NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.1 - Differential Equations

NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.1 - Differential Equations

Komal MiglaniUpdated on 08 May 2025, 02:28 PM IST

Assume that a student is trying to find the rate at which a cup of hot coffee cools down in a specific environment. The change in temperature with time is a practical application of differential equations. Differential equations allow us to understand and predict changes in quantity, an essential component of physics, biology, engineering, and economics.

This Story also Contains

  1. Class 12 Maths Chapter 9 Exercise 9.1 Solutions: Download PDF
  2. NCERT Solutions Class 12 Maths Chapter 9: Exercise 9.1
  3. Topics covered in Chapter 9 Differential equation: Exercise 9.1
  4. NCERT Solutions Subject Wise
  5. Subject Wise NCERT Exemplar Solutions

The NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.1 solutions are designed to provide students with the basics of differential equations—equations involving derivatives. Designed by expert teachers of Careers360, these solutions are as per the new CBSE 2025-26 curriculum and are designed to lead the students to the creation of strong fundamentals. All the NCERT solutions for Class 12 Maths Chapter 9, exercise 9.1 have been presented in a simple, step-by-step manner to enable students to understand the logic of each solution. Some additional sample problems from the NCERT book have been provided, detailing the thought process of each of these problems. These exercises, along with practice, enable one to not only learn mathematics but gain confidence to deal with board exams as well as competitive exams such as the JEE. NCERT solutions provide a great mentor to enable one to master the chapter and acquire conceptual clarity.

Class 12 Maths Chapter 9 Exercise 9.1 Solutions: Download PDF

This material provides easy solutions to all the questions of Exercise 9.1 of Differential Equations. The PDF can be downloaded by the students for practice and enhancement of the chapter for board and competitive exams.

Download PDF

NCERT Solutions Class 12 Maths Chapter 9: Exercise 9.1

Question:1 Determine order and degree (if defined) of differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$

Answer:

Given function is
$\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$
We can rewrite it as
$y^{''''}+\sin(y''') =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''''}$

Therefore, the order of the given differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$ is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined

Question:2 Determine order and degree (if defined) of differential equation $y' + 5y = 0$

Answer:

Given function is
$y' + 5y = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'}$
Therefore, the order of the given differential equation $y' + 5y = 0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives and its highest power raised to y ' is 1
Therefore, it's a degree is 1.

Question:3 Determine order and degree (if defined) of differential equation $\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$

Answer:

Given function is
$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
We can rewrite it as
$(s^{'})^4+3s.s^{''} =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $s^{''}$

Therefore, the order of the given differential equation $\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives and power raised to s '' is 1
Therefore, it's a degree is 1

Question:4 Determine order and degree (if defined) of differential equation.

$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$

Answer:

Given function is
$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
We can rewrite it as
$(y^{''})^2+\cos y^{''} =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$

Therefore, the order of the given differential equation $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$ is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined

Question:5 Determine order and degree (if defined) of differential equation.

$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$

Answer:

Given function is
$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
$\Rightarrow \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$

Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}\left ( \frac{d^2y}{dx^2} \right )$

Therefore, order of given differential equation $\frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$ is 2
Now, the given differential equation is a polynomial equation in it's dervatives $\frac{d^2y}{dx^2}$ and power raised to $\frac{d^2y}{dx^2}$ is 1
Therefore, it's degree is 1

Question:6 Determine order and degree (if defined) of differential equation $(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$

Answer:

Given function is
$(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'''}$

Therefore, order of given differential equation $(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$ is 3
Now, the given differential equation is a polynomial equation in it's dervatives $y^{'''} , y^{''} \ and \ y^{'}$ and power raised to $y^{'''}$ is 2
Therefore, it's degree is 2

Question:7 Determine order and degree (if defined) of differential equation

$y''' + 2y'' + y' =0$

Answer:

Given function is
$y''' + 2y'' + y' =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'''}$

Therefore, order of given differential equation $y''' + 2y'' + y' =0$ is 3
Now, the given differential equation is a polynomial equation in it's dervatives $y^{'''} , y^{''} \ and \ y^{'}$ and power raised to $y^{'''}$ is 1
Therefore, it's degree is 1

Question:8 Determine order and degree (if defined) of differential equation

$y' + y = e^x$

Answer:

Given function is
$y' + y = e^x$
$\Rightarrow$ $y^{'}+y-e^x=0$

Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'}$

Therefore, order of given differential equation $y^{'}+y-e^x=0$ is 1
Now, the given differential equation is a polynomial equation in it's dervatives $y^{'}$ and power raised to $y^{'}$ is 1
Therefore, it's degree is 1

Question:9 Determine order and degree (if defined) of differential equation

$y'' + (y')^2 + 2y = 0$

Answer:

Given function is
$y'' + (y')^2 + 2y = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation $y'' + (y')^2 + 2y = 0$ is 2
Now, the given differential equation is a polynomial equation in it's dervatives $y^{''} \ and \ y^{'}$ and power raised to $y^{''}$ is 1
Therefore, it's degree is 1

Question:10 Determine order and degree (if defined) of differential equation

$y'' + 2y' + \sin y = 0$

Answer:

Given function is
$y'' + 2y' + \sin y = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation $y'' + 2y' + \sin y = 0$ is 2
Now, the given differential equation is a polynomial equation in it's dervatives $y^{''} \ and \ y^{'}$ and power raised to $y^{''}$ is 1
Therefore, it's degree is 1

Question:11 The degree of the differential equation $\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is

(A) 3

(B) 2

(C) 1

(D) not defined

Answer:

Given function is
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$
We can rewrite it as
$(y^{''})^3+(y^{'})^2+\sin y^{'}+1=0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation $\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is 2
Now, the given differential equation is a not polynomial equation in it's dervatives
Therefore, it's degree is not defined

Therefore, answer is (D)

Question:12 The order of the differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is

(A) 2

(B) 1

(C) 0

(D) Not Defined

Answer:

Given function is
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$
We can rewrite it as
$2x.y^{''}-3y^{'}+y=0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$

Therefore, order of given differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is 2

Therefore, answer is (A)

Also check -


Topics covered in Chapter 9 Differential equation: Exercise 9.1


TopicDescriptionExample
Differential EquationAn equation that contains derivatives of a function.$\frac{d y}{d x}+y=e^x$
Order of a Differential EquationThe highest order of the derivatives in the equation.$\begin{aligned} & \frac{d^2 y}{d x^2}+3 \frac{d y}{d x}=0 \\ & \text { Order }=2\end{aligned}$
Degree of a Differential EquationPower of the highest order derivative (after eliminating roots/fractions)

$
\left(\frac{d^2 y}{d x^2}\right)^2+y=0
$
Degree = 2

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook


Frequently Asked Questions (FAQs)

Q: What are the concepts covered in the Class 12th Maths chapter 9 exercise 9.1?
A:

The concepts of order and degree of differential equations are covered in the Class 12 Maths chapter 9 exercise 9.1.

Q: How many examples are solved before Class 12th Maths chapter 9 exercise 9.1?
A:

One solved example is given in the NCERT book before exercise 9.1 Class 12 Maths.

Q: How many questions are solved in Exercise 9.1 Class 12 Maths?
A:

12 questions and their answers are given in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.1

Q: What number of exercises are present in the chapter differential equations?
A:

7 exercises. In which one is miscellaneous exercises.

Q: What is the difference between miscellaneous exercises and other exercises given in the chapter?
A:

Miscellaneous exercise covers question from whole chapter and exercise questions covers topics discussed in that particular area.

Q: Is the topic of degree and order important for JEE Main exam?
A:

Yes, Students can expect questions from this part for JEE Mains.

Q: Are the NCERT Solutions for Class 12 Maths chapter 9 exercise 9.1 reliable?
A:

Yes, these solutions of exercise 9.1 are prepared by expert faculty and are reviewed.

Q: Why do we solve Exercise 9.1 Class 12 Maths?
A:

It is necessary to get clarity over the topics degree and order of a differential equation. NCERT Solutions for Class 12 Maths chapter 9 exercise 9.1 helps for the same. 

Articles
|
Upcoming School Exams
Ongoing Dates
Assam HSLC Application Date

1 Sep'25 - 4 Oct'25 (Online)

Ongoing Dates
Maharashtra HSC Board Application Date

8 Sep'25 - 30 Sep'25 (Online)

Certifications By Top Providers
Explore Top Universities Across Globe

Questions related to CBSE Class 12th

On Question asked by student community

Have a question related to CBSE Class 12th ?

Yes, you can switch from Science in Karnataka State Board to Commerce in CBSE for 12th. You will need a Transfer Certificate from your current school and meet the CBSE school’s admission requirements. Since you haven’t studied Commerce subjects like Accountancy, Economics, and Business Studies, you may need to catch up before or during 12th. Not all CBSE schools accept direct admission to 12th from another board, so some may ask you to join Class 11 first. Make sure to check the school’s rules and plan your subject preparation.



Hello

For the 12th CBSE Hindi Medium board exam, important questions usually come from core chapters like “Madhushala”, “Jhansi ki Rani”, and “Bharat ki Khoj”.
Questions often include essay writing, letter writing, and comprehension passages. Grammar topics like Tenses, Voice Change, and Direct-Indirect Speech are frequently asked.
Students should practice poetry questions on themes and meanings. Important questions also cover summary writing and translation from Hindi to English or vice versa.
Previous years’ question papers help identify commonly asked questions.
Focus on writing practice to improve handwriting and presentation. Time management during exams is key to answering all questions effectively.

Hello,

If you want to improve the Class 12 PCM results, you can appear in the improvement exam. This exam will help you to retake one or more subjects to achieve a better score. You should check the official website for details and the deadline of this exam.

I hope it will clear your query!!

For the 2025-2026 academic session, the CBSE plans to conduct board exams from 17 February 2026 to 20 May 2026.

You can download it in pdf form from below link

CBSE DATE SHEET 2026

all the best for your exam!!

Hii neeraj!

You can check CBSE class 12th registration number in:

  • Your class 12th board exam admit card. Please do check admit card for registration number, it must be there.
  • You can also check the registration number in your class 12th marksheet in case you have got it.
  • Alternatively you can also visit your school and ask for the same in the administration office they may tell you the registration number.

Hope it helps!