Aakash Repeater Courses
Take Aakash iACST and get instant scholarship on coaching programs.
Assume that a student is trying to find the rate at which a cup of hot coffee cools down in a specific environment. The change in temperature with time is a practical application of differential equations. Differential equations allow us to understand and predict changes in quantity, an essential component of physics, biology, engineering, and economics.
This Story also Contains
The NCERT solutions for Class 12 Maths Chapter 9 Exercise 9.1 solutions are designed to provide students with the basics of differential equations—equations involving derivatives. Designed by expert teachers of Careers360, these solutions are as per the new CBSE 2025-26 curriculum and are designed to lead the students to the creation of strong fundamentals. All the NCERT solutions for Class 12 Maths Chapter 9, exercise 9.1 have been presented in a simple, step-by-step manner to enable students to understand the logic of each solution. Some additional sample problems from the NCERT book have been provided, detailing the thought process of each of these problems. These exercises, along with practice, enable one to not only learn mathematics but gain confidence to deal with board exams as well as competitive exams such as the JEE. NCERT solutions provide a great mentor to enable one to master the chapter and acquire conceptual clarity.
This material provides easy solutions to all the questions of Exercise 9.1 of Differential Equations. The PDF can be downloaded by the students for practice and enhancement of the chapter for board and competitive exams.
Question:1 Determine order and degree (if defined) of differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$
Answer:
Given function is
$\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$
We can rewrite it as
$y^{''''}+\sin(y''') =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''''}$
Therefore, the order of the given differential equation $\frac{\mathrm{d} ^4y}{\mathrm{d} x^4} +\sin(y''')=0$ is 4
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined
Question:2 Determine order and degree (if defined) of differential equation $y' + 5y = 0$
Answer:
Given function is
$y' + 5y = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'}$
Therefore, the order of the given differential equation $y' + 5y = 0$ is 1
Now, the given differential equation is a polynomial equation in its derivatives and its highest power raised to y ' is 1
Therefore, it's a degree is 1.
Answer:
Given function is
$\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$
We can rewrite it as
$(s^{'})^4+3s.s^{''} =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $s^{''}$
Therefore, the order of the given differential equation $\left(\frac{\mathrm{d} s}{\mathrm{d} t} \right )^4 + 3s \frac{\mathrm{d}^2 s}{\mathrm{d} t^2} = 0$ is 2
Now, the given differential equation is a polynomial equation in its derivatives and power raised to s '' is 1
Therefore, it's a degree is 1
Question:4 Determine order and degree (if defined) of differential equation.
$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
Answer:
Given function is
$\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$
We can rewrite it as
$(y^{''})^2+\cos y^{''} =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$
Therefore, the order of the given differential equation $\left(\frac{d^2y}{dx^2} \right )^2 + \cos\left(\frac{dy}{dx} \right )= 0$ is 2
Now, the given differential equation is not a polynomial equation in its derivatives
Therefore, it's a degree is not defined
Question:5 Determine order and degree (if defined) of differential equation.
$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
Answer:
Given function is
$\frac{d^2y}{dx^2} = \cos 3x + \sin 3x$
$\Rightarrow \frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}\left ( \frac{d^2y}{dx^2} \right )$
Therefore, order of given differential equation $\frac{d^2y}{dx^2}- \cos 3x - \sin 3x = 0$ is 2
Now, the given differential equation is a polynomial equation in it's dervatives $\frac{d^2y}{dx^2}$ and power raised to $\frac{d^2y}{dx^2}$ is 1
Therefore, it's degree is 1
Answer:
Given function is
$(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'''}$
Therefore, order of given differential equation $(y''')^2 + (y'')^3 + (y')^4 + y^5= 0$ is 3
Now, the given differential equation is a polynomial equation in it's dervatives $y^{'''} , y^{''} \ and \ y^{'}$ and power raised to $y^{'''}$ is 2
Therefore, it's degree is 2
Question:7 Determine order and degree (if defined) of differential equation
Answer:
Given function is
$y''' + 2y'' + y' =0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'''}$
Therefore, order of given differential equation $y''' + 2y'' + y' =0$ is 3
Now, the given differential equation is a polynomial equation in it's dervatives $y^{'''} , y^{''} \ and \ y^{'}$ and power raised to $y^{'''}$ is 1
Therefore, it's degree is 1
Question:8 Determine order and degree (if defined) of differential equation
Answer:
Given function is
$y' + y = e^x$
$\Rightarrow$ $y^{'}+y-e^x=0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{'}$
Therefore, order of given differential equation $y^{'}+y-e^x=0$ is 1
Now, the given differential equation is a polynomial equation in it's dervatives $y^{'}$ and power raised to $y^{'}$ is 1
Therefore, it's degree is 1
Question:9 Determine order and degree (if defined) of differential equation
Answer:
Given function is
