Integration is the art of summing the infinitely small to understand the infinitely vast. NCERT Solutions for Exercise 7.3 Class 12 Maths Chapter 7 Integrals is an essential part of learning integration as it familiarises us with integration using trigonometric identities. In this method, we will use trigonometric formulas to simplify a function to make the integration easier. In the 12th class, Maths exercise 7.3 by NCERT follows the latest CBSE syllabus and helps students strengthen their understanding of integrals.
This Story also Contains
The NCERT Solutions for Class 12 Maths chapter 7 exercise 7.3 provided below are detailed, reliable, and prepared by experienced Careers360 faculty.
Question 1: Find the integrals of the functions $\sin ^ 2 ( 2x+ 5 )$
Answer:
$\sin ^ 2 ( 2x+ 5 )$
using the trigonometric identity
$sin^2x=\frac{1-cos2x}{2}$
we can write the given question as
$= \frac{1 - \cos 2(2x + 5)}{2} = \frac{1 - \cos (4x + 10)}{2}$
$= \int \frac{1 - \cos (4x + 10)}{2} \, dx$
$= \frac{1}{2} \int dx - \frac{1}{2} \int \cos(4x + 10) \, dx$
$= \frac{x}{2} - \frac{1}{2} \left[ \frac{\sin(4x + 10)}{4} \right]$
$= \frac{x}{2} - \frac{\sin(4x + 10)}{8} + C$
Question 2: Find the integrals of the functions $\sin 3x \cos 4x$
Answer:
Using identity $\sin A\cos B = 1/2[sin(A+B)+sin(A-B)]$
, therefore the given integral can be written as
$\int \sin 3x \cos 4x = \frac{1}{2} \int \sin(3x + 4x) + \sin(3x - 4x) \, dx$
$= \frac{1}{2} \int \sin(7x) - \sin(x) \, dx$
$= \frac{1}{2} \left[ \int \sin(7x) \, dx - \int \sin x \, dx \right]$
$= \frac{1}{2} \left[ \frac{-\cos 7x}{7} + \cos x \right] + C$
$= \frac{\cos x}{2} - \frac{\cos 7x}{14} + C$
Question 3: Find the integrals of the functions $\cos 2x \cos 4x \cos 6x$
Answer:
Using identity
$cosAcosB = \frac{1}{2}[cos(A+B)+cos(A-B)]$
$\int \cos 2x.\cos 4x.\cos 6x = \int \cos 2x. \frac{1}{2}[(\cos 10x)+\cos 2x]dx$
Again use the same identity mentioned in the first line
$= \frac{1}{2} \int (\cos 2x \cdot \cos 10x + \cos 2x \cdot \cos 2x) \, dx$
$= \frac{1}{2} \int \frac{1}{2} (\cos 12x + \cos 8x) \, dx + \frac{1}{2} \int \left( \frac{1 + \cos 4x}{2} \right) \, dx$
$= \frac{\sin 12x}{48} + \frac{\sin 8x}{32} + \frac{\sin 4x}{16} + \frac{x}{4} + C$
Question 4: Find the integrals of the functions $\sin ^ 3 ( 2x +1 )$
Answer:
$\int \sin^3(2x+1)dx = \int \sin^2(2x+1).\sin(2x+1)dx$
The integral can be written as
$= \int (1-\cos^2(2x+1)).\sin(2x+1)dx$
Let
$\\\cos (2x+1) =t\\ \sin (2x+1)dx = -dt/2$
$\\=\frac{-1}{2}\int (1-t^2)dt\\ =\frac{-1}{2}[t-t^3/3]\\ =\frac{t^3}{6}-\frac{t}{2}$
Now, replace the value of t, we get;
$= \frac{\cos^3(2x+1)}{6} - \frac{\cos(2x+1)}{2} + C$
Question 5: Find the integrals of the functions $\sin ^3 x \cos ^ 3 x$
Answer:
$I = \int \sin^3x.\cos^3x\ dx$
rewrite the integral as follows
$\\=\int cos^3x.sin^2x.\sin x\ dx\\ =\int cos^3x(1-\cos^2x)\sin x\ dx$
Let $\cos x = t \Rightarrow \sin x dx =-dt$
$\\=-\int t^3(1-t^2)dt\\ =-\int(t^3-t^5)dt\\ =-[\frac{t^4}{4}]+[\frac{t^6}{6}] +C\\ =\frac{\cos^6x}{6}-\frac{cos^4x}{4}+C$ ......(replace the value of t as $cos\ x$ )
Question 6: Find the integrals of the functions $\sin x \sin 2x \sin 3x$
Answer:
Using the formula
$sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))$
we can write the integral as follows
$\int \sin x \cdot \sin 2x \cdot \sin 3x \, dx = \int \sin x \cdot \frac{1}{2}[\cos x - \cos 5x] \, dx$
$= \frac{1}{2} \int [\sin x \cdot \cos x - \sin x \cdot \cos 5x] \, dx$
$= \frac{1}{2} \int \frac{\sin 2x}{2} \, dx - \frac{1}{2} \int \sin x \cdot \cos 5x \, dx$
$= -\frac{\cos 2x}{8} - \frac{1}{4} \int [\sin 6x - \sin 4x] \, dx$
$= -\frac{\cos 2x}{8} - \frac{1}{4} \left[ \frac{-\cos 6x}{6} + \frac{\cos 4x}{4} \right]$
$= -\frac{\cos 2x}{8} + \frac{\cos 6x}{24} - \frac{\cos 4x}{16} + C$
Question 7: Find the integrals of the functions $\sin 4x \sin 8x$
Answer:
Using identity
$sinAsinB=\frac{1}{2}(cos(A-B)-cos(A+B))$
we can write the following integral as
$\sin 4x \sin 8x$ =
$\\=\frac{1}{2}\int(\cos 4x - \cos 12x) dx\\ =\frac{1}{2} [\int\cos 4x\ dx - \int \cos 12x\ dx]\\ =\frac{\sin 4x}{8}-\frac{\sin 12x}{24}+C$
Question 8: Find the integrals of the functions $\frac{1- \cos x }{1+ \cos x }$
Answer:
We know the identities
$\\1+\cos 2A = 2\cos^2A\\ 1-\cos 2A = 2\sin^2 A$
Using the above relations we can write
$\frac{1-\cos x}{1+\cos x}=\frac{\sin^2x/2}{\cos^2x/2} = \tan^2x/2$
$=\int \tan^2x/2 =\int (\sec^2x/2-1)dx$
$\\=\int (\sec^2x/2)dx-\int dx\\ = 2[\tan x/2]-{x}+C$
Question 9: Find the integrals of the functions $\frac {\cos x }{1 + \cos x }$
Answer:
The integral is rewritten using trigonometric identities
$\frac{\cos x}{1+ \cos x} = \frac{\cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}}{2 \cos^2 \frac{x}{2}} = \frac{1}{2} \left[ 1 - \tan^2 \frac{x}{2} \right]$
$= \int \frac{1}{2} \left[ 1 - \tan^2 \frac{x}{2} \right] \, dx$
$= \frac{1}{2} \int \left[ 1 - \left( \sec^2 \frac{x}{2} - 1 \right) \right] \, dx$
$= \frac{1}{2} \int \left[ 2 - \sec^2 \frac{x}{2} \right] \, dx$
$= x - \tan \frac{x}{2} + C$
Question 10: Find the integrals of the functions $\sin ^ 4 x$
Answer:
$\sin ^ 4 x$ can be written as follows using trigonometric identities
$= \sin^2 x \cdot \sin^2 x$
$= \frac{1}{4}(1 - \cos 2x)^2$
$= \frac{1}{4}(1 + \cos^2 2x - 2\cos 2x)$
$= \frac{1}{4} \left( 1 + \frac{1}{2}(1 + \cos 4x) - 2\cos 2x \right)$
$= \frac{3}{8} + \frac{\cos 4x}{8} - \frac{\cos 2x}{2}$
Therefore,
$\Rightarrow \int \sin^4x\ dx = \int \frac{3}{8}dx+\frac{1}{8}\int\cos 4x\ dx -\frac{1}{2}\int\cos 2x\ dx$
$= \frac{3x}{8}+\frac{\sin 4x}{32} -\frac{\sin 2x}{4}+C$
Question 11: Find the integrals of the functions $\cos ^ 4 2x$
Answer:
$cos^42x=cos^32xcos2x$
now using the identity
$cos^3x=\frac{cos3x+3cosx}{4}$
$cos^32xcos2x=\frac{cos6x +3cos2x}{4}cos2x=\frac{cos6xcos2x+3cos^22x}{4}$
now using the below two identities
$cosacosb=\frac{cos(a+b)+cos(a-b)}{2}\\and\ cos^22x=\frac{1+cos4x}{2}\\$
the value
$cos^42x=cos^32xcos2x\\=\frac{cos6xcos2x+3cos^22x}{4}=\frac{cos 4x+cos8x}{8}+\frac{3}{4}\frac{1+cos4x}{2}$ .
the integral of the given function can be written as
$\int cos^42x=\int \frac{cos 4x+cos8x}{8}+\int \frac{3}{4}\frac{1+cos4x}{2}\\ \\=\frac{3}{8}x+\frac{sin4x}{8}+\frac{sin8x}{64}+C$
Question 12: Find the integrals of the functions $\frac{\sin ^ 2x }{1+ \cos x }$
Answer:
Using trigonometric identities we can write the given integral as follows.
$\frac{\sin ^ 2x }{1+ \cos x }$
$\\=\frac{4\sin^2\frac{x}{2}\cos^2\frac{x}{2}}{2\cos^2\frac{x}{2}}\\ =2\sin^2\frac{x}{2}\\ =1-\cos x$
$\therefore \int \frac{sin^22x}{1+\cos x} = \int (1-\cos x)dx$
$\\= \int 1dx-\int\cos x\ dx\\ =x-\sin x+C$
Question 13: Find the integrals of the functions $\frac{\cos 2x - \cos 2 \alpha }{\cos x - \cos \alpha }$
Answer:
We know that,
$\cos A-\cos B = -2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})$
Using this identity we can rewrite the given integral as
$\frac{\cos 2x - \cos 2\alpha}{\cos x - \cos \alpha} = \frac{-2 \sin \frac{2x + 2\alpha}{2} \sin \frac{2x - 2\alpha}{2}}{-2 \sin \frac{x + \alpha}{2} \sin \frac{x - \alpha}{2}}$
$= \frac{\sin(x + \alpha) \sin(x - \alpha)}{\sin \frac{x + \alpha}{2} \sin \frac{x - \alpha}{2}}$
$= \frac{[2 \sin \frac{x + \alpha}{2} \cos \frac{x + \alpha}{2}] [2 \sin \frac{x - \alpha}{2} \cos \frac{x - \alpha}{2}]}{\sin \frac{x + \alpha}{2} \sin \frac{x - \alpha}{2}}$
$= 4 \cos \frac{x + \alpha}{2} \cos \frac{x - \alpha}{2}$
$= 2[\cos x + \cos \alpha]$
$\therefore \int\frac{\cos 2x-\cos 2\alpha }{\cos x-\cos\alpha}=\int 2\cos x\ dx +\int 2\cos \alpha\ dx$
$=2[\sin x + x\cos \alpha]+C$
Question 14: Find the integrals of the functions $\frac{\cos x - \sin x }{1+ \sin 2x }$
Answer:
$\frac{\cos x - \sin x}{1 + 2\sin x} = \frac{\cos x - \sin x}{\sin^2 x + \cos^2 x + 2\sin x \cos x}$
$= \frac{\cos x - \sin x}{(\sin x + \cos x)^2}$
$\\sin x+\cos x =t\\ \therefore (\cos x-\sin x)dx = dt$
Now,
$=\int \frac{dt}{t^2}\\ =\int t^-2\ dt\\ =-t^{-1}+C\\ =-\frac{1}{(\sin x+\cos x)}+C$
Question 15: Find the integrals of the functions $\tan ^ 3 2x \sec 2x$
Answer:
$\tan^32x.\sec 2x = \tan^22x.\tan 2x.\sec 2x$
$\\= (\sec^22x-1).\tan 2x.\sec 2x\\ =\sec^22x.\tan 2x-\tan 2x.\sec 2x$
Therefore integration of $\tan ^ 3 2x \sec 2x$ =
$\\=\int\sec^22x.\tan 2x\ dx-\int\tan 2x.\sec 2x\ dx\\ =\int\sec^22x.\tan 2x\ dx-\sec 2x/2+C\\$ .....................(i)
Let assume
$\sec 2x = t$
So, that $2\sec 2x.\tan 2x\ dx =dt$
Now, the equation (i) becomes,
$\\\Rightarrow \frac{1}{2}\int t^2\ dt-\frac{\sec 2x}{2}+C\\ \Rightarrow \frac{t^3}{6}-\frac{\sec 2x}{2}+C\\ =\frac{(\sec 2x)^3}{6}-\frac{\sec 2x}{2}+C$
Question 16: Find the integrals of the functions $\tan ^ 4x$
Answer:
the given question can be rearranged using trigonometric identities
$tan^4x=(\sec^2x-1).\tan^2x\\ =\sec^2x.\tan^2x-\tan^2x\\ =\sec^2x.\tan^2x-\sec^2x+1$
Therefore, the integration of $\tan^4x$ = $\\=\int \sec^2x.\tan^2x\ dx-\int\sec^2x\ dx+\int dx\\ =(\int \sec^2x.\tan^2x\ dx)-\tan x+x+C\\$ ...................(i)
Considering only $\int \sec^2x.\tan^2x\ dx$
let $\tan x =t\Rightarrow \sec^2x\ dx =dt$
$\int \sec^2x\tan^2x\ dx = \int t^2\ dt = t^3/3=\frac{\tan^3x}{3}$
now the final solution is,
$\int \tan^4x =\frac{\tan^3x}{3}-\tan x+x+C$
Question 17: Find the integrals of the functions $\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }$
Answer:
$\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }$
now splitting the terms we can write
$\\=\frac{\sin^3x}{\sin^2x.\cos^2x}+\frac{\cos^3x}{\sin^2x.\cos^2x}\\ =\frac{\sin x}{cos^2x}+\frac{\cos x}{\sin^2x}\\ =\tan x.\sec x+\cot xcosec x$
Therefore, the integration of
$\frac{\sin ^ 3x + \cos ^ 3x }{\sin ^ 2 x \cos ^2 x }$
$\\=\int (\tan x\sec x+\cot xcosec x)dx\\ =\sec x-cosec\ x+C$
Question 18: Find the integrals of the functions $\frac{\cos 2 x + 2 \sin ^ 2x }{\cos ^ 2 x }$
Answer:
The integral of the above equation is
$\\=\int (\frac{\cos 2x+2\sin^2x}{\cos^2x})dx\\ =\int (\frac{\cos 2x+(1-\cos 2x)}{\cos^2x}\\ =\int\frac{1}{\cos^2x}\\ =\int \sec^2x\ dx =\tan x+C$
Thus after evaluation, the value of integral is tanx+ c
Question 19: Find the integrals of the functions $\frac{1}{\sin x \cos ^3 x }$
Answer:
Let
We can write 1 = $\sin^2x +\cos^2x$
Then, the equation can be written as
$I =\frac{\sin^2x +\cos^2x}{\sin x\cos^3x}$
$I =\int (\tan x+\frac{1}{\tan x})\sec^2 x dx$
put the value of tan $x$ = t
So, that $\sec^2xdx =dt$
$\\\Rightarrow I=\int (t+\frac{1}{t})dt\\ =\frac{t^2}{2}+\log\left | t \right |+C\\ =\log\left | \tan x \right |+\frac{1}{2}\tan^2x+C$
Question 20: Find the integrals of the functions $\frac{\cos 2x }{( \cos x + \sin x )^2}$
Answer:
we know that $cos2x= cos^2x-sin^2x$
therefore,
$\frac{\cos 2x }{( \cos x + \sin x )^2}$
$\frac{\cos 2x}{1+\sin 2x}\\ \Rightarrow \int \frac{\cos 2x}{1+\sin 2x}\\$ let $1+sin2x =t \Rightarrow 2cos2x\ dx = dt$
Now the given integral can be written as
$\therefore \int \frac{\cos 2x}{(\cos x+\sin x)^2}=\frac{1}{2}\int \frac{1}{t}dt$
$\\\Rightarrow \frac{1}{2}\log\left | t \right |+C\\ \Rightarrow \frac{1}{2}\log\left | 1+\sin 2x \right |+C\\=log|sin^2x+cos^2x+2sinxcosx|+C\\=\frac{1}{2}log|(sinx+cosx)^2|+C=log|sinx+cosx|+C$
Question 21: Find the integrals of the functions $\sin ^ { -1} ( \cos x )$
Answer:
using the trigonometric identities we can evaluate the following integral as follows
${100} \int \sin^{-1}(\cos x) \, dx = \int \sin^{-1}\left(\sin\left(\frac{\pi}{2} - x\right)\right) \, dx$
$= \int \left(\frac{\pi}{2} - x\right) \, dx = \frac{\pi x}{2} - \frac{x^2}{2} + C$
$\frac{\cos x - \sin x}{1 + 2\sin x} = \frac{\cos x - \sin x}{\sin^2 x + \cos^2 x + 2\sin x \cos x}$
$= \frac{\cos x - \sin x}{(\sin x + \cos x)^2}$
Question 22: Find the integrals of the functions $\frac{1}{\cos ( x-a ) \cos ( x-b )}$
Answer:
Using the trigonometric identities following integrals can be simplified as follows
$\frac{1}{\cos(x-a)\cos(x-b)}=\frac{1}{\sin(a-b)}[\frac{\sin(a-b)}{\cos(x-a)\cos(x-b)}]$
$=\frac{1}{\sin(a-b)}[\frac{\sin[(x-b)-(x-a)]}{\cos(x-a)\cos(x-b)}]$
$=\frac{1}{\sin(a-b)}[\frac{\sin(x-b)\cos(x-a)-\cos(x-b)\sin(x-a)}{\cos(x-a)\cos(x-b)}]$
$=\frac{tan(x-b)-\tan (x-a)}{\sin(a-b)}$
$=\frac{1}{\sin(a-b)}\int tan(x-b)-\tan (x-a)dx$
$\\=\frac{1}{\sin(a-b)}[-\log\left | \cos(x-b) \right |+\log\left | \cos(x-a) \right |]\\ =\frac{1}{\sin(a-b)}(\log\left | \frac{\cos(x-a)}{\cos(x-b)} \right |)$
Question 23: Choose the correct answer
$\int \frac{\sin ^ 2 x - \cos ^ 2 x dx }{\sin ^ 2 x \cos ^ 2x } dx \: \:is \: \:equal \: \: to$
Answer:
The correct option is (A)
On reducing the above integral becomes $\sec^2x-csc^2x$
$\int\sec^2x-csc^2x\ dx = \tan x+ \cot x+C$
Question 24: Choose the correct answer $\int \frac{e ^x ( 1+x)}{\cos ^ 2 ( e ^xx )} dx \: \: equals$
$\\(A) -\cot (ex^x) + C \\\\ (B) \tan (xe^x) + C\\\\ (C) \tan (e^x) + C \\\\ (D) \cot (e^x) + C$
Answer:
The correct option is (B)
Let $e^xx = t$ .
So, $(e^x.x+ 1.e^x)dx = dt$
(1+ $x$ ) $e^x\ dx =dt$
therefore,
$\int \frac{e^x(1+x)}{\cos^2(e^x.x)}dx =\int\frac{dt}{\cos^2t}$
$\\=\int \sec^2t dt\\ =\tan t +C\\ =\tan(e^x.x)+C$
Also, read
Trigonometric Identity |
$\sin^2 x = \frac{1 - \cos(2x)}{2}$ |
$\cos^2 x = \frac{1 + \cos(2x)}{2}$ |
$\sin x \cos x = \frac{1}{2} \sin(2x)$ |
1 + tan²x = sec²x |
1 + cot²x = cosec²x |
sin²x + cos²x = 1 |
Also, read,
Students can refer to these structured NCERT solutions of other subjects provided below to gain a complete edge.
Students can explore the following links for detailed NCERT exemplar solutions of other subjects.
Frequently Asked Questions (FAQs)
Yes, some functions like sinx, cosx etc. are used in physics calculations. Hence can be referred for Physics topics also.
In total there are 24 questions in this exercise
No, just try to solve maximum and cover maximum concepts. Some questions which are based on the same concepts can be skipped.
No, as NCERT questions are more than sufficient for Boards. You can revise these questions only.
Topics like finding out integrals of trigonometric functions, square root functions etc. are asked in the examination.
Integration can be used to find the area, volume etc. in physics and other disciplines.
Yes, it is significant for the board examinations. 5 markers are generally asked from this exercise only.
Moderate level of questions are there in this exercise,
On Question asked by student community
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters