NCERT Solutions for Exercise 7.3 Class 12 Maths Chapter 7 - Integrals

NCERT Solutions for Exercise 7.3 Class 12 Maths Chapter 7 - Integrals

Edited By Ramraj Saini | Updated on Dec 03, 2023 09:49 PM IST | #CBSE Class 12th

NCERT Solutions For Class 12 Maths Chapter 7 Exercise 7.3

NCERT Solutions for Exercise 7.3 Class 12 Maths Chapter 7 Integrals are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for Class 12 Maths chapter 7 exercise 7.3 is another exercise of the NCERT syllabus chapter integrals. It exposes students to some higher level of problems of integrals which includes complex trigonometric functions. Exercise 7.3 Class 12 Maths can be directly solved by students here only to understand the concepts well. NCERT Solutions for Class 12 Maths chapter 7 exercise 7.3 provided below are holistic in nature and have been prepared by experienced faculties. NCERT solutions for exercise 7.3 Class 12 Maths chapter 7 cannot be neglected to perform better in exams like JEE Main.

12th class Maths exercise 7.3 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise together using the link provided below.

VMC VIQ Scholarship Test

Register for Vidyamandir Intellect Quest. Get Scholarship and Cash Rewards.

Pearson | PTE

Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 30th NOV'24! Trusted by 3,500+ universities globally

Access NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.3

Download PDF

Integrals Class 12 Chapter 7 Exercise: 7.3

Question:1 Find the integrals of the functions \sin ^ 2 ( 2x+ 5 )

Answer:

\sin ^ 2 ( 2x+ 5 )

using the trigonometric identity

sin^2x=\frac{1-cos2x}{2}

we can write the given question as

= \frac{1-\cos 2(2x+5)}{2} = \frac{1-\cos (4x+10)}{2}
\\=\int \frac{1-\cos (4x+10)}{2}dx\\ =\frac{1}{2}\int dx - \frac{1}{2}\int \cos(4x+10)dx\\ =\frac{x}{2}-\frac{1}{2}[\sin(4x+10)/4]\\ =\frac{x}{2}-\frac{\sin(4x+10)}{8}+C

Question:2 Find the integrals of the functions \sin 3x \cos 4x

Answer:

Using identity \sin A\cos B = 1/2[sin(A+B)+sin(A-B)]

, therefore the given integral can be written as

\int \sin 3x\cos 4x=\frac{1}{2}\int sin(3x+4x)+sin(3x-4x)\ dx

=\frac{1}{2}\int sin(7x)-sin(x)\ dx\\ =1/2[\int \sin (7x) dx-\int \sin x\ dx]\\ =\frac{1}{2}[(-1/7)\cos 7x+\cos x+ C]\\ = \frac{\cos x}{2}-\frac{\cos 7x}{14}+C

Question:3 Find the integrals of the functions \cos 2x \cos 4x \cos 6x

Answer:

Using identity
cosAcosB = \frac{1}{2}[cos(A+B)+cos(A-B)]

\int \cos 2x.\cos 4x.\cos 6x = \int \cos 2x. \frac{1}{2}[(\cos 10x)+\cos 2x]dx

Again use the same identity mentioned in the first line

\\= \frac{1}{2}\int (\cos 2x.\cos 10x+\cos 2x. \cos 2x)dx\\ =\frac{1}{2}\int\frac{1}{2}({\cos12x +\cos 8x})dx+\frac{1}{2}\int (\frac{1+\cos 4x}{2})dx\\ =\frac{\sin 12x}{48}+\frac{\sin 8x}{32}+\frac{\sin 4x}{16}+ x/4+C

Question:4 Find the integrals of the functions \sin ^ 3 ( 2x +1 )

Answer:

\int \sin^3(2x+1)dx = \int \sin^2(2x+1).\sin(2x+1)dx

The integral can be written as

= \int (1-\cos^2(2x+1)).\sin(2x+1)dx
Let
\\\cos (2x+1) =t\\ \sin (2x+1)dx = -dt/2

\\=\frac{-1}{2}\int (1-t^2)dt\\ =\frac{-1}{2}[t-t^3/3]\\ =\frac{t^3}{6}-\frac{t}{2}

Now, replace the value of t, we get;

=\frac{\cos^3(2x+1)}{6}-\frac{\cos(2x+1)}{2}+C

Question:5 Find the integrals of the functions \sin ^3 x \cos ^ 3 x

Answer:

I = \int \sin^3x.\cos^3x\ dx

rewrite the integral as follows

\\=\int cos^3x.sin^2x.\sin x\ dx\\ =\int cos^3x(1-\cos^2x)\sin x\ dx
Let \cos x = t \Rightarrow \sin x dx =-dt

\\=-\int t^3(1-t^2)dt\\ =-\int(t^3-t^5)dt\\ =-[\frac{t^4}{4}]+[\frac{t^6}{6}] +C\\ =\frac{\cos^6x}{6}-\frac{cos^4x}{4}+C ......(replace the value of t as cos\ x )

Question:6 Find the integrals of the functions \sin x \sin 2x \sin 3x

Answer:

Using the formula
sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))

we can write the integral as follows

\int \sin x.\sin 2x\sin 3x\ dx = \int \sin x\frac{1}{2}[\cos x-\cos 5x]dx
\\=\frac{1}{2} \int [\sin x.\cos x-\sin x.\cos 5x]dx\\ =\frac{1}{2}\int \frac{\sin 2x}{2}dx-\frac{1}{2}\int \sin x. \cos 5x\ dx\\ =-\frac{\cos 2x}{8}-\frac{1}{4}\int[\sin 6x -\sin 4x]\\ =-\frac{\cos 2x}{8}-\frac{1}{4}[\frac{-\cos 6x}{6}+\frac{\cos 4x}{4}]\\ =-\frac{\cos 2x}{8}+\frac{\cos 6x}{24}-\frac{\cos 4x}{16}+C

Question:7 Find the integrals of the functions \sin 4x \sin 8x

Answer:

Using identity

sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))

we can write the following integral as

\sin 4x \sin 8x =
\\=\frac{1}{2}\int(\cos 4x - \cos 12x) dx\\ =\frac{1}{2} [\int\cos 4x\ dx - \int \cos 12x\ dx]\\ =\frac{\sin 4x}{8}-\frac{\sin 12x}{24}+C

Question:8 Find the integrals of the functions \frac{1- \cos x }{1+ \cos x }

Answer:

We know the identities

\\1+\cos 2A = 2\cos^2A\\ 1-\cos 2A = 2\sin^2 A

Using the above relations we can write

\frac{1-\cos x}{1+\cos x}=\frac{\sin^2x/2}{\cos^2x/2} = \tan^2x/2

=\int \tan^2x/2 =\int (\sec^2x/2-1)dx
\\=\int (\sec^2x/2)dx-\int dx\\ = 2[\tan x/2]-{x}+C

Question:9 Find the integrals of the functions \frac {\cos x }{1 + \cos x }

Answer:

The integral is rewritten using trigonometric identities

\frac{\cos x}{1+ \cos x}= \frac{\cos^2x/2-\sin^2x/2}{2\cos^2x/2} =\frac{1}{2}[1-\tan^2x/2]
\\=\int \frac{1}{2}[1-\tan^2x/2] dx\\ =\frac{1}{2}\int 1-[sec^2\frac{x}{2}-1]=\frac{1}{2}\int 2-sec^2\frac{x}{2}\\=x-tan\frac{x}{2}+c

Question:10 Find the integrals of the functions \sin ^ 4 x

Answer:

\sin ^ 4 x can be written as follows using trigonometric identities
\\=\sin^2x.\sin^2x\\ =\frac{1}{4}(1-\cos 2x)^{2}\\ =\frac{1}{4}(1+\cos^22x-2\cos 2x)\\ =\frac{1}{4}(1+\frac{1}{2}(1+\cos 4x)-2\cos 2x)\\ =3/8+\frac{\cos 4x}{8}-\frac{\cos 2x}{2}

Therefore,
\Rightarrow \int \sin^4x\ dx = \int \frac{3}{8}dx+\frac{1}{8}\int\cos 4x\ dx -\frac{1}{2}\int\cos 2x\ dx
= \frac{3x}{8}+\frac{\sin 4x}{32} -\frac{\sin 2x}{4}+C

Question:11 Find the integrals of the functions \cos ^ 4 2x

Answer:

cos^42x=cos^32xcos2x

now using the identity

cos^3x=\frac{cos3x+3cosx}{4}

cos^32xcos2x=\frac{cos6x +3cos2x}{4}cos2x=\frac{cos6xcos2x+3cos^22x}{4}

now using the below two identities

cosacosb=\frac{cos(a+b)+cos(a-b)}{2}\\and\ cos^22x=\frac{1+cos4x}{2}\\

the value

cos^42x=cos^32xcos2x\\=\frac{cos6xcos2x+3cos^22x}{4}=\frac{cos 4x+cos8x}{8}+\frac{3}{4}\frac{1+cos4x}{2} .

the integral of the given function can be written as

\int cos^42x=\int \frac{cos 4x+cos8x}{8}+\int \frac{3}{4}\frac{1+cos4x}{2}\\ \\=\frac{3}{8}x+\frac{sin4x}{8}+\frac{sin8x}{64}+C

Question:12 Find the integrals of the functions \frac{\sin ^ 2x }{1+ \cos x }

Answer:

Using trigonometric identities we can write the given integral as follows.

\frac{\sin ^ 2x }{1+ \cos x }

\\=\frac{4\sin^2\frac{x}{2}\cos^2\frac{x}{2}}{2\cos^2\frac{x}{2}}\\ =2\sin^2\frac{x}{2}\\ =1-\cos x

\therefore \int \frac{sin^22x}{1+\cos x} = \int (1-\cos x)dx
\\= \int 1dx-\int\cos x\ dx\\ =x-\sin x+C

Question:13 Find the integrals of the functions \frac{\cos 2x - \cos 2 \alpha }{\cos x - \cos \alpha }

Answer:

We know that,

\cos A-\cos B = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})

Using this identity we can rewrite the given integral as

\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\frac{-2\sin\frac{2x+2\alpha}{2}\sin\frac{2x-2\alpha}{2}}{-2\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}

\\=\frac{\sin(x+\alpha)\sin(x-\alpha)}{\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}\\ =\frac{[2\sin\frac{x+\alpha}{2}\cos \frac{x+\alpha}{2}][2\sin\frac{x-\alpha}{2}\cos\frac{x-\alpha}{2}]}{\sin\frac{x+\alpha}{2}\sin\frac{x-\alpha}{2}}\\ =4\cos\frac{x+\alpha}{2}\cos\frac{x-\alpha}{2}\\ =2[\cos x+\cos \alpha]

\therefore \int\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\int 2\cos x\ dx +\int 2\cos \alpha\ dx
=2[\sin x + x\cos \alpha]+C

Question:14 Find the integrals of the functions \frac{\cos x - \sin x }{1+ \sin 2x }

Answer:

\frac{\cos x-\sin x}{1+2\sin x}=\frac{\cos x-\sin x}{(sin^2x+cos^2x)+2 sin x.\cos x}
=\frac{\cos x-\sin x}{(\sin x+\cos x)^2}


\\sin x+\cos x =t\\ \therefore (\cos x-\sin x)dx = dt

Now,
=\int \frac{dt}{t^2}\\ =\int t^-2\ dt\\ =-t^{-1}+C\\ =-\frac{1}{(\sin x+\cos x)}+C

Question:15 Find the integrals of the functions \tan ^ 3 2x \sec 2x

Answer:

\tan^32x.\sec 2x = \tan^22x.\tan 2x.\sec 2x
\\= (\sec^22x-1).\tan 2x.\sec 2x\\ =\sec^22x.\tan 2x-\tan 2x.\sec 2x

Therefore integration of \tan ^ 3 2x \sec 2x =
\\=\int\sec^22x.\tan 2x\ dx-\int\tan 2x.\sec 2x\ dx\\ =\int\sec^22x.\tan 2x\ dx-\sec 2x/2+C\\ .....................(i)
Let assume

\sec 2x = t
So, that 2\sec 2x.\tan 2x\ dx =dt
Now, the equation (i) becomes,

\\\Rightarrow \frac{1}{2}\int t^2\ dt-\frac{\sec 2x}{2}+C\\ \Rightarrow \frac{t^3}{6}-\frac{\sec 2x}{2}+C\\ =\frac{(\sec 2x)^3}{6}-\frac{\sec 2x}{2}+C

Question:16 Find the integrals of the functions \tan ^ 4x

Answer:

the given question can be rearranged using trigonometric identities

tan^4x=(\sec^2x-1).\tan^2x\\ =\sec^2x.\tan^2x-\tan^2x\\ =\sec^2x.\tan^2x-\sec^2x+1

Therefore, the integration of \tan^4x = \\=\int \sec^2x.\tan^2x\ dx-\int\sec^2x\ dx+\int dx\\ =(\int \sec^2x.\tan^2x\ dx)-\tan x+x+C\\ ...................(i)
Considering only \int \sec^2x.\tan^2x\ dx
let \tan x =t\Rightarrow \sec^2x\ dx =dt

\int \sec^2x\tan^2x\ dx = \int t^2\ dt = t^3/3=\frac{\tan^3x}{3}

now the final solution is,

\int \tan^4x =\frac{\tan^3x}{3}-\tan x+x+C

Question:17 Find the integrals of the functions \frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }

Answer:

\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }

now splitting the terms we can write

\\=\frac{\sin^3x}{\sin^2x.\cos^2x}+\frac{\cos^3x}{\sin^2x.\cos^2x}\\ =\frac{\sin x}{cos^2x}+\frac{\cos x}{\sin^2x}\\ =\tan x.\sec x+\cot xcosec x

Therefore, the integration of
\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }

\\=\int (\tan x\sec x+\cot xcosec x)dx\\ =\sec x-cosec\ x+C

Question:18 Find the integrals of the functions \frac{\cos 2 x + 2 \sin ^ 2x }{\cos ^ 2 x }

Answer:

The integral of the above equation is

\\=\int (\frac{\cos 2x+2\sin^2x}{\cos^2x})dx\\ =\int (\frac{\cos 2x+(1-\cos 2x)}{\cos^2x}\\ =\int\frac{1}{\cos^2x}\\ =\int \sec^2x\ dx =\tan x+C

Thus after evaluation, the value of integral is tanx+ c

Question:19 Find the integrals of the functions \frac{1}{\sin x \cos ^3 x }

Answer:

Let
We can write 1 = \sin^2x +\cos^2x
Then, the equation can be written as
I =\frac{\sin^2x +\cos^2x}{\sin x\cos^3x}

I =\int (\tan x+\frac{1}{\tan x})\sec^2 x dx
put the value of tan x = t
So, that \sec^2xdx =dt

\\\Rightarrow I=\int (t+\frac{1}{t})dt\\ =\frac{t^2}{2}+\log\left | t \right |+C\\ =\log\left | \tan x \right |+\frac{1}{2}\tan^2x+C

Question:20 Find the integrals of the functions \frac{\cos 2x }{( \cos x + \sin x )^2}

Answer:

we know that cos2x= cos^2x-sin^2x
therefore,

\frac{\cos 2x }{( \cos x + \sin x )^2}
\frac{\cos 2x}{1+\sin 2x}\\ \Rightarrow \int \frac{\cos 2x}{1+\sin 2x}\\ let 1+sin2x =t \Rightarrow 2cos2x\ dx = dt
Now the given integral can be written as

\therefore \int \frac{\cos 2x}{(\cos x+\sin x)^2}=\frac{1}{2}\int \frac{1}{t}dt
\\\Rightarrow \frac{1}{2}\log\left | t \right |+C\\ \Rightarrow \frac{1}{2}\log\left | 1+\sin 2x \right |+C\\=log|sin^2x+cos^2x+2sinxcosx|+C\\=\frac{1}{2}log|(sinx+cosx)^2|+C=log|sinx+cosx|+C

Question:21 Find the integrals of the functions \sin ^ { -1} ( \cos x )

Answer:

using the trigonometric identities we can evaluate the following integral as follows

\dpi{100} \int \sin^{-1}(\cos x)dx = \int \sin^{-1}(sin(\frac{\pi}{2}-x))dx\\=\int(\frac{\pi}{2}-x)dx=\frac{\pi x}{2}-\frac{x^2}{2}+C

Question:22 Find the integrals of the functions \frac{1}{\cos ( x-a ) \cos ( x-b )}

Answer:

Using the trigonometric identities following integrals can be simplified as follows

\frac{1}{\cos(x-a)\cos(x-b)}=\frac{1}{\sin(a-b)}[\frac{\sin(a-b)}{\cos(x-a)\cos(x-b)}]

=\frac{1}{\sin(a-b)}[\frac{\sin[(x-b)-(x-a)]}{\cos(x-a)\cos(x-b)}]

=\frac{1}{\sin(a-b)}[\frac{\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)}]

=\frac{tan(x-b)-\tan (x-a)}{\sin(a-b)}

=\frac{1}{\sin(a-b)}\int tan(x-b)-\tan (x-a)dx
\\=\frac{1}{\sin(a-b)}[-\log\left | \cos(x-b) \right |+\log\left | \cos(x-a) \right |]\\ =\frac{1}{\sin(a-b)}(\log\left | \frac{\cos(x-a)}{\cos(x-b)} \right |)

Question:23 Choose the correct answer

\int \frac{\sin ^ 2 x - \cos ^ 2 x dx }{\sin ^ 2 x \cos ^ 2x } dx \: \:is \: \:equal \: \: to stgdrffd

Answer:

The correct option is (A)

On reducing the above integral becomes \sec^2x-csc^2x
\int\sec^2x-csc^2x\ dx = \tan x+ \cot x+C

Question:24 Choose the correct answer \int \frac{e ^x ( 1+x)}{\cos ^ 2 ( e ^xx )} dx \: \: equals

\\(A) -\cot (ex^x) + C \\\\ (B) \tan (xe^x) + C\\\\ (C) \tan (e^x) + C \\\\ (D) \cot (e^x) + C

Answer:

The correct option is (B)

Let e^xx = t .
So, (e^x.x+ 1.e^x)dx = dt
(1+ x ) e^x\ dx =dt

therefore,

\int \frac{e^x(1+x)}{\cos^2(e^x.x)}dx =\int\frac{dt}{\cos^2t}
\\=\int \sec^2t dt\\ =\tan t +C\\ =\tan(e^x.x)+C



More About NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.3

The NCERT Class 12 Maths chapter Integrals provided here is of good quality and can be referred by students preparing for various examinations. Exercise 7.3 Class 12 Maths is important for some of the NCERT book Physics topics also. Hence NCERT Solutions for Class 12 Maths chapter 7 exercise 7.3 are good to go for both Maths as well as Physics.

Also Read| Integrals Class 12 Notes

Benefits of NCERT Solutions for Class 12 Maths Chapter 7 Exercise 7.3

  • The Class 12th Maths chapter 7 exercise provided here is of best quality.
  • Students can skip questions from exercise 7.3 Class 12 Maths which are repeated in concept to save their time.
  • These Class 12 Maths chapter 7 exercise 7.3 solutions are helpful for NEET, JEE as well as Board examinations.
  • NCERT Solutions for class 12 maths chapter 7 exercise 7.3 are highly recommended to students. Theory also can be understood with the help of exercise solutions only.
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Key Features Of NCERT Solutions for Exercise 7.3 Class 12 Maths Chapter 7

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 7.3 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 7.3, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 7.3 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 7.3 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 7.3 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 7.3 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

NCERT Solutions Subject Wise

Subject Wise NCERT Exemplar Solutions

Happy learning!!!

Frequently Asked Questions (FAQs)

1. What are the topics asked in NCERT solutions for Class 12 Maths chapter 7 exercise 7.3 ?

Topics like finding out integrals of trigonometric functions, square root functions etc. are asked in the examination. 

2. Where is the use of Integration ?

Integration can be used to find the area, volume etc. in physics and other disciplines. 

3. Is exercise 7.3 important for Board examinations ?

Yes, it is significant for the board examinations. 5 markers are generally asked from this exercise only. 

4. What is the level of questions in exercise 7.3 class 12 Maths ?

Moderate level of questions are there in this exercise,

5. Is this helpful for Physics Topics also?

Yes, some functions like sinx, cosx etc. are used in physics calculations. Hence can be referred for Physics topics also. 

6. How many questions are there in Class 12th Maths chapter 7 exercise 7.3 ?

In total there are 24 questions in this exercise 

7. Is it necessary to solve every question of the exercise?

No, just try to solve maximum and cover maximum concepts. Some questions which are based on the same concepts can be skipped. 

8. Should I refer to any other book for this chapter for Boards?

No, as NCERT questions are more than sufficient for Boards. You can revise these questions only. 

 

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams

Explore Top Universities Across Globe

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top