$y'' + (y')^2 + 2y = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $y'' + (y')^2 + 2y = 0$ is 2
Now, the given differential equation is a polynomial equation in it's dervatives $y^{''} \ and \ y^{'}$ and power raised to $y^{''}$ is 1
Therefore, it's degree is 1
Question:10 Determine order and degree (if defined) of differential equation
Answer:
Given function is
$y'' + 2y' + \sin y = 0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $y'' + 2y' + \sin y = 0$ is 2
Now, the given differential equation is a polynomial equation in it's dervatives $y^{''} \ and \ y^{'}$ and power raised to $y^{''}$ is 1
Therefore, it's degree is 1
(A) 3
(B) 2
(C) 1
(D) not defined
Answer:
Given function is
$\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$
We can rewrite it as
$(y^{''})^3+(y^{'})^2+\sin y^{'}+1=0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $\left(\frac{d^2y}{dx^2} \right )^3 + \left(\frac{dy}{dx} \right )^2 + \sin\left(\frac{dy}{dx}\right ) + 1= 0$ is 2
Now, the given differential equation is a not polynomial equation in it's dervatives
Therefore, it's degree is not defined
Therefore, answer is (D)
Question:12 The order of the differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is
(A) 2
(B) 1
(C) 0
(D) Not Defined
Answer:
Given function is
$2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$
We can rewrite it as
$2x.y^{''}-3y^{'}+y=0$
Now, it is clear from the above that, the highest order derivative present in differential equation is $y^{''}$
Therefore, order of given differential equation $2x^2\frac{d^2y}{dx^2} - 3\frac{dy}{dx} + y = 0$ is 2
Therefore, answer is (A)
Also check -
Take Aakash iACST and get instant scholarship on coaching programs.
Topic | Description | Example |
Differential Equation | An equation that contains derivatives of a function. | $\frac{d y}{d x}+y=e^x$ |
Order of a Differential Equation | The highest order of the derivatives in the equation. | $\begin{aligned} & \frac{d^2 y}{d x^2}+3 \frac{d y}{d x}=0 \\ & \text { Order }=2\end{aligned}$ |
Degree of a Differential Equation | Power of the highest order derivative (after eliminating roots/fractions) | $ |
Also Read-
Frequently Asked Questions (FAQs)
The concepts of order and degree of differential equations are covered in the Class 12 Maths chapter 9 exercise 9.1.
One solved example is given in the NCERT book before exercise 9.1 Class 12 Maths.
12 questions and their answers are given in the NCERT solutions for Class 12 Maths chapter 9 exercise 9.1
7 exercises. In which one is miscellaneous exercises.
Miscellaneous exercise covers question from whole chapter and exercise questions covers topics discussed in that particular area.
Yes, Students can expect questions from this part for JEE Mains.
Yes, these solutions of exercise 9.1 are prepared by expert faculty and are reviewed.
It is necessary to get clarity over the topics degree and order of a differential equation. NCERT Solutions for Class 12 Maths chapter 9 exercise 9.1 helps for the same.
On Question asked by student community
Hello
Yes, if you’re not satisfied with your marks even after the improvement exam, many education boards allow you to reappear as a private candidate next year to improve your scores. This means you can register independently, study at your own pace, and take the exams without attending regular classes. It’s a good option to improve your results and open up more opportunities for higher studies or careers. Just make sure to check the specific rules and deadlines of your education board so you don’t miss the registration window. Keep your focus, and you will do better next time.
Hello Aspirant,
Yes, in the case that you appeared for the 2025 improvement exam and your roll number is different from what was on the previous year’s marksheet, the board will usually release a new migration certificate. This is because the migration certificate will reflect the most recent exam details, roll number and passing year. You can apply to get it from your board using the process prescribed by them either online or through your school/college.
Yes, if you miss the 1st CBSE exam due to valid reasons, then you can appear for the 2nd CBSE compartment exam.
From the academic year 2026, the board will conduct the CBSE 10th exam twice a year, while the CBSE 12th exam will be held once, as per usual. For class 10th, the second phase exam will act as the supplementary exam. Check out information on w hen the CBSE first exam 2026 will be conducted and changes in 2026 CBSE Board exam by clicking on the link .
If you want to change your stream to humanities after getting a compartment in one subject in the CBSE 12th Board Exam , you actually have limited options to qualify for your board exams. You can prepare effectively and appear in the compartment examination for mathematics again. If you do not wish to continue with the current stream, you can take readmission in the Humanities stream and start from Class 11th again, and continue studying for two more years to qualify for the 12th examination.
The GUJCET Merit List is prepared based on the Class 12th marks and GUJCET marks received by the students. CBSE students who are not from the Gujarat board can definitely compete with GSEB students, as their eligibility is decided based on the combined marks scored by them in GUJCET and the 12th board. The weightage of the GUJCET score is 40% and the weightage of the class 12 scores is 60%.
Take Aakash iACST and get instant scholarship on coaching programs.
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE