any constant value.
Question 28: Integrate the function $\frac{\cos x }{\sqrt { 1+ \sin x }}$
Answer:
Given function $\frac{\cos x }{\sqrt { 1+ \sin x }}$ ,
Assume the $1+\sin x =t$
$\therefore \cos x dx = dt$
$\implies \int \frac{\cos x }{\sqrt{1+\sin x}}dx = \int \frac{dt}{\sqrt t}$
$= \frac{t^{\frac{1}{2}}}{\frac{1}{2}} +C$
$= 2\sqrt t +C$
Now, back substituted the value of t.
$= 2{\sqrt{1+\sin x}} +C$ , where C is any constant value.
Question 29: Integrate the function $\cot x \: log \sin x$
Answer:
Given function $\cot x \: log \sin x$ ,
Assume the $\log \sin x =t$
$\therefore \frac{1}{\sin x }.\cos x dx =dt$
$\cot x dx =dt$
$\implies \int \cot x \log \sin x dx =\int t dt$
$= \frac{t^2}{2}+C$
Now, back substituted the value of t.
$= \frac{1}{2}(\log \sin x )^2+C$ , where C is any constant value.
Question 30: Integrate the function $\frac{\sin x }{1+ \cos x }$
Answer:
Given function $\frac{\sin x }{1+ \cos x }$ ,
Assume the $1+\cos x =t$
$\therefore -\sin x dx =dt$
$\implies \int \frac{\sin x}{1+\cos x}dx = \int -\frac{dt}{t}$
$= -\log|t| +C$
Now, back substituted the value of t.
$= -\log|1+\cos x | +C$ , where C is any constant value.
Question 31: Integrate the function $\frac{\sin x }{( 1+ \cos x )^2}$
Answer:
Given function $\frac{\sin x }{( 1+ \cos x )^2}$ ,
Assume the $1+\cos x =t$
$\therefore -\sin x dx =dt$
$\implies \int \frac{\sin x}{(1+\cos x)^2}dx = \int -\frac{dt}{t^2}$
$= -\int t^{-2}dt$
$= \frac{1}{t}+C$
Now, back substituted the value of t.
$= \frac{1}{1+\cos x} +C$ , where C is any constant value.
Question 32: Integrate the function $\frac{1}{1+ \cot x }$
Answer:
Given function $\frac{1}{1+ \cot x }$
Assume that $I = \int \frac{1}{1+ \cot x } dx$
Now solving the assumed integral;
$I = \int \frac{1}{1+ \frac{\cos x }{\sin x} } dx$
$= \int \frac{\sin x }{\sin x + \cos x } dx$
$= \frac{1}{2}\int \frac{2\sin x }{\sin x + \cos x } dx$
$= \frac{1}{2}\int \frac{(\sin x+ \cos x ) +(\sin x -\cos x ) }{(\sin x + \cos x) } dx$
$=\frac{1}{2}\int 1 dx + \frac{1}{2} \int \frac{\sin x -\cos x }{\sin x +\cos x } dx$
$=\frac{1}{2}(x) + \frac{1}{2} \int \frac{\sin x -\cos x }{\sin x +\cos x } dx$
Now, to solve further we will assume $\sin x + \cos x =t$
Or, $(\cos x -\sin x)dx =dt$
$\therefore I = \frac{x}{2}+ \frac{1}{2}\int \frac{-(dt)}{t}$
$= \frac{x}{2}- \frac{1}{2}\log|t| +C$
Now, back substituting the value of t,
$= \frac{x}{2}- \frac{1}{2}\log|\sin x + \cos x| +C$
Question 33: Integrate the function $\frac{1}{1- \tan x }$
Answer:
Given function $\frac{1}{1- \tan x }$
Assume that $I = \int \frac{1}{1- \tan x } dx$
Now solving the assumed integral;
$I = \int \frac{1}{1-\frac{\sin x}{\cos x }} dx$
$= \int \frac{\cos x }{\cos x - \sin x } dx$
$= \frac{1}{2}\int \frac{2\cos x }{\cos x - \sin x } dx$
$= \frac{1}{2}\int \frac{(\cos x -\sin x ) +(\cos x +\sin x ) }{(\cos x - \sin x) } dx$
$=\frac{1}{2}\int 1 dx + \frac{1}{2} \int \frac{\cos x +\sin x }{\cos x -\sin x } dx$
$=\frac{1}{2}(x) + \frac{1}{2} \int \frac{\cos x +\sin x }{\cos x -\sin x } dx$
Now, to solve further we will assume $\cos x - \sin x =t$
Or, $(-\sin x-\cos x )dx =dt$
$\therefore I = \frac{x}{2}+ \frac{1}{2}\int \frac{-(dt)}{t}$
$= \frac{x}{2}- \frac{1}{2}\log|t| +C$
Now, back substituting the value of t,
$= \frac{x}{2}- \frac{1}{2}\log|\cos x - \sin x| +C$
Question 34: Integrate the function $\frac{\sqrt { \tan x } }{\sin x \cos x }$
Answer:
Given function $\frac{\sqrt { \tan x } }{\sin x \cos x }$
Assume that $I = \int \frac{\sqrt { \tan x } }{\sin x \cos x }dx$
Now solving the assumed integral;
Multiplying numerator and denominator by $\cos x$ ;
$I = \int \frac{\sqrt{\tan x }\times\cos x}{\sin x \cos x\times \cos x}dx$
$= \int \frac{\sqrt{\tan x }}{\tan x \cos^2 x } dx$
$= \int \frac{\sec^2 x }{\sqrt{\tan x }}dx$
Now, to solve further we will assume $\tan x =t$
Or, $\sec^2{x}dx =dt$
$\therefore I =\int \frac{dt}{\sqrt t}$
$=2\sqrt t +C$
Now, back substituting the value of t,
$= 2\sqrt{\tan x } +C$
Question 35: Integrate the function $\frac{( 1+ \log x )^2}{x}$
Answer:
Given function $\frac{( 1+ \log x )^2}{x}$
Assume that $1+\log x =t$
$\therefore \frac{1}{x}dx =dt$
$= \int \frac{(1+\log x )^2}{x}dx = \int t^2 dt$
$= \frac{t^3}{3}+C$
Now, back substituting the value of t,
$= \frac{(1+\log x )^3}{3}+C$
Question 36: Integrate the function $\frac{( x+1)( x+ \log x )^2}{x }$
Answer:
Given function $\frac{( x+1)( x+ \log x )^2}{x }$
Simplifying to solve easier;
$\frac{( x+1)( x+ \log x )^2}{x } = \left ( \frac{x+1}{x} \right )\left ( x+\log x \right )^2$
$=\left ( 1+\frac{1}{x} \right )\left ( x+\log x \right )^2$
Assume that $x+\log x =t$
$\therefore \left ( 1+\frac{1}{x} \right )dx = dt$
$= \int \left ( 1+\frac{1}{x} \right )\left ( x+\log x \right )^2 dx = \int t^2 dt$
$= \frac{t^3}{3}+C$
Now, back substituting the value of t,
$= \frac{(x+\log x )^3}{3}+C$
Question 37: Integrate the function $\frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }$
Answer:
Given function $\frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }$
Assume that $x^4 =t$
$\therefore 4x^3 dx =dt$
$\Rightarrow \int \frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }dx = \frac{1}{4} \int \frac{\sin(\tan^{-1} t)}{1+t^2}dt$ ......................(1)
Now to solve further we take $\tan ^{-1} t = u$
$\therefore \frac{1}{1+t^2} dt =du$
So, from the equation (1), we will get
$\Rightarrow \int \frac{x ^3 \sin ( \tan ^{-1} x ^ 4 )}{1 + x ^8 }dx =\frac{1}{4}\int \sin u\ du$
$= \frac{1}{4}(-\cos u) +C$
Now back substitute the value of u,
$= \frac{-1}{4}\cos (\tan^{-1} t) +C$
and then back substituting the value of t,
$= \frac{-1}{4}\cos (\tan^{-1} x^4) +C$
Question 38: Choose the correct answer $\int \frac{10x^9 + 10^x \log_e 10 \, dx}{x^{10} + 10^x}$ equals
$ (A) \ 10^x - x^{10} + C $
$ (B) \ 10^x + x^{10} + C $
$ (C) \ (10^x - x^{10})^{-1} + C $
$ (D) \ \log(10^x + x^{10}) + C $
Answer:
Given integral $\int \frac{10 x^ 9 + 10 ^x \log _ e 10 dx }{x ^{10}+ 10 ^x }dx$
Taking the denominator $x^{10} +10^x = t$
Now differentiating both sides we get
$\therefore \left ( 10x^9+10^x\log_{e}10 \right )dx = dt$
$\implies \int \frac{10x^9+10^x\log_{e}10}{x^{10}+10^x} dx = \int \frac{dt}{t}$
$= \log t +C$
Back substituting the value of t,
$= \log (x^{10}+10^x) +C$
Therefore the correct answer is $\log(10^x + x^{10}) + C$.
Question 39: Choose the correct answer $\int \frac{dx}{\sin^2 x \cos^2 x}$ equals
$(A) \tan x + \cot x + C$
$(B) \tan x - \cot x + C$
$(C) \tan x \cot x + C$
$(D) \tan x - \cot 2x + C$
Answer:
Given integral $\int \frac{dx }{\sin ^ 2 x \cos ^ 2x }$
$\int \frac{dx }{\sin ^ 2 x \cos ^ 2x } = \int \frac{1}{\sin ^2 x \cos ^2 x } dx$
$=\int \frac{\sin ^2 x +\cos^2 x }{\sin^2 x \cos^2 x}dx$ $\left ( \because \sin ^2 x +\cos^2 x =1 \right )$
$=\int \frac{\sin^2 x }{\sin^2 x \cos^2 x}dx + \int \frac{\cos^2 x}{\sin^2 x \cos^2 x}dx$
$=\int \sec^2 x dx + \int cosec^2 x dx$
$=\tan x -\cot x +C$
Therefore, the correct answer is $\tan x - \cot x + C$.
Also, read
Integration by substitution |
---|
It is a method used to simplify integration by changing the variable. It helps solve integrals involving composite functions by making the substitution for part of the expression. |
If $I=\int f(g(x)) \cdot g^{\prime}(x) d x$, let $u=g(x)$ so that $d u=g^{\prime}(x) d x$, then: |
Also, read,
Take Aakash iACST and get instant scholarship on coaching programs.
For quick access to all the other subjects’ NCERT textbook solutions, check out the links below.
Students can refer to the NCERT Exemplar solutions from other subjects listed below for additional support and better concept clarity.
Frequently Asked Questions (FAQs)
There are 39 questions in exercise 7.2 Class 12 Maths
Integration is a topic which has varied applications, it is used heavily in application of Integrals, physics as well as sometimes in chemistry (quantum chemistry). Hence it has a significant role in Board examination.
It can help in solving questions faster. Hence integrals of basic functions can be memorised.
Integration is the process of finding the antiderivative of a function which gives the area of the curve formed by a function. It is useful in finding the area, centre of mass etc.
Integration is used to find the area, centre of mass etc. It has great application in Physics also.
Integration along with Application of Derivatives, holds good weightage in the examination. Aroung 20% marks questions are asked from these 2 chapters.
Initial concepts are quite easy to grasp but in later exercises, significant hard work is required to understand the concepts in a holistic manner.
Topics like integrals of root functions and trigonometric functions are discussed in this chapter.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE