CBSE Class 12th Exam Date:17 Feb' 26 - 17 Feb' 26
Application of Integrals is like your favourite colouring brush that can fill any shape under every curve, no matter how abstract the shape is. It is a fundamental part of calculus that can help us calculate the area of a certain region, even with no straight sides. In exercise 8.1 of the chapter Application of Integrals, we go beyond the basics of integration and learn about how it's used in our real-life situations, like finding the area of a region or calculating the total distance travelled between two specific points. This article about the NCERT Solutions for Exercise 8.1 of Class 12 Maths, Chapter 8 - Application of Integrals, offers detailed and easy-to-understand solutions for the exercise problems, so that students can clear their doubts and understand the logic behind the solutions. For syllabus, notes, exemplar solutions and PDF, refer to this link: NCERT.
This Story also Contains
Question:1 Find the area of the region bounded by the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1.$
Answer:
The area bounded by the ellipse : $\frac{x^2}{16}+\frac{y^2}{9}=1.$

Area will be 4 times the area of EAB.
Therefore, Area of EAB = $\int_0^4 y\,dx$
$= \int^4_{0}3\sqrt{1-\frac{x^2}{16}} dx$
$= \frac{3}{4}\int^4_{0}\sqrt{16-x^2} dx$
$= \frac{3}{4}\left [ \frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}\sin^{-1}\frac{x}{4} \right ]^4_{0}$
$= \frac{3}{4}\left [ 2\sqrt{16-16} +8\sin^{-1}(1)-0-8\sin^{-1}(0)\right ]$
$= \frac{3}{4}\left [ \frac{8\pi}{2} \right ]$
$= \frac{3}{4}\left [ 4\pi \right ] =3\pi$
Therefore, the area bounded by the ellipse will be $= 4 \times 3\pi = 12\pi$ units.
Question 2: Find the area of the region bounded by the ellipse $\small \frac{x^2}{4}+\frac{y^2}{9}=1$
Answer:
The area bounded by the ellipse : $\small \frac{x^2}{4}+\frac{y^2}{9}=1$

The area will be 4 times the area of EAB.
Therefore, Area of EAB $= \int_0^2 y\ dx$
$= \int^2_{0}3\sqrt{1-\frac{x^2}{4}} dx$
$= \frac{3}{2}\int^2_{0}\sqrt{4-x^2} dx$
$= \frac{3}{2}\left [ \frac{x}{2}\sqrt4-x^2 +\frac{4}{2}\sin^{-1}\frac{x}{2} \right ]^2_{0}$
$= \frac{3}{2}\left [ \frac{2\pi}{2} \right ]$
$= \frac{3\pi}{2}$
Therefore the area bounded by the ellipse will be $= 4\times \frac{3\pi}{2} = 6\pi$ units.
Question 3: Choose the correct answer in the following
$\small (A)\hspace{1mm}\pi$
$\small (B)\hspace{1mm}\frac{\pi}{2}$
$\small (C)\hspace{1mm}\frac{\pi}{3}$
$\small (D)\hspace{1mm}\frac{\pi}{4}$
Answer:
The area bounded by circle C(0,0,4) and the line x=2 is

The required area = area of OAB
$\int_0^2 y\,dx = \int_0^2 \sqrt{4 - x^2}\,dx$
$= \left[ \frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$
$= 2 \cdot \frac{\pi}{2}$
$= \pi$
Hence, The correct answer is $\pi$
Question 4: Choose the correct answer in the following.
(A) $\small 2$
(B) $\small \frac{9}{4}$
(C) $\small \frac{9}{3}$
(D) $\small \frac{9}{2}$
Answer:
The area bounded by the curve $y^2=4x$ and y =3

The required area = OAB
$= \int_0^3 x\,dy$
$= \int_0^3 \frac{y^2}{4}\,dy$
$= \frac{1}{4} \left[ \frac{y^3}{3} \right]_0^3$
$= \frac{9}{4}$
Hence, The correct answer is $\small \frac{9}{4}$
Also Read,
The main topic covered in class 12 maths chapter 8 of Application of Integrals, exercise 8.1 is:
Area under a curve: The exercise starts with calculating the area under the curve $y=f(x)$, between two points on the X axis, as $x=a$ and $x=b$. The area can be found using definite integrals as: $A=\int_a^b f(x) d x$.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
13 questions are in total in exercise 8.1 Class 12 Maths.
Mainly area under the curve is discussed in this exercise.
This is very important for boards as well as other subjects like Physics also.
No, it is less difficult than Chapter 7 Integrals.
Maily area and at higher level volume etc. are discussed in this.
Total 3 exercises are there including miscellaneous exercise.
On Question asked by student community
Hello,
Since you have passed 10th and 12th from Delhi and your residency is Delhi, but your domicile is UP, here’s how NEET counselling works:
1. Counselling Eligibility: For UP NEET counselling, your UP domicile makes you eligible, regardless of where your schooling was. You can participate in UP state counselling according to your NEET rank.
2. Delhi Counselling: For Delhi state quota, usually 10th/12th + residency matters. Since your school and residency are in Delhi, you might also be eligible for Delhi state quota, but it depends on specific state rules.
So, having a Delhi Aadhaar will not automatically reject you in UP counselling as long as you have a UP domicile certificate.
Hope you understand.
Hello,
You can access Free CBSE Mock tests from Careers360 app or website. You can get the mock test from this link : CBSE Class 12th Free Mock Tests
Hope it helps !
Yes, it is possible for a student who has done their 12th grade already to take upto 4 exams of their requirement. This is possible through the NIOS, NATIONAL INSTITUTE OF OPEN SCHOOLING. Get more info about the exam and the board through the following link.
For CBSE the PREVIOUS YEARS PAPERS can be accessed through the following link for the Concerned subjec by careers360.
Consequently Careers360 does also have a chapter wise scheme of PYQs, you can access the STUDY MATERIAL (PYQs.) from the following link -
https://school.careers360.com/boards/cbse/cbse-question-bank
Thankyou.
Hello,
Sorry, but JoSAA does not accept marks from two different boards for the same qualification during counselling. However, you can use your NIOS marks to meet the JEE Main/Advanced eligibility criteria if they are better than your CBSE marks. You can use your NIOS marks for the eligibility check, but when presenting your documents, you may be required to present both marksheets and the one with the higher marks for each subject will be considered.
I hope it will clear your query!!
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters