Application of Integrals is like your favourite colouring brush that can fill any shape under every curve, no matter how abstract the shape is. It is a fundamental part of calculus that can help us calculate the area of a certain region, even with no straight sides. In exercise 8.1 of the chapter Application of Integrals, we go beyond the basics of integration and learn about how it's used in our real-life situations, like finding the area of a region or calculating the total distance travelled between two specific points. This article about the NCERT Solutions for Exercise 8.1 of Class 12 Maths, Chapter 8 - Application of Integrals, offers detailed and easy-to-understand solutions for the exercise problems, so that students can clear their doubts and understand the logic behind the solutions. For syllabus, notes, exemplar solutions and PDF, refer to this link: NCERT.
The CBSE admit card 2026 for classes 10 and 12 is likely to be out soon. Private students can download their admit card using their Application No/ Previous Roll No/ Candidate name at cbse.nic.in.
This Story also Contains
Question:1 Find the area of the region bounded by the ellipse $\frac{x^2}{16}+\frac{y^2}{9}=1.$
Answer:
The area bounded by the ellipse : $\frac{x^2}{16}+\frac{y^2}{9}=1.$

Area will be 4 times the area of EAB.
Therefore, Area of EAB = $\int_0^4 y\,dx$
$= \int^4_{0}3\sqrt{1-\frac{x^2}{16}} dx$
$= \frac{3}{4}\int^4_{0}\sqrt{16-x^2} dx$
$= \frac{3}{4}\left [ \frac{x}{2}\sqrt{16-x^2}+\frac{16}{2}\sin^{-1}\frac{x}{4} \right ]^4_{0}$
$= \frac{3}{4}\left [ 2\sqrt{16-16} +8\sin^{-1}(1)-0-8\sin^{-1}(0)\right ]$
$= \frac{3}{4}\left [ \frac{8\pi}{2} \right ]$
$= \frac{3}{4}\left [ 4\pi \right ] =3\pi$
Therefore, the area bounded by the ellipse will be $= 4 \times 3\pi = 12\pi$ units.
Question 2: Find the area of the region bounded by the ellipse $\small \frac{x^2}{4}+\frac{y^2}{9}=1$
Answer:
The area bounded by the ellipse : $\small \frac{x^2}{4}+\frac{y^2}{9}=1$

The area will be 4 times the area of EAB.
Therefore, Area of EAB $= \int_0^2 y\ dx$
$= \int^2_{0}3\sqrt{1-\frac{x^2}{4}} dx$
$= \frac{3}{2}\int^2_{0}\sqrt{4-x^2} dx$
$= \frac{3}{2}\left [ \frac{x}{2}\sqrt4-x^2 +\frac{4}{2}\sin^{-1}\frac{x}{2} \right ]^2_{0}$
$= \frac{3}{2}\left [ \frac{2\pi}{2} \right ]$
$= \frac{3\pi}{2}$
Therefore the area bounded by the ellipse will be $= 4\times \frac{3\pi}{2} = 6\pi$ units.
Question 3: Choose the correct answer in the following
$\small (A)\hspace{1mm}\pi$
$\small (B)\hspace{1mm}\frac{\pi}{2}$
$\small (C)\hspace{1mm}\frac{\pi}{3}$
$\small (D)\hspace{1mm}\frac{\pi}{4}$
Answer:
The area bounded by circle C(0,0,4) and the line x=2 is

The required area = area of OAB
$\int_0^2 y\,dx = \int_0^2 \sqrt{4 - x^2}\,dx$
$= \left[ \frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$
$= 2 \cdot \frac{\pi}{2}$
$= \pi$
Hence, The correct answer is $\pi$
Question 4: Choose the correct answer in the following.
(A) $\small 2$
(B) $\small \frac{9}{4}$
(C) $\small \frac{9}{3}$
(D) $\small \frac{9}{2}$
Answer:
The area bounded by the curve $y^2=4x$ and y =3

The required area = OAB
$= \int_0^3 x\,dy$
$= \int_0^3 \frac{y^2}{4}\,dy$
$= \frac{1}{4} \left[ \frac{y^3}{3} \right]_0^3$
$= \frac{9}{4}$
Hence, The correct answer is $\small \frac{9}{4}$
Also Read,
The main topic covered in class 12 maths chapter 8 of Application of Integrals, exercise 8.1 is:
Area under a curve: The exercise starts with calculating the area under the curve $y=f(x)$, between two points on the X axis, as $x=a$ and $x=b$. The area can be found using definite integrals as: $A=\int_a^b f(x) d x$.
Also Read,
Below are some useful links for subject-wise NCERT solutions for class 12.
Here are some links to subject-wise solutions for the NCERT exemplar class 12.
Frequently Asked Questions (FAQs)
13 questions are in total in exercise 8.1 Class 12 Maths.
Mainly area under the curve is discussed in this exercise.
This is very important for boards as well as other subjects like Physics also.
No, it is less difficult than Chapter 7 Integrals.
Maily area and at higher level volume etc. are discussed in this.
Total 3 exercises are there including miscellaneous exercise.
On Question asked by student community
Hello
You will be able to download the CBSE Previous Year Board Question Papers from our official website, careers360, by using the link given below.
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers
I hope this information helps you.
Thank you.
Hello
You will be able to download the CBSE Pre-Board Class 12 Question Paper 2025-26 from our official website by using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-pre-board-class-12-question-paper-2025-26
I hope this information helps you.
Thank you.
Hello,
Yes, it's completely fine to skip this year's 12th board exams and give them next year as a reporter or private candidate, allowing you to prepare better; the process involves contacting your current school or board to register as a private candidate or for improvement exams during the specified
HELLO,
Yes i am giving you the link below through which you will be able to download the Class 12th Maths Book PDF
Here is the link :- https://school.careers360.com/ncert/ncert-book-for-class-12-maths
Hope this will help you!
Hello,
Here is your Final Date Sheet Class 12 CBSE Board 2026 . I am providing you the link. Kindly open and check it out.
https://school.careers360.com/boards/cbse/cbse-class-12-date-sheet-2026
I hope it will help you. For any further query please let me know.
Thank you.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters