CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Differential equations find their applications in the explanation of many real-life phenomena involving temporal change of quantities. For instance, city population growth typically exhibits a model with the growth rate proportional to the current population; this process can be explained using a straightforward exponential differential equation. In the same way, a balloon inflation with gas filled depends on pressures and temperatures, and the process can be explained with differential equations formulated from gas laws.
Created according to the latest CBSE 2025-26 syllabus, the NCERT Solutions for Class 12 Maths Chapter 9 Miscellaneous Exercise are created by subject experts at Careers360. The solutions give detailed, step-by-step solutions to help students better understand even complicated problems.
This Story also Contains
Question 1: Indicate Order and Degree.
(i) $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
Answer:
Given function is
$\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$
We can rewrite it as
$y''+5x(y')^2-6y = \log x$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y''$
Therefore, the order of the given differential equation $\frac{d^2y}{dx^2} + 5x \left (\frac{dy}{dx} \right )^2-6y = \log x$ is 2
Now, the given differential equation is a polynomial equation in its derivative y '' and y 'and power raised to y '' is 1
Therefore, it's degree is 1
Question 1: Indicate Order and Degree.
(ii) $\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
Answer:
Given function is
$\left(\frac{dy}{dx} \right )^3 - 4\left(\frac{dy}{dx} \right )^2 + 7y = \sin x$
We can rewrite it as
$(y')^3-4(y')^2+7y=\sin x$
Now, it is clear from the above that, the highest order derivative present in differential equation is y'
Therefore, order of given differential equation is 1
Now, the given differential equation is a polynomial equation in it's dervatives y 'and power raised to y ' is 3
Therefore, it's degree is 3
Question 1: Indicate Order and Degree.
(iii) $\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
Answer:
Given function is
$\frac{d^4 y}{dx^4} - \sin\left(\frac{d^3y}{dx^3} \right ) = 0$
We can rewrite it as
$y''''-\sin y''' = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is y''''
Therefore, order of given differential equation is 4
Now, the given differential equation is not a polynomial equation in it's dervatives
Therefore, it's degree is not defined
(i) $xy = ae^x + be^{-x} + x^2\qquad :\ x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy +x^2 -2 =0$
Answer:
Given,
$xy = ae^x + be^{-x} + x^2$
Now, differentiating both sides w.r.t. x,
$x\frac{dy}{dx} + y = ae^x - be^{-x} + 2x$
Again, differentiating both sides w.r.t. x,
$\\ (x\frac{d^2y}{dx^2} + \frac{dy}{dx}) + \frac{dy}{dx} = ae^x + be^{-x} + 2 \\ $
$\implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = ae^x + be^{-x} + 2 \\ $
$\implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} = xy -x^2 + 2 \\$
$\implies x\frac{d^2y}{dx^2} + 2\frac{dy}{dx} - xy + x^2 + 2$
Therefore, the given function is the solution of the corresponding differential equation.
(ii) $y = e^x(a\cos x + b \sin x )\qquad : \ \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Answer:
Given,
$y = e^x(a\cos x + b \sin x )$
Now, differentiating both sides w.r.t. x,
$\frac{dy}{dx} = e^x(-a\sin x + b \cos x ) + e^x(a\cos x + b \sin x ) =e^x(-a\sin x + b \cos x ) +y$
Again, differentiating both sides w.r.t. x,
$\\ \frac{d^2y}{dx^2} = e^x(-a\cos x - b \sin x ) + e^x(-a\sin x + b \cos x ) + \frac{dy}{dx} \\$
$= -y + (\frac{dy}{dx} -y) + \frac{dy}{dx} \\$
$\implies \frac{d^2y}{dx^2} - 2\frac{dy}{dx} + 2y = 0$
Therefore, the given function is the solution of the corresponding differential equation.
(iii) $y= x\sin 3x \qquad : \ \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$
Answer:
Given,
$y= x\sin 3x$
Now, differentiating both sides w.r.t. x,
$y= x\sin 3x \frac{dy}{dx} = x(3\cos 3x) + \sin 3x$
Again, differentiating both sides w.r.t. x,
$\\ \frac{d^2y}{dx^2} = 3x(-3\sin 3x) + 3\cos 3x + 3\cos 3x \\ $
$= -9y + 6\cos 3x \\$
$\implies \frac{d^2y}{dx^2} + 9y - 6\cos 3x = 0$
Therefore, the given function is the solution of the corresponding differential equation.
(iv) $x^2 = 2y^2\log y\qquad : \ (x^2 + y^2)\frac{dy}{dx} - xy = 0$
Answer:
Given,
$x^2 = 2y^2\log y$
Now, differentiating both sides w.r.t. x,
$\\ 2x = (2y^2.\frac{1}{y} + 2(2y)\log y)\frac{dy}{dx} = 2(y + 2y\log y)\frac{dy}{dx} \\$
$\implies \frac{dy}{dx} = \frac{x}{y(1+ 2\log y)}$
Putting $\frac{dy}{dx}\ and \ x^2$ values in LHS
$\\ (2y^2\log y + y^2)\frac{dy}{dx} - xy = y^2(2\log y + 1)\frac{x}{y(1+ 2\log y)} -xy \\$
$= xy - xy = 0 = RHS$
Therefore, the given function is the solution of the corresponding differential equation.
Answer:
Given equation is
$(x-a)^2 + 2y^2 = a^2$
we can rewrite it as
$2y^2 = a^2-(x-a)^2$ -(i)
Differentiate both the sides w.r.t x
$\frac{d\left ( 2y^2 \right )}{dx}=\frac{d(a^2-(x-a)^2)}{dx}$
$4yy^{'}=4y\frac{dy}{dx}=-2(x-a)\\ \\$
$(x-a)= -2yy'\Rightarrow a = x+2yy'$ -(ii)
Put value from equation (ii) in (i)
$(-2yy')^2+2y^2= (x+2yy')^2\\$
$4y^2(y')^2+2y^2= x^2+4y^2(y')^2+4xyy'\\$
y' = \frac{2y^2-x^2}{4xy}$
Therefore, the required differential equation is $y' = \frac{2y^2-x^2}{4xy}$
Answer:
Given,
$
\begin{aligned}
& \left(x^3-3 x y^2\right) d x=\left(y^3-3 x^2 y\right) d y \\
& \Longrightarrow \frac{d y}{d x}=\frac{\left(x^3-3 x y^2\right)}{\left(y^3-3 x^2 y\right)}
\end{aligned}
$
Now, let $\mathbf{y}=\mathrm{vx}$
$
\Longrightarrow \frac{d y}{d x}=\frac{d(v x)}{d x}=v+x \frac{d v}{d x}
$
Substituting the values of $y$ and $y^{\prime}$ in the equation,
$
\begin{aligned}
& v+x \frac{d v}{d x}=\frac{\left(x^3-3 x(v x)^2\right)}{\left((v x)^3-3 x^2(v x)\right)} \\
& \Longrightarrow v+x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v} \\
& \Longrightarrow x \frac{d v}{d x}=\frac{1-3 v^2}{v^3-3 v}-v=\frac{1-v^4}{v^3-3 v} \\
& \Longrightarrow\left(\frac{v^3-3 v}{1-v^4}\right) d v=\frac{d x}{x}
\end{aligned}
$
Integrating both sides we get,
$
\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\log x+\log C^{\prime}
$
Now, $\int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=\int \frac{v^3}{1-v^4} d v-3 \int \frac{v d v}{1-v^4}$
$
\Rightarrow \int\left(\frac{v^3-3 v}{1-3 v^4}\right) d v=I_1-3 I_2 \text {, where } I_1=\int \frac{v^3}{1-v^4} d v \text { and } I_2=\int \frac{v d v}{1-v^4}
$
Let $1-v^4=\mathrm{t}$
$
\begin{aligned}
& \frac{d}{d v}\left(1-v^4\right)=\frac{d t}{d v} \\
& \Longrightarrow-4 v^3=\frac{d t}{d v} \\
& \Longrightarrow v^3 d v=-\frac{d t}{4}
\end{aligned}
$
Now,
$
\mathrm{I}_1=\int-\frac{\mathrm{dt}}{4}=-\frac{1}{4} \log \mathrm{t}=-\frac{1}{4} \log \left(1-\mathrm{v}^4\right)
$
and
$
I_2=\int \frac{v d v}{1-v^4}=\int \frac{v d v}{1-\left(v^2\right)^2}
$
Let $v^2=p$
$
\begin{aligned}
& \Rightarrow \frac{d}{d v}\left(v^2\right)=\frac{d p}{d v} \\
& \Rightarrow 2 v=\frac{d p}{d v}
\end{aligned}
$
$
\Rightarrow \mathrm{vdv}=\frac{\mathrm{dp}}{2}
$
$
\therefore \mathrm{I}_2=\frac{1}{2} \int \frac{\mathrm{dp}}{1-\mathrm{p}^2}=\frac{1}{2 \times 2} \log \left|\frac{1+\mathrm{p}}{1-\mathrm{p}}\right|=\frac{1}{4}\left|\frac{1+\mathrm{v}^2}{1-\mathrm{v}}\right|
$
Now, substituting the values of $\mathrm{I}_1$ and $\mathrm{I}_2$ in the above equation, we get,
$
\int\left(\frac{\mathrm{v}^3-3 \mathrm{y}}{1-\mathrm{v}^4}\right) \mathrm{dv}=-\frac{1}{4} \log \left(1-\mathrm{v}^4\right)-\frac{3}{4} \log \left|\frac{1+\mathrm{v}^2}{1-\mathrm{v}^2}\right|
$
Thus,
$
\begin{aligned}
& -\frac{1}{4} \log \left(1-\mathrm{v}^4\right)-\frac{3}{4} \log \left|\frac{1+\mathrm{v}^2}{1-\mathrm{v}^2}\right|=\log \mathrm{x}+\log \mathrm{C}^{\prime} \\
& \Rightarrow-\frac{1}{4} \log \left[\left(1-\mathrm{v}^4\right)\left(\frac{1+\mathrm{v}^2}{1-\mathrm{v}^2}\right)^3\right]=\log \mathrm{C}^{\prime} \mathrm{x} \\
& \Rightarrow \frac{\left(1+\mathrm{v}^2\right)^4}{\left(1-\mathrm{v}^2\right)^2}=\left(\mathrm{C}^{\prime} \mathrm{x}\right)^{-4} \\
& \Rightarrow \frac{\left(1+\frac{y^2}{x^2}\right)^4}{\left(1-\frac{y^2}{x^2}\right)^2}=\frac{1}{\mathrm{C}^4 \mathrm{x}^4} \\
& \left(x^2-y^2\right)^2=C^{\prime 4}\left(x^2+y^2\right)^4 \\
& \Longrightarrow\left(x^2-y^2\right)=C^{\prime 2}\left(x^2+y^2\right)^2 \\
& \Longrightarrow\left(x^2-y^2\right)=K\left(x^2+y^2\right)^2, \text { where } K=C^{\prime 2}
\end{aligned}
$
Answer:

Now, equation of the circle with center at (x,y) and radius r is
$(x-a)^2+(y-b)^2 = r^2$
Since, it touch the coordinate axes in first quadrant
Therefore, x = y = r
$(x-a)^2+(y-a)^2 = a^2$ -(i)
Differentiate it w.r.t x
we will get
$2(x-a)+2(y-a)y'= 0\\ $
$\\ 2x-2a+2yy'-2ay' = 0\\$
$a=\frac{x+yy'}{1+y'}$ -(ii)
Put value from equation (ii) in equation (i)
$(x-\frac{x+yy'}{1+y'})^2+(y-\frac{x+yy'}{1+y'})^2=\left ( \frac{x+yy'}{1+y'} \right )^2\\$
$\\ (x+xy'-x-yy')^2+(y+yy'-x-yy')^2=(x+yy')^2\\ $
$\\ (y')^2(x-y)^2+(x-y)^2=(x+yy')^2\\$
$\\ (x-y)^2\left ( (y')^2+1 \right )=(x+yy')^2$
Therefore, the differential equation of the family of circles in the first quadrant which touches the coordinate axes is $(x-y)^2\left ( (y')^2+1 \right )=(x+yy')^2$
Question 6: Find the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$
Answer:
Given equation is
$\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$
we can rewrite it as
$\frac{dy}{dx } =- \sqrt{\frac{1-y^2}{1-x^2}}\\$
$\\ \frac{dy}{\sqrt{1-y^2}}= \frac{-dx}{\sqrt{1-x^2}}$
Now, integrate on both the sides
$\sin^{-1}y + C =- \sin ^{-1}x + C'\\ $
$\\ \sin^{-1}y+\sin^{-1}x= C$
Therefore, the general solution of the differential equation $\frac{dy}{dx} + \sqrt{\frac{1 - y^2}{1-x^2}} = 0$ is $\sin^{-1}y+\sin^{-1}x= C$
Answer:
Given,
$
\begin{aligned}
& \frac{d y}{d x}+\frac{y^2+y+1}{x^2+x+1}=0 \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=-\left(\frac{\mathrm{y}^2+\mathrm{y}+1}{\mathrm{x}^2+\mathrm{x}+1}\right) \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}=\frac{-\mathrm{dx}}{\mathrm{x}^2 \mathrm{dx}+1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{y}^2+\mathrm{y}+1}+\frac{\mathrm{dx}}{\mathrm{x}^2+\mathrm{x}+1}=0
\end{aligned}
$
Integrating both sides,
$
\begin{aligned}
& \int \frac{d y}{y^2+y+1}+\int \frac{d x}{x^2+x+1}=C \\
& \Rightarrow \int \frac{d y}{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\int \frac{d y}{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}=C \\
& \Rightarrow \frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{\mathrm{y}+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]+\frac{2}{\sqrt{3}} \tan ^{-1}\left[\frac{x+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right]=C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 y+1}{\sqrt{3}}\right]+\tan ^{-1}\left[\frac{2 x+1}{\sqrt{3}}\right]=\mathrm{C} \Rightarrow \tan ^{-1}\left[\frac{\frac{2 y+1}{\sqrt{3}}+\frac{2 x+1}{\sqrt{3}}}{1-\frac{2 y+1}{\sqrt{3}} \cdot \frac{2 x+1}{\sqrt{3}}}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{\frac{2 x+2 y+2}{\sqrt[3]{3}}}{1-\left(\frac{4 x y+2 x+2 y+1}{3}\right)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{3-4 x y-2 x-2 y-1}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \tan ^{-1}\left[\frac{2 \sqrt{3}(x+y+1)}{2(1-x-y-2 x y)}\right]=\frac{\sqrt{3}}{2} C \\
& \Rightarrow \frac{\sqrt{3}(x+y+1)}{(1-x-y-2 x y)}=\tan \left(\frac{\sqrt{3}}{2} c\right)
\end{aligned}
$
Let $\tan \left(\frac{\sqrt{3}}{2} c\right)=B$
$
x+y+1=\frac{2 B}{\sqrt{3}}(1-x-y-2 x y)
$
Let $A=\frac{2 B}{\sqrt{3}}$,
$
x+y+1=A(1-x-y-2 x y)
$
Hence proved.
Answer:
Given equation is
$\sin x \cos y dx + \cos x \sin y dy = 0.$
we can rewrite it as
$\frac{dy}{dx}= -\tan x\cot y\\$
$\\ \frac{dy}{\cot y}= -\tan xdx\\$
$\\ \tan y dy =- \tan x dx$
Integrate both the sides
$\log |\sec y|+C' = -\log|sec x|- C''\\ $
$\\ \log|\sec y | +\log|\sec x| = C\\$
$\\ \sec y .\sec x = e^{C}$
Now by using boundary conditiond, we will find the value of C
It is given that the curve passing through the point $\left(0,\frac{\pi}{4} \right )$
So,
$\sec \frac{\pi}{4} .\sec 0 = e^{C}\\ $
$\\ \sqrt2.1= e^C\\$
$\\ C = \log \sqrt2$
Now,
$\sec y.\sec x= e^{\log \sqrt 2}\\$
$\\ \frac{\sec x}{\cos y} = \sqrt 2\\ $
$\\ \cos y = \frac{\sec x}{\sqrt 2}$
Therefore, the equation of the curve passing through the point $\left(0,\frac{\pi}{4} \right )$ whose differential equation is $\sin x \cos y dx + \cos x \sin y dy = 0.$ is $\cos y = \frac{\sec x}{\sqrt 2}$
Answer:
Given equation is
$(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$
we can rewrite it as
$\frac{dy}{dx}= -\frac{(1+y^2)e^x}{(1+e^{2x})}\\ $
$\\ \frac{dy}{1+y^2}= \frac{-e^xdx}{1+e^{2x}}$
Now, integrate both the sides
$\tan^{-1}y + C' =\int \frac{-e^{x}dx}{1+e^{2x}}$
$\int \frac{-e^{x}dx}{1+e^{2x}}\\$
Put
$e^x = t \\$
$e^xdx = dt$
$\int \frac{dt}{1+t^2}= \tan^{-1}t + C''$
Put $t = e^x$ again
$\int \frac{-e^{x}dx}{1+e^{2x}} = -\tan ^{-1}e^x+C''$
Put this in our equation
$\tan^{-1}y = -\tan ^{-1}e^x+C\\$
$\tan^{-1}y +\tan ^{-1}e^x=C$
Now, by using boundary conditions we will find the value of C
It is given that
y = 1 when x = 0
$\\ \tan^{-1}1 +\tan ^{-1}e^0=C\\ $
$\\ \frac{\pi}{4}+\frac{\pi}{4}= C\\$
$C = \frac{\pi}{2}$
Now, put the value of C
$\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Therefore, the particular solution of the differential equation $(1 + e^ {2x} ) dy + (1 + y^2 ) e^x dx = 0$ is $\tan^{-1}y +\tan ^{-1}e^x=\frac{\pi}{2}$
Answer:
Given,
$ye^\frac{x}{y}dx = (xe^\frac{x}{y} + y^2)dy$
$\\ ye^\frac{x}{y}\frac{dx}{dy} = xe^\frac{x}{y} + y^2 \\$
$\implies e^\frac{x}{y}[y\frac{dx}{dy} -x] = y^2 \\$
$\implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} = 1$
Let $\large e^\frac{x}{y} = t$
Differentiating it w.r.t. y, we get,
$\\ \frac{d}{dy}e^\frac{x}{y} = \frac{dt}{dy} \\$
$ \implies e^\frac{x}{y}.\frac{d}{dy}(\frac{x}{y}) = \frac{dt}{dy} \\$
$\implies \frac{e^\frac{x}{y}[y\frac{dx}{dy} -x]}{y^2} =\frac{dt}{dy}$
Thus from these two equations,we get,
$\\ \frac{dt}{dy} = 1 \\ $
$\implies \int dt = \int dy \\ $
$\implies t = y + C$
$\Longrightarrow e^{\frac{x}{y}}=y+C$
Answer:
Given equation is
$(x - y) (dx + dy) = dx - dy,$
Now, integrate both the sides
Put
$(x-y ) = t\\ $
$dx - dy = dt$
Now, given equation become
$dx+dy= \frac{dt}{t}$
Now, integrate both the sides
$x+ y + C '= \log t + C''$
Put $t = x- y$ again
$x+y = \log (x-y)+ C$
Now, by using boundary conditions we will find the value of C
It is given that
y = -1 when x = 0
$0+(-1) = \log (0-(-1))+ C\\$
$C = -1$
Now, put the value of C
$x+y = \log |x-y|-1\\ $
$\log|x-y|= x+y+1$
Therefore, the particular solution of the differential equation $(x - y) (dx + dy) = dx - dy,$ is $\log|x-y|= x+y+1$
Answer:
Given,
$
\begin{aligned}
& {\left[\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}-\frac{y}{\sqrt{x}}\right] \frac{d x}{d y}=1} \\
& \Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{e}^{-2 \sqrt{x}}}{\sqrt{\mathrm{x}}}-\frac{\mathrm{y}}{\sqrt{x}} \\
& \Longrightarrow \frac{\mathrm{dy}}{\mathrm{dx}}+\frac{\mathrm{y}}{\sqrt{\mathrm{x}}}=\frac{\mathrm{e}^{-2 \sqrt{x}}}{\sqrt{\mathrm{x}}}
\end{aligned}
$
This is equation is in the form of $\frac{d y}{d x}+p y=Q$
$
p=\frac{1}{\sqrt{x}} \text { and } Q=\frac{e^{-2 \sqrt{x}}}{\sqrt{x}}
$
Now, I.F. $=\mathrm{e}^{\int \mathrm{pdx}}=\mathrm{e}^{\int \frac{1}{\sqrt{x}} \mathrm{dx}}=\mathrm{e}^{2 \sqrt{\mathrm{x}}}$
We know that the solution of the given differential equation is:
$
\begin{aligned}
& y(I \cdot F \cdot)=\int(Q \cdot F \cdot) d x+C \\
& \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int\left(\frac{\mathrm{e}^{-2 \sqrt{x}}}{\sqrt{\mathrm{x}}} \times \mathrm{e}^{2 \sqrt{\mathrm{x}}}\right) \mathrm{dx}+C \\
& \Rightarrow \mathrm{ye}^{2 \sqrt{\mathrm{x}}}=\int \frac{1}{\sqrt{\mathrm{x}}} \mathrm{dx}+\mathrm{C} \\
& \Rightarrow \mathrm{ye}^{2 \sqrt{x}}=2 \sqrt{\mathrm{x}}+C
\end{aligned}
$
Answer:
Given equation is
$\frac{dy}{dx} + y \cot x = 4x \textup{cosec} x\ (x\neq 0)$
This is $\frac{dy}{dx} + py = Q$ type where $p =\cot x$ and $Q = 4xcosec x$ $Q = 4x \ cosec x$
Now,
$I.F. = e^{\int pdx}= e^{\int \cot xdx}= e^{\log |\sin x|}= \sin x$
Now, the solution of given differential equation is given by relation
$y(I.F.) =\int (Q\times I.F.)dx +C$
$y(\sin x ) =\int (\sin x\times 4x \ cosec x)dx +C$
$y(\sin x) =\int(\sin x\times \frac{4x}{\sin x}) +C\\$
$\\ y(\sin x) = \int 4x + C\\ $
$y\sin x= 2x^2+C$
Now, by using boundary conditions we will find the value of C
It is given that y = 0 when $x= \frac{\pi}{2}$
at $x= \frac{\pi}{2}$
$0.\sin \frac{\pi}{2 } = 2.\left ( \frac{\pi}{2} \right )^2+C\\$
$\\ C = - \frac{\pi^2}{2}$
Now, put the value of C
$y\sin x= 2x^2-\frac{\pi^2}{2}$
Therefore, the particular solution is $y\sin x= 2x^2-\frac{\pi^2}{2}, (sinx\neq0)$
Answer:
Given equation is
$(x+1)\frac{dy}{dx} = 2e^{-y} -1$
we can rewrite it as
$\frac{e^ydy}{2-e^y}= \frac{dx}{x+1}\\$
Integrate both the sides
$\int \frac{e^ydy}{2-e^y}= \log |x+1|\\$
$\int \frac{e^ydy}{2-e^y}$
Put
$2-e^y = t\\$
$-e^y dy = dt$
$\int \frac{-dt}{t}=- \log |t|$
put $t = 2- e^y$ again
$\int \frac{e^ydy}{2-e^y} =- \log |2-e^y|$
Put this in our equation
$\log |2-e^y| + C'= \log|1+x| + C''\\$
$\log (2-e^y)^{-1}= \log (1+x)+\log C\\$
$\frac{1}{2-e^y}= C(1+x)$
Now, by using boundary conditions we will find the value of C
It is given that y = 0 when x = 0
at x = 0
$\frac{1}{2-e^0}= C(1+0)\\ C = \frac{1}{2}$
Now, put the value of C
$\frac{1}{2-e^y} = \frac{1}{2}(1+x)\\ $'
$\\ \frac{2}{1+x}= 2-e^y\\$
$\frac{2}{1+x}-2= -e^y\\$
$-\frac{2x-1}{1+x} = -e^y\\$
$y = \log \frac{2x-1}{1+x}$
Therefore, the particular solution is $y = \log \frac{2x-1}{1+x}, x\neq-1$
Answer:
Let n be the population of the village at any time t.
According to question,
$\frac{dn}{dt} = kn\ \ (k\ is\ a\ constant)$
$\\ \implies \int \frac{dn}{n} = \int kdt \\$
$\implies \log n = kt + C$
Now, at t=0, n = 20000 (Year 1999)
$\\ \implies \log (20000) = k(0) + C \\$
$\implies C = \log2 + 4$
Again, at t=5, n= 25000 (Year 2004)
$\\ \implies \log (25000) = k(5) + \log2 + 4 \\$
$\implies \log 25 + 3 = 5k + \log2 +4 \\$
$\implies 5k = \log 25 - \log2 -1 =\log \frac{25}{20} \\$
$\implies k = \frac{1}{5}\log \frac{5}{4}$
Using these values, at t =10 (Year 2009)
$\\ \implies \log n = k(10)+ C \\$
$\implies \log n = \frac{1}{5}\log \frac{5}{4}(10) + \log2 + 4 \\$
$\implies \log n = \log(\frac{25.2.10000}{16}) = \log(31250) \\$
$\therefore n = 31250$
Therefore, the population of the village in 2009 will be 31250.
Question 16: The general solution of the differential equation $\frac{ydx - xdy}{y} = 0$ is
(A) $xy = C$
(B) $x = Cy^2$
(C) $y = Cx$
(D) $y = Cx^2$
Answer:
Given equation is
$\frac{ydx - xdy}{y} = 0$
we can rewrite it as
$dx = \frac{x}{y}dy\\$
$\frac{dy}{y}=\frac{dx}{x}$
Integrate both the sides
we will get
$\log |y| = \log |x| + C\\ $
\log \frac{y}{x} = C \\ $
$\frac{y}{x} = e^C\\$
$\frac{y}{x} = C\\$
$y = Cx$
Therefore, answer is (C)
Question 17: The general solution of a differential equation of the type $\frac{dx}{dy} + P_1 x = Q_1$ is
(A) $ye^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$
(B) $ye^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$
(C) $xe^{\int P_1 dy} = \int \left(Q_1 e^{\int P_1 dy} \right )dy +C$
(D) $xe^{\int P_1 dx} = \int \left(Q_1 e^{\int P_1 dx} \right )dx +C$
Answer:
Given equation is
$\frac{dx}{dy} + P_1 x = Q_1$
and we know that the general equation of such type of differential equation is
$xe^{\int p_1dy} = \int (Q_1e^{\int p_1dy})dy+ C$
Therefore, the correct answer is (C)
Question 18: The general solution of the differential equation $e^x dy + (y e^x + 2x) dx = 0$ is
(A) $xe^y + x^2 = C$
(B) $xe^y + y^2 = C$
(C) $ye^x + x^2 = C$
(D) $ye^y + x^2 = C$
Answer:
Given equation is
$e^x dy + (y e^x + 2x) dx = 0$
we can rewrite it as
$\frac{dy}{dx}+y=-2xe^{-x}$
It is $\frac{dy}{dx}+py=Q$ type of equation where $p = 1 \ and \ Q = -2xe^{-x}$
Now,
$I.F. = e^{\int p dx }= e^{\int 1dx}= e^x$
Now, the general solution is
$y(I.F.) = \int (Q\times I.F.)dx+C$
$y(e^x) = \int (-2xe^{-x}\times e^x)dx+C\\$
$ye^x= \int -2xdx + C\\$
$ye^x=- x^2 + C\\ $
$ye^x+x^2 = C$
Therefore, (C) is the correct answer
Also check-
| Topics | Description | Example |
| Variable Separable Method | Used when the equation can be rearranged to separate variables x and y on opposite sides. | $\begin{aligned} & \text { Solve: } \frac{d y}{d x}=x\left(1+y^2\right) \\ & \Rightarrow \frac{1}{1+y^2} d y=x d x \\ & \Rightarrow \tan ^{-1} y=\frac{x^2}{2}+C\end{aligned}$ |
| Homogeneous Differential Equations | Equations where both numerator and denominator are homogeneous functions of the same degree. Substitution y=vx is used. | Solve: $\frac{d y}{d x}=\frac{x+y}{x}$ Let $y=v x$, then reduce and solve. |
| Linear Differential Equations | First-order equations of the form \frac{d y}{d x}+P(x) y=Q(x). Solved using integrating factor (IF). | Solve: $\frac{d y}{d x}+y=e^x$ IF $=e^{\int 1 d x}=e^x$, then multiply and integrate. |
| Exact Differential Equations | When a DE is of the form $M(x, y) d x+N(x, y) d y=0$ and satisfies $\frac{\partial M}{\partial y}=\frac{\partial N}{\partial x}$. | Solve: $\left(2 x y+y^2\right) d x+\left(x^2+2 x y\right) d y=0$ Check for exactness and integrate accordingly. |
| Word Problems/Applications | Real-life problems involving growth, decay, cooling, etc., modeled and solved using DEs. | A population grows at a rate proportional to its size. If it doubles in 3 years, find it after 5 years. |
| Solving Using Initial Conditions | After solving, use a given point (like y(x0)=y0) to find the constant of integration C. | General: $y=C e^x$, given $y(0)=2 \Rightarrow 2=C \Rightarrow$ Particular $y=2 e^x$ |
| Order and Degree of a Differential Equation | Identifying the order (highest derivative) and degree (power of highest derivative when equation is polynomial in derivatives). | \text { For }\left(\frac{d^2 y}{d x^2}\right)^3+y=0 \text { : Order }=2 \text {, Degree }=3 |
Also Read-
Frequently Asked Questions (FAQs)
The first exercise covers the topic order and degree of differential equations
Solutions to linear differential equations
After completing the chapter students can test their knowledge through miscellaneous exercises since it covers questions from all main topics of the chapter.
Seven including the miscellaneous exercise.
18 questions are covered in the miscellaneous exercise of chapter 9 Class 12 NCERT book
3 multiple choice questions with 4 options for each are covered in the Class 12 Maths chapter 9 miscellaneous exercise .
The main topics covered in the chapter are order and degree, general and peculiar solutions of differential equations, formation of the differential equation for which general solution is given and a few methods to solve differential equations.
On Question asked by student community
Hello,
No, it’s not true that GSEB (Gujarat Board) students get first preference in college admissions.
Your daughter can continue with CBSE, as all recognized boards CBSE, ICSE, and State Boards (like GSEB) which are equally accepted for college admissions across India.
However, state quota seats in Gujarat colleges (like medical or engineering) may give slight preference to GSEB students for state-level counselling, not for all courses.
So, keep her in CBSE unless she plans to apply only under Gujarat state quota. For national-level exams like JEE or NEET, CBSE is equally valid and widely preferred.
Hope it helps.
Hello,
The Central Board of Secondary Education (CBSE) releases the previous year's question papers for Class 12.
You can download these CBSE Class 12 previous year question papers from this link : CBSE Class 12 previous year question papers (http://CBSE%20Class%2012%20previous%20year%20question%20papers)
Hope it helps !
Hi dear candidate,
On our official website, you can download the class 12th practice question paper for all the commerce subjects (accountancy, economics, business studies and English) in PDF format with solutions as well.
Kindly refer to the link attached below to download:
CBSE Class 12 Accountancy Question Paper 2025
CBSE Class 12 Economics Sample Paper 2025-26 Out! Download 12th Economics SQP and MS PDF
CBSE Class 12 Business Studies Question Paper 2025
CBSE Class 12 English Sample Papers 2025-26 Out – Download PDF, Marking Scheme
BEST REGARDS
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters