Let us take the trajectory of a car going uphill whose steepness is quantified by the angle of the incline and not by the distance or the height. This type of situation can be represented by a homogeneous differential equation whose relation between the variables is the same if the variables are multiplied by the same factor.
This Story also Contains
The NCERT Solutions for Class 12 Maths Chapter 9 – Exercise 9.4 are detailed in describing the steps involved in solving equations of this nature. Properly prepared by experienced members of staff of Careers360 according to the CBSE 2025–26 syllabus, the solutions help students perform well in solving homogeneous differential equations step by step. Solving Class 12 Maths NCERT Exercise 9.4 makes students ready to recognize homogeneous forms, substitute correctly, and solve problems with confidence. These are basic skills not only for board exams, but also for entrance exams such as JEE Main and Advanced.
This material provides easy solutions to all the questions of Exercise 9.4 of Differential Equations. The PDF can be downloaded by the students for practice and enhancement of the chapter for board and and competitive
Answer:
The given diffrential eq can be written as
$\frac{dy}{dx}=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Let $F(x,y)=\frac{x^{2}+y^{2}}{x^{2}+xy}$
Now, $F(\lambda x,\lambda y)=\frac{(\lambda x)^{2}+(\lambda y)^{2}}{(\lambda x)^{2}+(\lambda x)(\lambda y)}$
$=\frac{x^{2}+y^{2}}{x^{2}+xy} = \lambda ^{0}F(x,y)$
Hence, it is a homogeneous equation.
To solve it put y = vx
Diff erentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v +x\frac{dv}{dx} = \frac{x^{2}+(vx)^{2}}{x^{2}+x(vx)}\\$
$v +x\frac{dv}{dx} = \frac{1+v^{2}}{1+v}$
$x\frac{dv}{dx} = \frac{(1+v^{2})-v(1+v)}{1+v} = \frac{1-v}{1+v}$
$( \frac{1+v}{1-v})dv = \frac{dx}{x}$
$( \frac{2}{1-v}-1)dv = \frac{dx}{x}$
Integrating on both side, we get;
$\\-2\log(1-v)-v=\log x -\log k\\ $
$v= -2\log (1-v)-\log x+\log k\\ $
$v= \log\frac{k}{x(1-v)^{2}}\\$
Again substitute the value $y = \frac{v}{x}$ ,we get;
$\\\frac{y}{x}= \log\frac{kx}{(x-y)^{2}}\\ \frac{kx}{(x-y)^{2}}=e^{y/x}\\ (x-y)^{2}=kxe^{-y/x}$
This is the required solution of given diff. equation
Question 2: Show that the given differential equation is homogeneousand solve each of them. $y' = \frac{x+y}{x}$
Answer:
the above differential eq can be written as,
$\frac{dy}{dx} = F(x,y)=\frac{x+y}{x}$ ............................(i)
Now, $F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x} = \lambda ^{0}F(x,y)$
Thus the given differential eq is a homogeneous equaion
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= \frac{x+vx}{x} = 1+v$
$\\x\frac{dv}{dx}= 1\\ $
$dv = \frac{dx}{x}$
Integrating on both sides, we get; (and substitute the value of $v =\frac{y}{x}$ )
$\\v =\log x+C\\ $
$\frac{y}{x}=\log x+C\\ y = x\log x +Cx$
this is the required solution
Question 3: Show that the given differential equation is homogeneous and solve each of them.
$(x-y)dy - (x+y)dx = 0$
Answer:
The given differential eq can be written as;
$\frac{dy}{dx}=\frac{x+y}{x-y} = F(x,y)(let\ say)$ ....................................(i)
$F(\lambda x,\lambda y)=\frac{\lambda x+\lambda y}{\lambda x-\lambda y}= \lambda ^{0}F(x,y)$
Hence it is a homogeneous equation.
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}= \frac{1+v}{1-v}\\$
$x\frac{dv}{dx} = \frac{1+v}{1-v}-v =\frac{1+v^{2}}{1-v}$
$\frac{1-v}{1+v^{2}}dv = (\frac{1}{1+v^{2}}-\frac{v}{1-v^{2}})dv=\frac{dx}{x}$
Integrating on both sides, we get;
$\tan^{-1}v-1/2 \log(1+v^{2})=\log x+C$
again substitute the value of $v=y/x$
$\\\tan^{-1}(y/x)-1/2 \log(1+(y/x)^{2})=\log x+C\\$
$\tan^{-1}(y/x)-1/2 [\log(x^{2}+y^{2})-\log x^{2}]=\log x+C\\ $
$tan^{-1}(y/x) = 1/2[\log (x^{2}+y^{2})]+C$
This is the required solution.
Question 4: Show that the given differential equation is homogeneous and solve each of them.
$(x^2 - y^2)dx + 2xydy = 0$
Answer:
we can write it as;
$\frac{dy}{dx}= -\frac{(x^{2}-y^{2})}{2xy} = F(x,y)\ (let\ say)$ ...................................(i)
$F(\lambda x,\lambda y) = \frac{(\lambda x)^{2}-(\lambda y)^{2}}{2(\lambda x)(\lambda y)} = \lambda ^{0}.F(x,y)$
Hence it is a homogeneous equation
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx} = \frac{ x^{2}-(vx)^{2}}{2x(vx)} =\frac{v^{2}-1}{2v}$
$\\x\frac{dv}{dx} =\frac{v^{2}+1}{2v}\\ \frac{2v}{1+v^{2}}dv=\frac{dx}{x}$
integrating on both sides, we get
$\log (1+v^{2})= -\log x +\log C = \log C/x$
$\\= 1+v^{2} = C/x\\ = x^2+y^{2}=Cx$ .............[ $v =y/x$ ]
This is the required solution.
Question 5: Show that the given differential equation is homogeneous and solve it.
$x^2\frac{dy}{dx} = x^2 - 2y^2 +xy$
Answer:
$\frac{dy}{dx}= \frac{x^{2}-2y^{2}+xy}{x^{2}} = F(x,y)\ (let\ say)$
$F(\lambda x,\lambda y)= \frac{(\lambda x)^{2}-2(\lambda y)^{2}+(\lambda .\lambda )xy}{(\lambda x)^{2}} = \lambda ^{0}.F(x,y)$ ............(i)
Hence it is a homogeneous eq
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}= 1-2v^{2}+v\\ x\frac{dv}{dx} = 1-2v^{2}\\$
$\frac{dv}{1-2v^{2}}=\frac{dx}{x}$
$1/2[\frac{dv}{(1/\sqrt{2})^{2}-v^{2}}] = \frac{dx}{x}$
On integrating both sides, we get;
$\frac{1}{2\sqrt{2}}\log (\frac{1/\sqrt{2}+v}{1/\sqrt{2}-v}) = \log x +C$
after substituting the value of $v= y/x$
$\frac{1}{2\sqrt{2}}\log (\frac{x+\sqrt{2}y}{x-\sqrt{2}y}) = \log \left | x \right | +C$
This is the required solution
Question 6: Show that the given differential equation is homogeneous and solve it.
$xdy - ydx = \sqrt{x^2 + y^2}dx$
Answer:
$\frac{dy}{dx}=\frac{y+\sqrt{x^{2}+y^{2}}}{x} = F(x,y)$ .................................(i)
$F(\mu x,\mu y)=\frac{\mu y+\sqrt{(\mu x)^{2}+(\mu y)^{2}}}{\mu x} =\mu^{0}.F(x,y)$
henxe it is a homogeneous equation
Now, to solve substitute y = vx
Diff erentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= v+\sqrt{1+v^{2}}=\sqrt{1+v^{2}}$
$=\frac{dv}{\sqrt{1+v^{2}}} =\frac{dx}{x}$
On integrating both sides,
$\Rightarrow \log \left | v+\sqrt{1+v^{2}} \right | = \log \left | x \right |+\log C$
Substitute the value of v=y/x , we get
$\\\Rightarrow \log \left | \frac{y+\sqrt{x^{2}+y^{2}}}{x} \right | = \log \left | Cx \right |\\$
$y+\sqrt{x^{2}+y^{2}} = Cx^{2}$
Required solution
Question 7: Solve.
$\left\{x\cos\left(\frac{y}{x} \right ) + y\sin\left(\frac{y}{x} \right ) \right \}ydx = \left\{y\sin\left(\frac{y}{x} \right ) - x\cos\left(\frac{y}{x} \right ) \right \}xdy$
Answer:
$\frac{dy}{dx} =\frac{x \cos(y/x)+y\sin(y/x)}{y\sin(y/x)-x\cos(y/x)}.\frac{y}{x} = F(x,y)$ ......................(i)
By looking at the equation we can directly say that it is a homogenous equation.
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx} =\frac{v \cos v+v^{2}\sin v}{v\sin v-\cos v}\\$
$=x\frac{dv}{dx} = \frac{2v\cos v}{v\sin v-\cos v}\\$
$=(\tan v-1/v)dv = \frac{2dx}{x}$
integrating on both sides, we get
$\\=\log(\frac{\sec v}{v})= \log (Cx^{2})\\$
$=\sec v/v =Cx^{2}$
substitute the value of v= y/x , we get
$\\\sec(y/x) =Cxy \\ $
$xy \cos (y/x) = k$
Required solution
Question 8: Solve.
$x\frac{dy}{dx} - y + x\sin\left(\frac{y}{x}\right ) = 0$
Answer:
$\frac{dy}{dx}=\frac{y-x \sin(y/x)}{x} = F(x,y)$ ...............................(i)
$F(\mu x, \mu y)=\frac{\mu y-\mu x \sin(\mu y/\mu x)}{\mu x} = \mu^{0}.F(x,y)$
it is a homogeneous equation
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$v+x\frac{dv}{dx}= v- \sin v = -\sin v$
$\Rightarrow -\frac{dv}{\sin v} = -(cosec\ v)dv=\frac{dx}{x}$
On integrating both sides we get;
$\\\Rightarrow \log \left | cosec\ v-\cot v \right |=-\log x+ \log C\\ $
$\Rightarrow cosec (y/x) - \cot (y/x) = C/x$
$= x[1-\cos (y/x)] = C \sin (y/x)$ Required solution
Question 9: Solve.
$ydx + x\log\left(\frac{y}{x} \right ) -2xdy = 0$
Answer:
$\frac{dy}{dx}= \frac{y}{2x-x \log(y/x)} = F(x,y)$ ..................(i)
$\frac{\mu y}{2\mu x-\mu x \log(\mu y/\mu x)} = F(\mu x,\mu y) = \mu^{0}.F(x,y)$
hence it is a homogeneous eq
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}= \frac{v}{2-\log v}\\ =x\frac{dv}{dx} = \frac{v\log v-v}{2-\log v}\\$
$=[\frac{1}{v(\log v-1)}-\frac{1}{v}]dv=\frac{dx}{x}$
integrating on both sides, we get; ( substituting v =y/x)
$\\\Rightarrow \log[\log(y/x)-1]-\log(y/x)=\log(Cx)\\\Rightarrow \frac{x}{y}[\log(y/x)-1]=Cx\\$
$\Rightarrow \log (y/x)-1=Cy$
This is the required solution of the given differential eq
Question 10: Solve.
$\left(1 + e^{\frac{x}{y}} \right )dx + e^\frac{x}{y}\left(1-\frac{x}{y}\right )dy = 0$
Answer:
$\frac{dx}{dy}=\frac{-e^{x/y}(1-x/y)}{1+e^{x/y}} = F(x,y)$ .......................................(i)
$= F(\mu x,\mu y)=\frac{-e^{\mu x/\mu y}(1-\mu x/\mu y)}{1+e^{\mu x/\mu y}} =\mu^{0}.F(x,y)$
Hence it is a homogeneous equation.
Now, to solve substitute x = yv
Diff erentiating on both sides wrt $x$
$\frac{dx}{dy}= v +y\frac{dv}{dy}$
Substitute this value in equation (i)
$\\=v+y\frac{dv}{dy} = \frac{-e^{v}(1-v)}{1+e^{v}} \\$
$=y\frac{dv}{dy} = -\frac{v+e^{v}}{1+e^{v}}\\$
$=\frac{1+e^{v}}{v+e^{v}}dv=-\frac{dy}{y}$
Integrating on both sides, we get;
${100} \log(v+e^{v})=-\log y+ \log c =\log (c/y)\\$
$=[\frac{x}{y}+e^{x/y}]= \frac{c}{y}\\\Rightarrow x+ye^{x/y}=c$
This is the required solution of the diff equation.
Question 11: Solve for particular solution.
$(x + y)dy + (x -y)dx = 0;\ y =1\ when \ x =1$
Answer:
$\frac{dy}{dx}=\frac{-(x-y)}{x+y} =F(x,y)$ ..........................(i)
We can clearly say that it is a homogeneous equation.
Now, to solve substitute y = vx
Diff erentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\v+x\frac{dv}{dx}=\frac{v-1}{v+1}\\$
$\Rightarrow x\frac{dv}{dx} = -\frac{(1+v^{2})}{1+v}$
$\frac{1+v}{1+v^{2}}dv = [\frac{v}{1+v^{2}}+\frac{1}{1+v^{2}}]dv=-\frac{dx}{x}$
On integrating both sides
$\\=\frac{1}{2}[\log (1+v^{2})]+\tan^{-1}v = -\log x +k\\$
$=\log(1+v^{2})+2\tan^{-1}v=-2\log x +2k\\$
$=\log[(1+(y/x)^{2}).x^{2}]+2\tan^{-1}(y/x)=2k\\$]
$=\log(x^{2}+:y^{2})+2\tan^{-1}(y/x) = 2k$ ......................(ii)
Now, y=1 and x= 1
$\\=\log 2 +2\tan^{-1}1=2k\\ $
$=\pi/2+\log 2 = 2k\\$
After substituting the value of 2k in eq. (ii)
$\log(x^{2}+y^2)+2\tan^{-1}(y/x)=\pi/2+\log 2$
This is the required solution.
Question 12: Solve for particular solution.
$x^2dy + (xy + y^2)dx = 0; y =1\ \textup{when}\ x = 1$
Answer:
$\frac{dy}{dx}= \frac{-(xy+y^{2})}{x^{2}} = F(x,y)$ ...............................(i)
$F(\mu x, \mu y)=\frac{-\mu^{2}(xy+(\mu y)^{2})}{(\mu x)^{2}} =\mu ^{0}. F(x,y)$
Hence it is a homogeneous equation
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i), we get
$\\=v+\frac{xdv}{dx}= -v- v^{2}\\ $
$=\frac{xdv}{dx}=-v(v+2)\\ $
$=\frac{dv}{v+2}=-\frac{dx}{x}\\$
$=1/2[\frac{1}{v}-\frac{1}{v+2}]dv=-\frac{dx}{x}$
Integrating on both sides, we get;
$\\=\frac{1}{2}[\log v -\log(v+2)]= -\log x+\log C\\$
$=\frac{v}{v+2}=(C/x)^{2}$
replace the value of v=y/x
$\frac{x^{2}y}{y+2x}=C^{2}$ .............................(ii)
Now y =1 and x = 1
$C = 1/\sqrt{3}$
therefore,
$\frac{x^{2}y}{y+2x}=1/3$
Required solution
Question 13: Solve for particular solution.
$\left [x\sin^2\left(\frac{y}{x} \right ) - y \right ]dx + xdy = 0;\ y =\frac{\pi}{4}\ when \ x = 1$
Answer:
$
\begin{aligned}
& \frac{d y}{d x}=\frac{-\left[x \sin ^2(y / x)-y\right]}{x}=F(x, y) \cdots \cdots \cdots \cdots \cdots \cdots . . . . . . .(i) \\
& F(\mu x, \mu y)=\frac{-\left[\mu x \sin ^2(\mu y / \mu x)-\mu y\right]}{\mu x}=\mu^0 . F(x, y)
\end{aligned}
$
Hence it is a homogeneous eq
Now, to solve substitute $\mathrm{y}=\mathrm{vx}$
Differentiating on both sides wrt $x$
$
\frac{d y}{d x}=v+x \frac{d v}{d x}
$
Substitute this value in equation (i)
on integrating both sides, we get;
$
\begin{aligned}
& -\cot v=\log |x|-C \\
& =\cot v=\log |x|+\log C
\end{aligned}
$
On substituting $\mathrm{v}=\mathrm{y} / \mathrm{x}$
$
=\cot (y / x)=\log |C x| .
$
Now, $y=\pi / 4 @ x=1$
$
\begin{aligned}
& \cot (\pi / 4)=\log C \\
& =C=e^1
\end{aligned}
$
put this value of C in eq (ii)
$
\cot (y / x)=\log |e x|
$
Required solution.
Question 14: Solve for particular solution.
$\frac{dy}{dx} - \frac{y}{x} + \textup{cosec}\left (\frac{y}{x} \right ) = 0;\ y = 0 \ \textup{when}\ x = 1$
Answer:
$\frac{dy}{dx} = \frac{y}{x} -cosec(y/x) =F(x,y)$ ....................................(i)
the above eq is homogeneous. So,
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}=v- cosec\ v\\ $
$=x\frac{dv}{dx} = -cosec\ v\\$
$=-\frac{dv}{cosec\ v}= \frac{dx}{x}\\$
$=-\sin v dv = \frac{dx}{x}$
on integrating both sides, we get;
$\\=cos\ v = \log x +\log C =\log Cx\\$
$=\cos(y/x)= \log Cx$ .................................(ii)
now y = 0 and x =1 , we get
$C =e^{1}$
put the value of C in eq 2
$\cos(y/x)=\log \left | ex \right |$
Question 15: Solve for particular solution.
$2xy + y^2 - 2x^2\frac{dy}{dx} = 0 ;\ y = 2\ \textup{when}\ x = 1$
Answer:
The above eq can be written as;
$\frac{dy}{dx}=\frac{2xy+y^{2}}{2x^{2}} = F(x,y)$
By looking, we can say that it is a homogeneous equation.
Now, to solve substitute y = vx
Differentiating on both sides wrt $x$
$\frac{dy}{dx}= v +x\frac{dv}{dx}$
Substitute this value in equation (i)
$\\=v+x\frac{dv}{dx}= \frac{2v+v^{2}}{2}\\ $
$=x\frac{dv}{dx} = v^{2}/2\\ $
$= \frac{2dv}{v^{2}}=\frac{dx}{x}$
integrating on both sides, we get;
$\\=-2/v=\log \left | x \right |+C\\$
$=-\frac{2x}{y}=\log \left | x \right |+C$ .............................(ii)
Now, y = 2 and x =1, we get
C =-1
put this value in equation(ii)
$\\=-\frac{2x}{y}=\log \left | x \right |-1\\$
$\Rightarrow y = \frac{2x}{1- \log x}$
(A) $y = vx$
(B) $v = yx$
(C) $x = vy$
(D) $x =v$
Answer:
$\frac{dx}{dy}= h\left(\frac{x}{y} \right )$
for solving this type of equation put x/y = v
x = vy
option C is correct
Question 17: Which of the following is a homogeneous differential equation?
(A) $(4x + 6x +5)dy - (3y + 2x +4)dx = 0$
(B) $(xy)dx - (x^3 + y^3)dy = 0$
(C) $(x^3 +2y^2)dx + 2xydy =0$
(D) $y^2dx + (x^2 -xy -y^2)dy = 0$
Answer:
Option D is the right answer.
$y^2dx + (x^2 -xy -y^2)dy = 0$
$\frac{dy}{dx}=\frac{y^{2}}{x^{2}-xy-y^{2}} = F(x,y)$
we can take out lambda as a common factor and it can be cancelled out
Also check -
| Topic | Description | Example |
| Homogeneous Differential Equation | A DE where $\frac{d y}{d x}=f(x, y)$ and $f(x, y)$ is homogeneous of degree 0. | $\frac{d y}{d x}=\frac{x+y}{x-y}$ |
| Checking Homogeneity | Check if replacing x=λx, y=λy keeps the equation unchanged. | $f(\lambda x, \lambda y)=f(x, y) \Rightarrow$ homogeneous |
| Substitution Method | Use substitution y=vx (or x=vy) to simplify the equation. | $y=v x \Rightarrow \frac{d y}{d x}=v+x \frac{d v}{d x}$ |
| Converting to Separable Form | After substitution, reduce the DE to a variable separable form. | $\frac{d v}{d x}=\frac{1-v^2}{2 v}$ |
| Solving Using Integration | Integrate both sides to get general/particular solution. | $\int \frac{2 v}{1-v^2} d v=\int d x$ |
| General and Particular Solutions | Find general solutions and then use initial conditions (if any) to find particular ones. | General: $y=v x$, Particular: Use values to find $C$ |
Also Read-
Frequently Asked Questions (FAQs)
Two objective type questions with 4 choices are given in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.5.
The first step is to verify the given differential equation is homogeneous or not.
3 examples are given.
Yes, the concepts of basic integrals studied in the NCERT Class 12 Maths chapter 7 is required to solve exercise 9.4
Three exercises are coming under the topic 9.4
The differential equations of variable separable form.
On Question asked by student community
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Failing in pre-board or selection tests does NOT automatically stop you from sitting in the CBSE Class 12 board exams. Pre-boards are conducted by schools only to check preparation and push students to improve; CBSE itself does not consider pre-board marks. What actually matters is whether your school issues your
The CBSE Sahodaya Class 12 Pre-Board Chemistry Question Paper for the 2025-2026 session is available for download on the provided page, along with its corresponding answer key.
The Sahodaya Pre-Board exams, conducted in two rounds (Round 1 typically in December 2025 and Round 2 in January 2026), are modeled precisely
Hello,
You can get the Class 11 English Syllabus 2025-26 from the Careers360 website. This resource also provides details about exam dates, previous year papers, exam paper analysis, exam patterns, preparation tips and many more. you search in this site or you can ask question we will provide you the
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters