NCERT Exemplar Class 10 Maths Solutions Chapter 8 - Introduction To Trigonometry And Its Equations

NCERT Exemplar Class 10 Maths Solutions Chapter 8 - Introduction To Trigonometry And Its Equations

Komal MiglaniUpdated on 30 Dec 2025, 08:31 PM IST

Imagine building tall structures or measuring the distance between tall buildings. Isn’t that fascinating? The answer lies in the chapter on Trigonometry. Trigonometry and Its Equations - NCERT Exemplar Class 10 introduces students to important trigonometric ratios, which are essential for solving problems involving angles, heights, and distances. Students gain a foundation of concepts, such as the angle of elevation and depression, and learn how to calculate unknown values by applying these ratios to right-angled triangles.

This Story also Contains

  1. NCERT Exemplar Class 10 Maths Solutions Chapter 8 Introduction To Trigonometry And Its Equations
  2. NCERT Exemplar Solutions Class 10 Maths Chapter 8 Important Topics
  3. NCERT Class 10 Maths Exemplar Solutions Chapterwise
  4. NCERT Solutions for Class 10 Maths: Chapter Wise
  5. NCERT Solutions of class 10 - Subject Wise
  6. NCERT Books and NCERT Syllabus
NCERT Exemplar Class 10 Maths Solutions Chapter 8 - Introduction To Trigonometry And Its Equations
NCERT Exemplar Class 10 Maths Solutions Chapter 8 Introduction To Trigonometry And Its Equations

Regular practice of exercises and following the CBSE Syllabus for Class 10 improves students' problem-solving skills and comprehension of the different kinds of exam questions. An in-depth understanding of the subject provides a solid foundation for advanced mathematics and practical applications in fields such as engineering, architecture, and navigation. For students preparing for both academic advancement and competitive exams, this chapter is crucial.

Also, read,

NCERT Exemplar Class 10 Maths Solutions Chapter 8 Introduction To Trigonometry And Its Equations

Class 10 Maths Chapter 8 Exemplar Solutions
Exercise: 8.1
Page number: 89-91
Total questions: 15

Question 1

If cos A =$\frac45$ , then the value of tan A is

1.$\frac{3}{5}$ (b) $\frac{3}{4}$ (c) $\frac{4}{3}$ (d) $\frac{5}{3}$

Answer:

Answer. [B]
Solution: It is given that cos A = $\frac45$
$\text{We know that cos}\theta=\frac{Base}{Hypotenuse}$
$\therefore$ value of base = 4
Hypotenuse = 5

Use Pythagoras' theorem in $\bigtriangleup$ABC
(Hypotenuse)2 = (Base)2 + (perpendicular)
$\left ( AC \right )^{2}= \left ( BC \right )^{2}+\left ( AB \right )^{2}$
$\left ( 5 \right )^{2}= \left ( 4 \right )^{2}+\left ( AB \right )^{2}$
$25-16= \left ( AB \right )^{2}$
$9= \left ( AB \right )^{2}$
$\sqrt{9}= AB$
$3= AB$
The value of perpendicular is 3
$\text{Also we know that tan}\theta=\frac{perpendicular}{base}$
$\therefore \tan \, A= \frac{3}{4}$
Hence, option (B) is correct.

Question 2

If sin A =$\frac 12$, then the value of cot A is
a) $\sqrt{3}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{\sqrt{3}}{2}$ (d) 1

Answer:

$\\sinA=\frac{1}{2}\text{ for angle }30^0\\cosA=\frac{\sqrt{3}}{2}\\cotA=\frac{cosA}{sinA}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$
Hence, option (a) is correct.

Question 3

The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is
(A) – 1 (B) 0 (C) 1 (D)$\frac{3}{2}$

Answer:

Answer. $\quad[B]$
Solution: Given expression is :

$
\begin{aligned}
& {\left[\operatorname{cosec}\left(75^{\circ}+\theta\right)-\sec \left(15^{\circ}-\theta\right)-\tan \left(55^{\circ}+\theta\right)+\cot \left(35^{\circ}-\theta\right)\right]} \\
& {\left[\operatorname{cosec}(90-(15-\theta))-\sec \left(15^{\circ}-\theta\right)-\tan (90-(35-\theta))+\cot \left(35^{\circ}-\theta\right)\right]} \\
& \{\because \text { we can write }(75+\theta)=(90-(15-\theta)) \text { and }(55+\theta)=(90-(35-\theta))\} \\
& \{\because \operatorname{cosec}(90-q)=\sec q \text { and tan }(90-q)=\cot q\} \\
& {[\sec (15-\theta)-\sec (15-\theta)-\cot (35-\theta)+\cot (35-\theta)]=0}
\end{aligned}
$

Hence, option (B) is correct

Question 4

Given that sinθ =a/b, then cosθ is equal to
(A) $\frac{b}{\sqrt{b^{2}-a^{2}}}$ (B) $\frac{b}{a}$ (C) $\frac{\sqrt{b^{2}-a^{2}}}{b}$ (D)$\frac{a}{\sqrt{b^{2}-a^{2}}}$

Answer:

Answer. [C]
Solution: It is given that sin$\theta$ = a/b
$cos\theta=\sqrt{1-sin^2\theta}=\sqrt{1-\frac{a^2}{b^2}}$

$\therefore \cos \theta = \frac{\sqrt{b^{2}-a^{2}}}{b}$
Hence, option (C) is correct.

Question 5

If cos (α + β) = 0, then sin (α – β) can be reduced to
(A) cos β (B) cos 2β (C) sin α (D) sin 2α

Answer:

$\\\text{Given that }\cos(\alpha+\beta)=0\\\Rightarrow (\alpha+\beta)=90^0...........(1)$

$\text{wehave to find }\sin(\alpha-\beta)$

$ \text{from(1) we can write }\alpha=90-\beta$

$ \therefore \ \sin(\alpha-\beta)=\sin(90-\beta-\beta)$

$=\sin(90-2\beta)=\cos2\beta $

$ \text{since sin(90-x)=cosx})$


Hence, option B is correct.

Question 6

The value of (tan1° tan2° tan3° ... tan89°) is
(A) 0 (B) 1 (C) 2 (D)$\frac 12$

Answer:

Answer. [B]
Solution: Given :-tan1° tan2° tan3° ... tan89°
tan1° tan2° tan3° ... tan89°tan87° tan 88° tan89° …(1)
We can also write equation (1) in the form of
[tan (90° – 89°). tan (90° – 88°). tan (90° – 87°) …… tan 87°. tan 88° tan 89°]
[$\because$ we can write tan 1° in the form of tan (900 – 890) similarly, we can write other values]
[cot 890. cot 880. cot 870 …. tan 870. tan 880. tan 890]
$\because$ [tan (902 – $\theta$) = cot$\theta$ ]
Also
$\left [ \frac{1}{\tan 89^{\circ}}\frac{1}{\tan 88^{\circ}} \frac{1}{\tan 87^{\circ}}\cdots \tan 87^{\circ}.\tan 88^{\circ}\tan 89^{\circ} \right ]$
$\because$ Throughout all terms are cancelled by each other, and the remaining will be tan45
Hence, the value is 1
$\because$ option B is correct.

Question 7

If cos 9α = sinα and 9α < 90° , then the value of tan5α is

(A) $\frac{1}{\sqrt{3}}$

(B) $\sqrt{3}$

(C) $1$

(D) $0$

Answer:

Answer. [C]
Solution: Given :- cos 9$\alpha$ = sin$\alpha$
cos9 $\alpha$ = cos(90 – $\alpha$)
$\because$ (cos (90 – $\alpha$) = sin$\alpha$)
9$\alpha$ = 90 – $\alpha$
9$\alpha$+ $\alpha$ = 90
10 $\alpha$= 90
$\alpha = \frac{90}{10}$
Now tan 5$\alpha$ is
Put $\alpha$ = 9 we get
tan 5$\times$ (9)
tan 45°
= 1
{$\because$ from the table of trigonometric ratios of angles we know that tan 45° = 1}
Hence, option C is correct.

Question 8

If ΔABC is right-angled at C, then the value of cos (A+B) is
$(A) 0 \ \ \ \ \ (B) 1 \ \ \ \ \ (C)$\frac 12$ \ \ \ \ \ (D)\frac{\sqrt{3}}{2}$

Answer:

Answer. [A]
Solution: It is given that $\angle$C = 90°

In $\bigtriangleup$ABC
$\angle$A +$\angle$B +$\angle$C = 180 [$\because$ sum of interior angles of triangle is 180°]
$\angle$A + $\angle$B + 90° = 180 [$\because$ C = 90° (given)]
$\angle$A + $\angle$B = 180° – 90°
$\angle$A + $\angle$B = 90° …(1)
cos($\angle$A +$\angle$B) = cos (90°)
cos(90°) = 0
[$\because$ from the table of trigonometric ratios of angles we know that cos 90° = 0]
Hence, option A is correct.

Question 9

If sinA + sin2A = 1, then the value of the expression (cos2A+ cos4A) is
(A) 1 (B)$\frac 12$ (C) 2 (D) 3

Answer:

Answer. [A]
Solution: It is given that sinA + sin2A = 1 …(*)
sinA = 1 – sin2AsinA = cos2A …(1) ( $\because$ 1 – sin2A = cos2A)
Squaring both sides we get
sin2 A = cos4A …(2)
Hence, cos2A + cos4A =
= sinA + sin2A {using (1) and (2)}
= sinA + sin2A = 1 (given)
Hence, option (A) is correct.

Question 10

Given that sinα =$\frac 12$ and cosβ =$\frac 12$ , then the value of (α + β) is
(A) 0° (B) 30° (C) 60° (D) 90°

Answer:

Answer. [D]
Solution:
$\\\sin \alpha=$\frac 12$\Rightarrow \alpha=30^0\\\cos \beta=$\frac 12$\Rightarrow \beta=60^0\\\therefore \alpha+\beta=90^0$
Hence, option (D) is correct.

Question 11

The value of the expression
$\left [ \frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}\sin 27^{\circ} \right ]\ is$

(A) 3 (B) 2 (C) 1 (D) 0

Answer:

Answer. [B]
Solution:

$\left [ \frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}\sin 27^{\circ} \right ]$
$\frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}\sin \left ( 90^{\circ}-63^{\circ} \right )$
$\left [ \because \sin \left ( 90^{\circ}-\theta \right )= \cos \theta \right ]$
$\frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos 63^{\circ}\times \cos 63^{\circ}$
$= \frac{\sin ^{2}22^{\circ}+\sin ^{2}\left (90^{\circ}-22^{\circ} \right )}{\cos ^{2}\left ( 90^{\circ}-68^{\circ} \right )+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}$
$\begin{Bmatrix} \because 68^{\circ}= \left ( 90^{\circ}-22^{\circ} \right ) & \\ 22^{\circ}= \left ( 90^{\circ}-68^{\circ} \right )& \end{Bmatrix}$
$= \frac{\sin ^{2}22^{\circ}+\cos ^{2}22^{\circ}}{\sin ^{2}68^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}$
$\begin{Bmatrix} \because \sin \left ( 90^{\circ}-\theta \right ) = \cos \theta & \\ \cos \left ( 90^{\circ} -\theta \right )= \sin \theta & \end{Bmatrix}$
$= \frac{1}{1}+1\; \left [ \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right ]$
= 1+ 1 =2
Hence, option (B) is correct.

Question 12

If $4 \tan\theta= 3$ then $\left ( \frac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta } \right )$ is equal to
$(A)\frac{2}{3}$ $(B)\frac{1}{3}$ $(C)\frac{1}{2}$ $(D)\frac{3}{4}$

Answer:
Hence, option (C) is correct.
$\\\left ( \frac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta } \right )\text{ Divide numerator and denominator by and rewriting the given expression}\\\\\Rightarrow ( \frac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta })=\frac{4\frac{\sin\theta}{cos\theta}-\frac{cos\theta}{cos\theta}}{4\frac{\sin\theta}{cos\theta}+\frac{cos\theta}{cos\theta}}\\\\=\frac{4\tan\theta-1}{4\tan\theta+1}=\frac{3-1}{3+1}=\frac{2}{4}=\frac{1}{2}\ (\text{Given }4\tan\theta=3)$

Question 13

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is
(A) 1 (B)3/4 (C) $\frac 12$ (D) 1/4

Answer:

$\sin\theta-\cos\theta=0$
squaring both sides we get
$(\sin\theta-\cos\theta)^2=0$
$\sin^2\theta+\cos^2\theta-2\sin\theta\cos\theta=0$
($\therefore$ (a – b)2 = a2 + b2 – 2ab)
$\sin^2\theta+\cos^2\theta=2\sin\theta\cos\theta.......(1)$
$1=2\sin\theta\cos\theta\because (\sin^2\theta+\cos^2\theta=1)$
$\frac{1}{2}=\sin \theta \cos \theta$
Squaring both sides we get
$\frac{1}{4}=\sin^{2} \theta \cos^{2} \theta$ …(2)
Now squaring both side of equation (1) we get
$\left ( \sin ^{2}\theta +\cos ^{2}\theta \right )^{2}= \left ( 2\sin \theta \cos \theta \right )^{2}$
$\left ( \sin ^{2}\theta \right )^{2}+\left ( \cos ^{2}\theta \right )^{2}+2\sin ^{2}\theta \cdot \cos ^{2}\theta = 4\sin ^{2}\theta \cos ^{2}\theta$
$\left [ \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right ]$
$\left ( \sin ^{4}\theta \right )+\left ( \cos ^{4}\theta \right )= 4\sin ^{2}\theta \cos ^{2}\theta -2\sin ^{2}\theta \cos ^{2}\theta$
$\sin ^{4}\theta +\cos ^{4}\theta = 2\sin ^{2}\theta \cos ^{2}\theta$
(Use equation (2))
$\sin ^{4}\theta +\cos ^{4}\theta = 2\left ( \frac{1}{4} \right )$
$\sin ^{4}\theta +\cos ^{4}\theta =\frac{1}{2}$
Hence, option (C) is correct.

Question 14

sin (45° + θ) – cos (45° – θ) is equal to
(A) 2cosθ (B) 0 (C) 2sinθ (D) 1

Answer:

Answer. [B]
Solution: Here
:$\sin \left ( 45^{\circ}+\theta \right )-\cos \left ( 45^{\circ}-\theta \right )$
Sin[90° - (45°- θ)] – cos(45°- θ)
$\left [ \because \left ( 45^{\circ} +\theta \right ) = \left ( 90^{\circ}-\left ( 45-\theta \right ) \right )\right ]$
Cos(45°- θ) – cos(45°- θ) [$\because$ sin (90 – θ) = cosθ]
= 0
Hence, option (B) is correct

Question 15

A pole 6 m high casts a shadow 2$\sqrt{3}$ m long on the ground, then the Sun’s elevation is
(A) 60° (B) 45° (C) 30° (D) 90°

Answer:

Answer. [A]
Solution: Given :
height pole = 6 m
Shadow of pole = $2\sqrt{3}m$
Now make figure according to given condition

Let angle of elevation is $\alpha$
$\therefore \tan \alpha = \frac{Perpendicular}{base}$
$\tan \alpha = \frac{6}{2\sqrt{3}}$
$\tan \alpha = \frac{3}{\sqrt{3}}= \sqrt{3}$
$\tan \alpha = \tan 60^{\circ}$ $\left [ \because \tan 60^{\circ}=\sqrt{3} \right ]$
a = 60°
Hence, the Sun's elevation is 60°.

Class 10 Maths Chapter 8 Exemplar Solutions
Exercise: 8.2
Page number: 93
Total questions: 12

Question 1

Write ‘True’ or ‘False’ and justify your answer in each of the following:
$\frac{\tan 47^{\circ}}{\cot 43^{\circ}}= 1$

Answer:

$\frac{\tan 47^{\circ}}{\cot 43^{\circ}}= 1$
Taking L.H.S.
$\frac{\tan 47^{\circ}}{\cot 43^{\circ}}$
$\frac{\tan \left ( 90^{\circ} -43^{\circ}\right )}{\cot 43^{\circ}}$ $\left ( \because 47= \left ( 90-43 \right ) \right )$
$\frac{\cot 43^{\circ}}{\cot 43^{\circ}}= 1$ $\left ( \because \tan \left ( 90-\theta \right )= \cot \theta \right )$
Hence, L.H.S. = R.H.S.
So, the given expression is true.

Question 2

The value of the expression (cos2 23° – sin2 67°) is positive.

Answer:

Answer. [False]
Solution: (cos2 23° – sin2 67°)
= $\left ( \cos ^{2}\left ( 90^{\circ}-67^{\circ} \right )-\sin ^{2}67^{\circ} \right )$ $\left ( \because 23^{\circ}= 90^{\circ}-67^{\circ} \right )$
= Sin267° - sin267° (cos(90-θ) = sin θ)
= 0
Hence, the value of the expression is neutral
So, the given statement is false.

Question 3

The value of the expression (sin 80° – cos80°) is negative.

Answer:

Answer. [False]
Solution: (sin 80° – cos 80°)
We know that from 0 to 90° sin$\theta$ and cos$\theta$ both are positive i.e.
$0< \sin \theta \leq 90^{\circ}$ (always positive)
$0< \cos \theta \leq 90^{\circ}$ (always positive)
At 45° both the values of sin$\theta$ and cos$\theta$ are the same but after 45° to 90° value of sin is greater than the value of cos$\theta$ Hence, sin 80° > cos 80°.
If we subtract a smaller term from bigger than the result is positive.
Hence, (sin 80° – cos80°) > 0
So, the given statement is false

Question 4

Prove that $\sqrt{\left ( 1-\cos ^{2}\theta \right )\sec ^{2}\theta }= \tan \theta$

Answer:
L.H.S
$\sqrt{\left ( 1-\cos ^{2}\theta \right )\sec ^{2}\theta } \cdots \left ( 1 \right )$
We know that
$1-\cos ^{2}\theta = \sin ^{2}\theta\text{ in (1)}$
$\sqrt{\sin ^{2}\theta \cdot \sec ^{2}\theta }$
$=\sqrt{\sin ^{2}\theta \times \frac{1}{\cos ^{2}\theta } }$ $\left ( \because \sec \theta = \frac{1}{\cos \theta } \right )$
$=\sqrt{\frac{\sin ^{2}\theta }{\cos ^{2}\theta }}$
$=\sqrt{\tan ^{2}\theta }= \tan \theta$ $\left ( \because \frac{\sin \theta }{\cos \theta }= \tan \theta \right )$
L.H.S. = R.H.S.
Hence, the given expression is true.

Question 5

If cosA + cos2A = 1, then sin2A + sin4A = 1.

Answer:

Given
cosA + cos2A = 1 …(1) cos A = 1 – cos2A
cosA = sin2A …(2) ($\because$ sin2$\theta$ = 1 – cos2$\theta$)
$\sin ^{2} A+\sin ^{4}A= 1$
L.H.S.
$\sin ^{2} A+\sin ^{4}A$
$\sin ^{2} A+ \left ( \sin ^{2}A \right )^{2}$
$\cos A+\left ( \cos A \right )^{2}$ (from (2))
cosA + cos2A
= 1 (R.H.S.) (from (1))
Hence, sin2A + sin4A = 1
So, the given statement is true.

Question 6

(tanθ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ.

Answer:

(tanθ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ
Taking L.H.S.
(tanθ + 2) (2 tan θ + 1)
tanθ.(2tan θ+1) + 2(2tan θ +1)
$2\tan ^{2}\theta +\tan \theta +4\tan \theta+2$
$2\tan ^{2}\theta +5\tan \theta+2$
$2\left ( \tan ^{2}\theta +1 \right )+5\tan \theta\: \cdots \left ( 1 \right )$
We know that
$\sec ^{2 }\theta-\tan ^{2}\theta= 1$
$\left ( 1+\tan ^{2}\theta= \sec ^{2}\theta \right )$
Put the above value in (1)we get
$2\sec ^{2}\theta +5\tan \theta \neq 5\tan \theta +\sec ^{2}\theta$
L.H.S. $\neq$ R.H.S.
Hence, the given expression is false.

Question 7

If the length of the shadow of a tower is increasing, then the angle of elevation of the sun is also increasing.

Answer:

Answer. [False]
Solution: Let us take 2 cases.
Case 1:

Case 2 :

$\theta _{1}$ is the angle when length is small and $\theta _{2}$ is the angle when shadow length is increased.
for finding $\theta _{1}$, $\theta _{2}$ find tan $\theta$
$\tan \theta_{1} = \frac{Perpendicular}{Base}= \frac{height\, of\, tower}{length\, of\, shadow}$
$\tan \theta_{2} = \frac{height\, of\, tower}{length\, of\, shadow}$
In both the case height of the tower is the same but in case 2 length of the shadow is increased and if the length of shadow increased value of $\theta _{2}$ decreased.
Hence, the given statement is false.

Question 8

If a man standing on a platform 3 metres above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection.

Answer:

Answer. [False]
Solution: According to question.

In the figure $\theta _{1}$ is the angle of elevation and $\theta _{2}$ is the angle of depression of the cloud.
For finding $\theta _{1}$find tanq in $\bigtriangleup$ECD
$\tan \theta _{1}= \frac{perpendicular}{Base}= \frac{DC}{EC}= \frac{H}{\iota }$
Find tan$\theta$ in $\bigtriangleup$ECB for $\theta _{2}$
$\tan \theta _{2}= \frac{BC}{EC}= \frac{3}{\iota }$
Here we found that $\theta _{1}$ and $\theta _{2}$ both are different.
Hence, the given statement is false.

Question 9

The value of 2sinθ can be a+1/a , where a is a positive number, and a ≠ 1.

Answer:

Answer. [False]
Solution: We know that
-1≤ sin θ ≤ 1
Multiply by 2.
-2≤ 2 sin θ ≤ 2
Here we found that value of 2 sin $\theta$ is lies from – 2 to 2.
But if we take a > 0 and a $\neq$ 1 then
$a+\frac{1}{a}> 2$
For example a = 3
3 + 1/3 = 3.33
Hence, $a+\frac{1}{a}$ is always greater than 2 in case of positive number except 1
But value of 2 sin $\theta$ is not greater than 2
Hence, the given statement is false

Question 10

$\cos \theta = \frac{a^{2}+b^{2}}{2ab}$ where a and b are two distinct numbers such that ab> 0.

Answer:

We know that
$-1\leq \cos \theta \leq 1$
We also know that
$\left ( a-b \right )^{2}= a^{2}+b^{2}-2ab$
$\text{Since }$ $\left ( a-b \right )^{2}$ $\text{is a square term Hence, it is always positive }$
$\left ( a-b \right )^{2}> 0$
a2 + b2 – 2ab > 0
$a^{2}+b^{2}> 2ab$
We observe that $a^{2}+b^{2}$ is always greater than 2ab.
Hence,
$\frac{a^{2}+b^{2}}{2ab}> 1$
Because if we divide a big term by small then the result is always greater than 1.
cos$\theta$ is always less than or equal to 1
Hence, the given statement is false.

Question 11

The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will also be doubled.

Answer:

Answer. [False]
Solution: According to question

Case: 1
Here BC is the tower.
Let the height of the tower is H and distance AB = a
In $\bigtriangleup$ABC
$\tan\theta=\frac{Perpendicular}{Base}$
$\tan 30^{\circ}= \frac{H}{a}$ $\left ( \because \theta = 30^{\circ} \right )$
$\frac{1}{\sqrt{3}}= \frac{H}{a}\; \cdots \left ( 1 \right )$ $\left ( \because \tan 30^{\circ} = \frac{1}{\sqrt{3}}\right )$
Case :2 When height is doubled

Here ED = a
In $\bigtriangleup DEF$
$\tan \theta = \frac{2H}{a}$
$\tan \theta = \frac{2}{3}$ (from (1))
But $\tan 60^{\circ}= \sqrt{3}$ (If the angle is double)
$\sqrt{3}\neq \frac{2}{\sqrt{3}}$
Hence, the given statement is false.

Question 12

If the height of a tower and the distance of the point of observation from its foot,both, are increased by 10%, then the angle of elevation of its top remains unchanged.

Answer:

Answer. [True]
Solution: According to question


In case-1. Height is H and observation distance is a.
In case-2, both height and observation distance is increased by 10%.
In case -1
$\tan \theta _{1}= \frac{H}{a}$ $\left ( \because \tan \theta = \frac{perpendicular}{Base} \right )$ .....(1)
In case -2
$\tan \theta _{2}= \frac{H+\frac{H}{10}}{a+\frac{a}{10}}$
$= \frac{\frac{11H}{10}}{\frac{11a}{10}}= \frac{11H}{10}\times \frac{10}{11a}= \frac{H}{a}$
$\tan \theta _{2}= \frac{H}{a} \cdots \left ( 2 \right )$
from equation (1) and (2) we observe that $\theta _{1}= \theta _{2}$
Hence, the given statement is true.

Class 10 Maths Chapter 8 Exemplar Solutions
Exercise: 8.3
Page number: 95
Total questions: 15

Question 1

Prove the following
:$\frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta}{\sin \theta}= 2\cos ec\theta$

Answer:

$\frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta}{\sin \theta}= 2\cos ec\theta$
Taking L.H.S.
$= \frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta}{\sin \theta}$
Taking LCM
$= \frac{\sin ^{2}\theta +\left ( 1+\cos \theta \right )^{2}}{\left ( 1+\cos \theta \right )\sin \theta }$
$= \frac{\sin ^{2}\theta +\cos ^{2}\theta +2\cos \theta }{\left ( 1+\cos \theta \right )\sin \theta }$ $\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
$= \frac{1+1+2\cos \theta }{\left ( 1+\cos \theta \right )\sin \theta }$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
$= \frac{2\left ( 1+\cos \theta \right )}{\left ( 1+\cos \theta \right )\sin \theta }$
$= \frac{2}{\sin \theta }$
$= 2 \cos ec\theta$ $\left ( \because \frac{1}{\sin \theta } = \cos ec \theta \right )$

L.H.S. = R.H.S.
Hence, proved.

Question 2

Prove the following :
$\frac{tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}= 2cosecA$

Answer:

Solution:
$\frac{tan A}{1+\sec A}-\frac{\tan A}{1-\sec A} = 2cosecA$
Taking L.H.S.
$= \frac{\tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}$
Taking L.C.M.
$=\frac{\tan A\left ( 1-\sec A \right )-\tan A\left ( 1+\sec A \right )}{\left ( 1+\sec A \right )\left ( 1-\sec A \right )}$
$=\frac{\tan A-\tan A\\sec A-\tan A-\tan A\sec A}{1-\sec ^{2}A}$ $\left ( \because \left ( a-b \right )\left ( a+b \right ) = a^{2}-b^{2}\right )$
$= \frac{-2\tan A\sec A}{-\tan ^{2}A}$ $\left ( \because \sec ^{2}A-\tan ^{2}A= 1 \right )$
$= \frac{2\sec A}{\tan A}$
$= \frac{2}{\cos A}\times \frac{\cos A}{\sin A}$ $\begin{pmatrix} \because \sec \theta = \frac{1}{\cos \theta } & \\ \because \tan \theta =\frac{\sin \theta }{\cos \theta } & \end{pmatrix}$
$= \frac{2}{\sin A}= 2\cos ec A$ $\left ( \because \frac{1}{\sin \theta }= \cos ec\theta \right )$
L.H.S. = R.H.S.
Hence, proved

Question 3

If tan A = 3/4 , then show that sinAcos A = 12/25 .

Answer:

Given:-
$\tan A= \frac{3}{4}$
To prove:-
$sin A\cos A= \frac{12}{25}...........(1)$
we know that
$\tan \theta = \frac{P}{B}$
$\frac{P}{B}= \frac{3}{4}$
P=3, B = 4
Using Pythagoras theorem
$H^{2}= B^{2}+P^{2}$
$H^{2}= \left ( 4^{2} \right )+\left ( 3^{2} \right )$
$H^{2}= 9+16$
$H^{2}= 25$
$H= \sqrt{25}= 5$
H = 5
we know that
$\sin \theta = \frac{P}{H},\cos \theta = \frac{B}{H}$
Hence,
$\sin A= \frac{3}{5},\cos A= \frac{4}{5}$
Put the value of sinA and cosA in equation (1)
$\frac{3}{5}\times \frac{4}{5}= \frac{12}{25}$
L.H.S. = R.H.S.
Hence, proved.

Question 4

Prove the following : (sin α + cos α) (tan α + cot α) = sec α + cosec α

Answer:

Solution:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
Taking L.H.S.
$\left ( \sin \alpha +\cos \alpha \right )\left ( \tan \alpha +\cot \alpha \right )$
$= \left ( \sin \alpha +\cos \alpha \right )\left ( \frac{\sin \alpha }{\cos \alpha } +\frac{\cos \alpha}{\sin \alpha } \right )\left ( \because \tan \theta = \frac{\sin \theta }{\cos \theta },\cot \theta = \frac{\cos \theta }{\sin \theta } \right )$
Taking L.C.M.
$= \frac{\left ( \sin \alpha +\cos \alpha \right )\left ( \sin ^{2}\alpha +\cos^{2} \alpha \right )}{\sin \alpha +\cos \alpha }$
$= \frac{\sin \alpha }{\sin \alpha \cos \alpha }+\frac{\cos \alpha }{\sin \alpha +\cos \alpha }$ $\left ( \because \sin^{2} \theta +\cos^{2} \theta = 1 \right )$
by separately divide
$= \frac{\sin \alpha }{\sin \alpha \cos \alpha }+\frac{\cos \alpha }{\sin \alpha +\cos \alpha }$
$= \frac{1}{\cos \alpha }+\frac{1}{\sin \alpha }$
$= \sec \alpha +\cos ec \, \alpha$ $\left ( \because \frac{1}{\cos \theta }= \sec \theta ,\frac{1}{\sin \theta }= \cos ec\theta \right )$
L.H.S. = R.H.S.
Hence, proved.

Question 5

Prove the following :
$\left ( \sqrt{3}+1 \right )\left ( 3-\cot 30^{\circ} \right )= \tan ^{3}60^{\circ}-2\sin 60^{\circ}$

Answer:

$\left ( \sqrt{3}+1 \right )\left ( 3-\cot 30^{\circ} \right )= \tan ^{3}60^{\circ}-2\sin 60^{\circ}$
Taking L.H.S
$\left ( \sqrt{3}+1 \right )\left ( 3-\cot 30^{\circ} \right )$
$= \sqrt{3}\left ( 3-\cot 30^{\circ} \right )+1\left ( 3-\cot 30^{\circ} \right )$
$=3 \sqrt{3}-\sqrt{3}\cot 30^{\circ}+3-\cot 30^{\circ}$
We know that
$\cot 30^{\circ}= \sqrt{3}$
$= 3\sqrt{3}-\sqrt{3}\left (\sqrt{3} \right )+3-\sqrt{3}$
$= 3\sqrt{3}-3+3-\sqrt{3}$
$= 3\sqrt{3}-\sqrt{3}$
$= 2\sqrt{3}$
R.H.S.
$\tan ^{3}60^{\circ}-2\sin 60^{\circ}$
We know that
$tan 60^o = \sqrt{3}$
$\tan ^{3}60^{\circ}-2\sin 60^{\circ}= \left ( \sqrt{3} \right )^{3}-2\left ( \frac{\sqrt{3}}{2} \right )$
$= 3\sqrt{3}-\sqrt{3}= 2\sqrt{3}$
Hence, proved

Question 6

Prove the following :
$1+\frac{\cot ^{2}\alpha }{1+\cos ec\alpha }= \cos ec\, \alpha$

Answer:

$1+\frac{\cot ^{2}\alpha }{1+\cos ec\alpha }= \cos ec\, \alpha$
Taking L.H.S.
$= 1+\frac{\cot ^{2}\alpha }{1+\cos ec\, \alpha }$

$= \frac{1+\cos ec\, \alpha +\cot ^{2}\alpha }{1+\cos ec\, \alpha }$
$= \frac{\cos ec^{2}\alpha-\cot ^{2}\alpha+ \cos ec\, \alpha+\cot ^{2}\alpha \, \, }{1+\cos ec\, \alpha }$ $\left ( \because \cos ec^{2}\theta -\cot ^{2}\theta = 1 \right )$
$= \frac{\cos ec^{2}\alpha +\cos ec\, \alpha }{1+\cos ec\, \alpha }$
$= \frac{\cos ec\, \alpha \left ( \cos ec\, \alpha+1 \right ) }{\left ( 1+\cos ec\, \alpha \right )}$
$= \cos ec\, \alpha$
L.H.S. = R.H.S.
Hence, proved.

Question 7

Prove the following: tan θ + tan (90° – θ) = sec θ sec (90° – θ)

Answer:

Solution:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)
Taking L.H.S.
= tan θ + tan (90° – θ)
= tanθ + cotθ ($\because$ tan (90 – θ) = cot θ)
$=\frac{\sin \theta }{\cos \theta }+\frac{\cos \theta }{\sin \theta }$ $\left ( \because \tan \theta = \frac{\sin \theta }{\cos \theta },\cot \theta = \frac{\cos \theta }{\sin \theta } \right )$
Taking L.C.M.
$\frac{\sin ^{2}\theta +\cos ^{2}\theta }{\sin \theta \cos \theta }$
$= \frac{1}{\cos \theta \cdot \sin \theta }$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
$= \frac{1}{\cos \theta }\times \frac{1}{\sin \theta }$
$= \sec \theta \times \cos ec\, \theta$ $\left ( \because \frac{1}{\cos \theta } = \sec \theta ,\frac{1}{\sin \theta }= \cos ec\, \theta \right )$
$= \sec \theta \times \sec \left ( 90^{\circ}-\theta \right )$ $\left ( \because \sec \left ( 90-\theta \right ) = \cos ec\, \theta \right )$
L.H.S. = R.H.S.
Hence, proved.

Question 8

Find the angle of elevation of the sun when the shadow of a pole h metres high is $\sqrt{3}$ h metres long.

Answer:

Answer. [30°]
Solution: According to question

Here BC is the height of the pole i.e. h meters and AB is the length of shadow i.e. $\sqrt{3}h$ .
For finding angle q we have to find tanq in $\bigtriangleup$ABC
$\tan \theta = \frac{Perpendicular}{Base}$
$= \tan \theta = \frac{h}{\sqrt{3}h}$
$\theta = 30^{\circ}$ $\left ( \because \tan 30^{\circ}= \frac{1}{\sqrt{3}} \right )$
Hence, angle of elevation is 30°.

Question 9

If $\sqrt{3}$ tan θ = 1, then find the value of sin2θ – cos2θ.

Answer:

Given :
$\sqrt{3}\tan\theta=1$
$\tan \theta = \frac{1}{\sqrt{3}}$
$\theta = 30^{\circ}$ $\left ( \because \tan30^{\circ}= \frac{1}{\sqrt{3}} \right )$
$\sin ^{2}\theta -\cos ^{2}\theta = \sin ^{2}30^{\circ}-\cos ^{2}30^{\circ}$
(Because θ = 300)
$= \left ( \frac{1}{2} \right )^{2}-\left ( \frac{\sqrt{3}}{2} \right )^{2}$ $\begin{bmatrix} \because \sin 30^{\circ}= \frac{1}{2} & \\ \cos 30^{\circ}= \frac{\sqrt{3}}{2}& \end{bmatrix}$
$= \frac{1}{4}-\frac{3}{4}$
Taking L.C.M.
$= \frac{1-3}{4}= \frac{-2}{4}$
$\sin ^{2}\theta -\cos ^{2}\theta = \frac{-1}{2}$

Question 10

A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

Answer:

Length of ladder = 15 m
The angle between wall and ladder = 60°
Let the height of wall = H

In $\bigtriangleup$ABC $\angle$C = 60°, $\angle$B = 90°
We know that
$\angle$A + $\angle$B + $\angle$C = 180° (Sum of interior angles of a triangle is 180)
$\angle$A + 90 + 60 = 180°
$\angle$A = 30°
In $\bigtriangleup$ABC
$\sin 30^{\circ} = \frac{H}{15}$
$H= \sin 30^{\circ} \times 15$
$H= \frac{1}{2} \times 15$ $\left ( \because \sin 30^{\circ} = \frac{1}{2}\right )$
$H= 7\cdot 5\, m$
Hence, the height of the wall is 7.5 m

Question 11

$\text{Simplify} (1+tan^2\theta)(1-sin\theta)(1+sin\theta)$

Answer:

$(1+tan^2\theta)(1-sin\theta)(1+sin\theta)$
$= \left ( \sec ^{2}\theta \right )\left ( \left ( 1 \right )^{2} -\left ( \sin \theta \right )^{2}\right )$ $\left ( \because \left ( a-b \right )\left ( a+b \right ) = a^{2}-b^{2}\right )$
$= \left ( \sec ^{2}\theta \right )\left ( 1-\sin ^{2}\theta \right )$
$= \left ( \sec ^{2}\theta \right )\left ( \cos ^{2}\theta \right )$ $\left ( \because \sin ^{2}\theta + \cos ^{2}\theta= 1 \right )$
$= \frac{1}{ \cos ^{2}\theta}\times \cos ^{2}\theta$ $\left ( \because \sec ^{2}\theta = \frac{1}{\cos \theta } \right )$
= 1

Question 12

If 2sin2θ – cos2θ = 2, then find the value of θ.

Answer:

2sin2θ – cos2θ = 2
$2\left ( 1-\cos ^{2}\theta \right )-\cos ^{2}\theta = 2$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta= 1 \right )$
$2-2\cos ^{2}\theta-\cos ^{2}\theta= 2$
$2-3\cos ^{2}\theta-2= 0$
$-3\cos ^{2}\theta= 0$
$\cos ^{2}\theta= 0$
$\cos \theta= 0$
$\theta= 90^{\circ}$ $\left ( \because \cos 90^{\circ}= 0 \right )$
Hence, value of $\theta$ is 90°

Question 13

Show that
$\frac{\cos ^{2}\left ( 45^{\circ}+\theta \right )+\cos ^{2}\left ( 45^{\circ}-\theta \right )}{\tan \left ( 60^{\circ} +\theta \right )\tan \left ( 30 ^{\circ}+\theta \right )}= 1$

Answer:

L.H.S
$= \frac{\cos ^{2}\left ( 90-\left ( 45-\theta ^{\circ} \right ) \right )+\cos ^{2}\left ( 45-\theta ^{\circ} \right ) }{\tan \left ( 60^{\circ}+\theta \right )\tan \left ( 30^{\circ}-\theta \right )}$ $\left ( \because \sin \left ( 90^{\circ}-\theta \right ) = \cos \theta \right )$
$= \frac{\sin ^{2}\left ( 45^{\circ}-\theta \right )+\cos ^{2}\left ( 45^{\circ} -\theta\right )}{\tan \left ( 90^{\circ}-\left (30^{\circ} -\theta \right ) \right )\tan \left ( 30^{\circ}-\theta \right )}$ $\left ( \because \tan \left ( 90-\theta \right )= \cot \theta \right )$
$= \frac{\sin ^{2}\left ( 45-\theta \right )+\cos ^{2}\left ( 45-\theta \right )}{\cot \left ( 30^{\circ}-\theta \right )\tan \left ( 30^{\circ}-\theta \right )}$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
$= \frac{1}{\frac{1}{\tan \left ( 30^{\circ}-\theta \right )}\times \tan \left ( 30-\theta \right )}$ $\left ( \because \cot \theta= \frac{1}{\tan \theta} \right )$
$= \frac{1}{1}=1$
L.H.S. = R.H.S.
Hence, proved.

Question 14

An observer 1.5 metres tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from the eye of the observer.

Answer:

Answer. [45°]
Solution: According to the question.

In $\bigtriangleup$EDC EC = 20.5 m
DC = 20.5 m
To find angle $\theta$ in $\bigtriangleup$EDC we need to find tan$\theta$.
$\tan \theta = \frac{P}{B}$
$\tan \theta = \frac{EC}{DC}$
$\tan \theta = \frac{20\cdot 5}{20\cdot 5}$
$\tan \theta = 1$
$\theta = 45^{\circ}$ $\left ( \because \tan 45^{\circ}= 1 \right )$
Hence, the angle of elevation is 45°.

Question 15

Show that tan4θ + tan2θ = sec4θ – sec2θ.

Answer:

Taking L.H.S.
tan4θ + tan2θ
(tan2θ) + tan2θ…(1)
We know that sec2θ – tan2θ = 1
Put

$\tan ^{2}\theta = \sec ^{2}\theta -1$ in (1)
$= \left ( \sec ^{2}\theta -1 \right )^{2}+\sec ^{2}\theta -1$
$= \left ( \sec ^{2}\theta \right )^{2}+\left ( 1 \right )^{2}-2\left ( \sec ^{2}\theta \right )\left ( 1 \right )+\sec ^{2}\theta -1$
$\left ( \because \left ( a-b \right )^{2} = a^{2}+b^{2}-2ab\right )$
$= \sec ^{4}\theta +1-2\sec ^{2}\theta +\sec ^{2}\theta -1$
$= \sec ^{4}\theta -\sec ^{2}\theta$
LHS = RHS
Hence, proved

Class 10 Maths Chapter 13 Exemplar Solutions
Exercise: 8.4
Page number: 99-100
Total questions: 18

Question 1

If cosecθ + cotθ = p, then prove that
$cos\theta=\frac{p^{2}-1}{p^{2}+1}$ .

Answer:

Given: cosecθ + cotθ = p …(1)

Taking right hand side.
$\frac{p^{2}-1}{p^{2}+1}$
Put value of p from equation (1) we get
$= \frac{\left ( \cos ec\, \theta +\cot \theta \right )^{2}-1}{\left ( \cos ec\, \theta +\cot \theta \right )^{2}+1}$
$= \frac{ \cos ec\,^{2} \theta +\cot^{2} \theta+2 \cos ec\, \theta \cot \theta-1}{ \cos ec\,^{2} \theta +\cot^{2} \theta+2 \cos ec\, \theta \cot \theta+1}$
$\left [ \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab \right ]$
$= \frac{\frac{1}{\sin ^{2}\theta }+\frac{\cos ^{2}\theta }{\sin ^{2}\theta}+\frac{2\cos \theta}{\sin ^{2}\theta}-1}{\frac{1}{\sin ^{2}\theta }+\frac{\cos ^{2}\theta }{\sin ^{2}\theta}+\frac{2\cos \theta}{\sin ^{2}\theta}+1}$
$\left [ \because \cos ec\, \theta = \frac{1}{\sin \theta } ,\cot \theta = \frac{\cos \theta }{\sin \theta }\right ]$
$= \frac{\frac{1+\cos ^{2}\theta +2\cos \theta -\sin ^{2}\theta }{\sin ^{2}\theta}}{\frac{1+\cos ^{2}\theta +2\cos \theta +\sin ^{2}\theta }{\sin ^{2}\theta}}$ [by taking LCM]
$= \frac{1+\cos ^{2}\theta +2\cos \theta -\sin ^{2}\theta }{1+\cos ^{2}\theta +2\cos \theta +\sin ^{2}\theta}$
$= \frac{1-\sin ^{2}\theta +\cos \theta +2\cos \theta }{1+\sin ^{2}\theta +\cos \theta +2\cos\theta}$
$= \frac{\cos ^{2}\theta +\cos ^{2}\theta+2\cos \theta }{1+1+2\cos \theta }$ $\begin{bmatrix} \because 1-\sin ^{2\theta }= \cos ^{2} \theta & \\ \sin ^{2 }+\cos ^{2}\theta = 1 & \end{bmatrix}$
$= \frac{2\cos ^{2}\theta +2\cos \theta }{2+2\cos \theta}$
$= \frac{2\cos \theta \left ( \cos \theta +1 \right )}{2 \left ( \cos \theta +1 \right )}$
$= \frac{2\cos \theta }{2}$
$= \cos \theta$
which is equal to the eft-hand side
Hence, proved.

Question 2

Prove that $\sqrt{\sec ^{2}\theta +\cos ec^{2}\theta }= \tan \theta +\cot \theta$

Answer:

Taking left-hand side
$\sqrt{\sec ^{2}\theta +\cos ec^{2}\theta }$
$= \sqrt{\frac{1}{\cos ^{2}\theta }+\frac{1}{\sin ^{2}\theta }}$ $\left [ \because \sec \theta = \frac{1}{\cos \theta } ,\cos ec= \frac{1}{\sin \theta }\right ]$
$= \sqrt{\frac{\sin ^{2}\theta +\cos ^{2}\theta }{\cos ^{2}\theta \cdot \sin ^{2}\theta }}$
$= \sqrt{\frac{1}{\cos ^{2}\theta\cdot \sin ^{2} \theta }}$ $\left [ \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right ]$
$\frac{1}{\cos \theta \sin \theta }=\frac{sin^2\theta+cos^2\theta}{cos \theta sin\theta}=\frac{sin^2\theta}{cos \theta sin\theta}+\frac{cos^2\theta}{cos \theta sin\theta}\\\\=\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}=tan\theta+cot\theta=RHS\\\text{Hence, proved}$

Question 3

The angle of elevation of the top of a tower from certain point is 30°. If the observer moves 20 metres towards the tower, the angle of elevation of the top increases by 15°. Find the height of the tower.

Answer:

Answer. [27.322 m]
Solution:

The angle of elevation of the top of a tower AB from certain point C is 30°
Let observer moves from C to D that is CD = 20m
Now angle of elevation increased by 15° that is 45° on point D
In $\bigtriangleup$ABD
$\tan 45^{\circ}= \frac{AB}{BD}$ $\left [ \because \tan \theta = \frac{Perpendicular}{Base} \right ]$
$1= \frac{AB}{BD}$
BD = AB …(1)
In $\bigtriangleup$ABC
$\tan 30^{\circ}= \frac{AB}{BC}$ $\left [ \because \tan \theta = \frac{Perpendicular}{Base} \right ]$
$\frac{1}{\sqrt{3}}= \frac{AB}{BD+DC}$ $\begin{bmatrix} \because \tan 30= \frac{1}{\sqrt{3}} & \\ BC= BD+DC & \end{bmatrix}$
$\frac{1}{\sqrt{3}}= \frac{AB}{BD+20}$ $\left ( \because DC= 20 \right )$
By cross multiplication we get
$BD+20= \sqrt{3}AB$
Now put the value of BD from equation (1) we have
$AB+20= \sqrt{3}AB$
$20= \sqrt{3}AB-AB$
$20= AB\left ( \sqrt{3}-1 \right )$
$AB= \frac{20}{\sqrt{3}-1}$
$AB= \frac{20}{1\cdot 732-1}= \frac{20}{0\cdot 732}$
AB = 27.322
Hence, the height of the tower is 27.322 m

Question 4

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or$\frac 12$

Answer:

Solution: Given : 1 + sin2θ = 3sinθ cosθ
To Prove - tanθ = 1 or $\frac 12$
Dividing both side by sinθ we get
$\frac{1+\sin ^{2}\theta }{\sin ^{2}\theta}= \frac{3\cos \theta }{\sin \theta }$
$\frac{1}{\sin ^{2}\theta}+\frac{\sin ^{2}\theta}{\sin ^{2}\theta}= 3\cot \theta$ $\left ( \because \frac{\cos \theta }{\sin \theta } = \cot \theta \right )$
$\cos ec^{2}\theta +1= 3\cot \theta$ $\left ( \because \frac{1}{\sin ^{2}\theta}= \cos ec^{2}\theta \right )$
$1+\cot ^{2}\theta +1= 3\cot \theta$ $\left ( \because \cos ec^{2}\theta = 1+\cot ^{2} \theta \right )$
$2+\cot ^{2} \theta+3\cot \theta= 0$
$\cot ^{2} \theta+3\cot \theta+2= 0$
$\cot ^{2} \theta-2\cot \theta-\cot \theta +2= 0$
$\cot \theta\left ( \cot \theta-2 \right )-1\left ( cot \theta-2\right )= 0$
$\left ( \cot \theta-2 \right )\left ( \cot \theta-1 \right )= 0$
$\cot \theta = 1,2$
We know that
$\tan \theta = \frac{1}{\cot \theta }$
$\therefore \tan \theta = 1,\frac{1}{2}$
Hence, proved.

Question 5

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

Answer:

Solution: Given:- sinθ + 2cosθ = 1
squaring both sides we have
$\left ( \sin \theta +2\cos \theta \right )^{2}= 1^{2}$
$\sin ^{2}\theta +4\cos ^{2}\theta +4\sin \theta \cos \theta = 1$
$\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
$\sin ^{2}\theta +4\cos ^{2}\theta = 1-4\sin \theta \cos \theta \cdots \left ( 1 \right )$

To prove :
$2\sin \theta -\cos \theta = 2$
Taking the left-hand side
$2\sin \theta -\cos \theta \cdots \left ( 2 \right )$
On squaring equation (2) we get
$\left (2 \sin \theta -\cos \theta \right )^{2}$
$= 4\sin ^{2}\theta +\cos ^{2}\theta -4\sin \theta \cos \theta$

$\left( \because (a - b)^{2} = a^{2} + b^{2} - 2ab \right)$

$= 3\sin ^{2}\theta +\sin ^{2}\theta+\cos ^{2}\theta -4\sin \theta \cos \theta$
$= 3\sin ^{2}\theta +1-4\sin \theta \cos \theta$ $\left [ \because \sin ^{2} \theta +\cos ^{2} \theta= 1\right ]$
$= 3\sin ^{2} \theta+\sin^{2} \theta+4\cos ^{2} \theta$ [use equation (1)]
$= 4\sin ^{2}\theta +4\cos ^{2}\theta$
$= 4\left ( \sin ^{2}\theta +\cos ^{2}\theta \right )$
= 4
$\left [ \because \sin ^{2} \theta +\cos ^{2} \theta= 1\right ]$
So here we get the value of (2sin$\theta$ – cos$\theta$)2 is 4
$\left ( 2\sin \theta -\cos \theta \right )^{2}= 4$
$2\sin \theta -\cos \theta = \sqrt{4}$
$2\sin \theta -\cos \theta = 2$
Hence, proved

Question 6

The angle of elevation of the top of a tower from two points distant s and t from its foot are complementary. Prove that the height of the tower is$\sqrt{st}$

Answer:

Solution: According to question

Let the height of tower = h
the distance of the first point from its foot = s
the distance of the second point from its foot = t
$\tan \theta = \frac{h}{s}\cdots \left ( 1 \right )$ $\left ( \because \tan \theta = \frac{Perpendicular}{Base} \right )$
$\tan \left ( 90-\theta \right )= \frac{h}{t}$
$\cot \theta = \frac{h}{t}\cdots \left ( 2 \right )$
Multiply equation (1) and (2) we get
$\tan \theta \times \cot \theta= \frac{h}{t}\times \frac{h}{s}$
$\tan \theta \frac{1}{ \tan \theta }= \frac{h^{2}}{st}$ $\left ( \because \cot \theta = \frac{1}{\tan \theta } \right )$
$1= \frac{h^{2}}{st}$
$st= h^{2}$
$h= \sqrt{st}$
Hence, proved.

Question 7

The shadow of a tower standing on a level plane is found to be 50 m longer when Sun’s elevation is 30° than when it is 60°. Find the height of the tower.

Answer:

Solution: According to question

Let the height of tower = h
$\tan 60^{\circ}= \frac{h}{BD}$ $\left [ \because \tan \theta = \frac{Perpendicular}{Base} \right ]$
$\sqrt{3}= \frac{h}{BD}$ $\left [ \because \tan 60^{\circ}= \sqrt{3} \right ]$
$BD= \frac{h}{\sqrt{3}}\cdots \left ( 1 \right )$
$\tan 30^{\circ}= \frac{h}{BC}= \frac{h}{BD+DC}$ $\left [ \because BC= BD+DC \right ]$
$\frac{1}{\sqrt{3}}= \frac{h}{BD+50}$
$BD+50= \sqrt{3h}$
[by cross multiplication]
$\frac{h}{\sqrt{3}}+50= \sqrt{3h}$
[from equation (1)]
$\frac{h}{\sqrt{3}}= \sqrt{3h}-50$
$h= 3h-50\sqrt{3}$
$h= \frac{50\sqrt{3}}{2}$
$h= 25\sqrt{3}m$

Question 8

A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h. At a point on the plane, the angles of elevation of the bottom and the top of the flagstaff are α and β, respectively. Prove that the height of the tower is
$\left ( \frac{h\tan \alpha }{\tan \beta -\tan \alpha } \right )$

Answer:

According to question

Here $h$ is the height of Flagstaff AD.
Let $l$ is the height of the tower
$\alpha$ and $\beta$ be the angle of elevation of the bottom and the top of the flagstaff.
In $\triangle B D C$

$
\tan \alpha=\frac{l}{B C}\left[\because \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}\right]
$


$
B C=\frac{l}{\tan \alpha} \cdots
$


In $\triangle \mathrm{ABC}$

$
\tan \beta=\frac{A B}{B C}
$


$
\tan \beta=\frac{h+l}{B C}
$


$
B C=\frac{h+l}{\tan \beta} \cdots
$

Equate equation (1) and (2) we get

$
\begin{aligned}
& \frac{l}{\tan \alpha}=\frac{h+l}{\tan \beta} \\
& l \tan \beta=h \tan \alpha+l \tan \alpha[\text { by cross multiplication] } \\
& l \tan \beta-l \tan \alpha=h \tan \alpha \\
& l(l \tan \beta-\tan \alpha)=h \tan \alpha \\
& l=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}
\end{aligned}
$

Hence, Proved

Question 9

If tanθ + secθ =$l$, then prove that
$sec\theta=\frac{l ^{2}+1}{2l }$

Answer:

Solution: Given : $\tan \theta+\sec \theta=1$
There fore

$
\begin{aligned}
& \frac{l^2+1}{2 l}=\frac{(\tan \theta+\sec \theta)^2+1}{2(\tan \theta+\sec \theta)} \\
& \frac{\tan ^2 \theta+\sec ^2 \theta+2 \tan \theta \sec \theta+1}{2(\tan \theta)+2 \sec \theta} \\
& \frac{\sec ^2 \theta+\sec ^2 \theta+2 \tan \theta \sec \theta}{2(\tan \theta+\sec \theta)} \quad\left[\because 1+\tan ^2 \theta=\sec ^2 \theta\right] \\
& \frac{2 \sec ^2 \theta+2 \tan \theta \sec \theta}{2(\tan \theta+2 \sec \theta)} \\
& \frac{2 \sec \theta(\sec \theta+\tan \theta)}{2(\tan \theta+\sec \theta)} \\
& =\sec \theta(\text { R.H.S) }
\end{aligned}
$

Hence, proved

Question 10

If sinθ + cosθ = p and secθ + cosecθ = q, then prove that q (p2 – 1) = 2p.

Answer:

Solution: Given :-sinθ + cosθ = p
and secθ + cosecθ = q
To prove :-q (p2 – 1) = 2p
Taking left hand side
q.(p2– 1) =
Put value of q and p we get
$\left ( \sec \theta +\cos ec\theta \right )\left [ \left ( \sin \theta +\cos \theta \right )^{2}-1 \right ]$
$\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
= $\left ( \frac{1}{\cos \theta +\frac{1}{\sin \theta }} \right )\left [ \left ( \sin^{2} \theta+\cos^{2} \theta+2 \sin \theta \cos \theta \right ) -1\right ]$
$\left ( \because \sec \theta = \frac{1}{\cos \theta } ,\cos ec\theta =\frac{1}{\sin \theta } \right )$
$= \frac{1}{\cos \theta }\left [ \sin ^{2}\theta +\cos ^{2}\theta +2\sin \theta \cos \theta -1 \right ]$
$+ \frac{1}{\sin \theta }\left [ \sin ^{2}\theta +\cos ^{2}\theta +2\sin \theta \cdot \cos \theta -1 \right ]$
$= \frac{\sin ^{2}}{\cos \theta }+\cos \theta+2\sin \theta -\frac{1}{\cos \theta}+\sin \theta+\frac{\cos^{2} \theta}{\sin \theta}+2\cos \theta-\frac{1}{\sin \theta}$
$= 3\cos \theta +3\sin \theta -\frac{1}{\cos \theta}+\frac{\left ( 1+\cos ^{2}\theta \right )}{\cos \theta }+\frac{\left ( 1+\sin ^{2}\theta \right )}{\sin \theta }-\frac{1}{\sin \theta }$
$\left ( \because \sin ^{2}\theta = 1-\cos ^{2}\theta \right )$
$\left ( \because \cos ^{2}\theta = 1-\sin ^{2}\theta \right )$
$= 3\cos \theta +3\sin \theta+\frac{1}{\cos \theta}\times \left ( -1+1-\cos^{2} \theta \right )+\frac{1}{\sin \theta }\times \left ( 1-\sin^{2} \theta-1 \right )$
$\left ( \because \sin^{2} \theta+\cos^{2} \theta= 1 \right )$
$= 3\cos \theta -\cos \theta +3\sin \theta -\sin \theta$
$= 2\cos \theta +2\sin \theta$
$= 2\left ( \cos \theta +\sin \theta \right )$
2p (R.H.S)
Hence, proved.

Question 11

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ =$\sqrt{a^{2}+b^{2}-c^{2}}$

Answer:

Solution: Given:- asinθ + b cosθ = c
squaring both side we get
$\left ( a\sin \theta +b\cos \theta \right )^{2}= c^{2}$
$a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta+2ab\sin \theta \cos \theta = c^{2}$
$\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
$\Rightarrow 2ab\sin \theta \cos \theta = c^{2}-a^{2}\sin ^{2}\theta -b^{2}\cos ^{2}\theta \cdots \left ( 1 \right )$
To prove : acosθ – b sinθ =$\sqrt{a^{2}+b^{2}-c^{2}}$
Taking left hand side : a cosθ – b sinθ and square it we get
$\left ( a\cos \theta -b \sin \theta \right )^{2}$
$= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta -2ab\cos \theta \sin \theta$
$\left [ \because \left ( a-b \right )^{2} = a^{2}+b^{2}-2ab\right ]$
$= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta -\left ( c^{2}-a^{2}\sin ^{2}\theta -b^{2}\cos ^{2}\theta \right )$ $\text{[Using (1)]}$
$= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta - c^{2}+a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta$
$= a^{2}\left ( \cos ^{2}\theta+\sin ^{2}\theta \right )+b^{2}\left ( \sin ^{2}\theta+ \cos ^{2}\right )-c^{2}$
$= a^{2}+b^{2} - c^{2}$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
Hence, $\left ( a\cos \theta -b\sin \theta \right )^{2}= a^{2}+b^{2}-c^{2}$
$\Rightarrow \left ( a\cos \theta -b\sin \theta \right )= \sqrt{a^{2}+b^{2}-c^{2}}$
Hence, proved.

Question 12

Prove that
$\frac{1+\sec \theta -\tan \theta }{1+\sec \theta +\tan \theta }= \frac{1-\sin \theta }{\cos \theta }$

Answer:

Solution To prove :- $\frac{1+\sec \theta -\tan \theta }{1+\sec \theta +\tan \theta }= \frac{1-\sin \theta }{\cos \theta }$

Taking left hand side
$\frac{1+\sec \theta -\tan \theta }{1+\sec \theta +\tan \theta }$
$=\frac{1+\frac{1}{\cos \theta }-\frac{\sin \theta }{\cos \theta }}{1+\frac{1}{\cos \theta }+\frac{\sin \theta }{\cos \theta }}$ $\begin{bmatrix} \because \because \sec \theta = \frac{1}{\cos \theta } & \\ \tan \theta = \frac{\sin \theta }{\cos \theta }& \end{bmatrix}$
$=\frac{\frac{\cos \theta+1-\sin \theta}{\cos \theta}}{\frac{\cos +1+\sin \theta}{\cos \theta}}$
$\frac{\cos \theta+1-\sin \theta}{\cos \theta+1+\sin \theta}$
Multiply nominator and denominator by (1 – sin $\theta$)
$=\frac{\left ( \cos \theta +1-\sin \theta \right )\left ( 1-\sin \theta \right )}{\left ( \cos \theta +1+\sin \theta \right )\left ( 1-\sin \theta \right )}$
$=\frac{\cos \theta-\cos \theta\sin \theta+1-\sin \theta-\sin \theta+\sin^{2} \theta}{\cos \theta-\sin \theta\cos \theta+1-\sin \theta+\sin \theta-\sin^{2} \theta}$
$=\frac{\cos ec\left ( 1-\sin \theta \right )+\left ( 1-\sin \theta \right )-\sin \left ( 1-\sin \theta \right )}{\cos \theta -\sin \theta \cos \theta+1-\sin ^{2} \theta}$
$=\frac{\left ( 1-\sin \theta \right )\left ( \cos \theta +1-\sin \theta \right )}{\cos \theta-\sin \theta\cos \theta+\cos^{2} \theta}$ $\left ( \because 1-\sin ^{2}\theta = \cos ^{2}\theta \right )$
$=\frac{\left ( 1-\sin \theta \right )\left ( \cos \theta +1-\sin \theta \right )}{\cos \theta\left ( \cos \theta+1-\sin \theta \right )}$
$= \frac{1-\sin \theta}{\cos \theta}$
Hence, proved

Question 13

The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is 60° and the angle of elevation of the top of the second tower from the foot of the first tower is 30°. Find the distance between the two towers and also the height of the other tower.

Answer:

Solution: According to the question

Here 30 m is the length of tower AB.
Let h is the height of tower DC
Let the distance between them is x
In $\bigtriangleup$ABC
$\tan 60^{\circ}= \frac{30}{x}$ $\left [ \tan \theta = \frac{Perpendicular}{Base} \right ]$
$\sqrt{3}= \frac{30}{x}$
$x= \frac{30}{\sqrt{3}}\cdots \left ( 1 \right )$
In $\bigtriangleup$BDC
$\tan 30^{\circ}= \frac{h}{x}$
$\frac{1}{\sqrt{3}}= \frac{h}{30}\times \sqrt{3}$ (using (1))
$\frac{30}{\sqrt{3}}=h\sqrt{3}$
$\frac{30}{\sqrt{3}\times\sqrt{3} }= h$
$\frac{30}{3}= h$
h = 10m
Hence, the height of the second tower is 10
Distance between them
$=\frac{30}{\sqrt{3}}m$ .

Question 14

From the top of a tower h m high, the angles of depression of two objects, which are in line with the foot of the tower are α and β (β > α). Find the distance between the two objects

Answer:

According to question


Let x and y are two objects and $\beta$ and $\alpha$ use the angles of depression of two objects.
In $\bigtriangleup$AOX
$\tan \beta = \frac{h}{Ox}$ $\because \tan \theta = \frac{Perpendicular}{Base}$
$Ox= \frac{h}{\tan \beta }$
$Ox= h\cot \beta \cdots \left ( 1 \right )$
In $\bigtriangleup$AOY
$\tan \alpha = \frac{h}{Oy}= \frac{h}{Ox+xy}\; \; \left ( \because Oy= Ox+xy \right )$
$Ox+xy= \frac{h}{\tan \alpha }$
$Ox+xy= h\cot \alpha$
$xy= h\cot \alpha- Ox$
$xy= h\cot \alpha- h\cot \beta$ (from equation (1))
$xy= h\left ( \cot \alpha- \cot \beta \right )$
Hence, the distance between two objects is
$h\left ( \cot \alpha- \cot \beta \right )$ .

Question 15

A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that$\frac{p}{q}= \frac{\cos \beta -\cos \alpha }{\sin \alpha-\sin \beta }$

Answer:

Solution: According to the Question -

Here a and b be the angles of indication when the ladder at rest and when it pulled away from the wall
In $\bigtriangleup$AOB
$\cos \alpha = \frac{OB}{AB}$ $cos \theta = \frac{Base}{Hypotenuse}$
$OB= AB\cos \alpha \cdots \left ( 1 \right )$
$\sin \alpha = \frac{AO}{AB}$ $\sin \theta = \frac{Perpendicular}{hypotenuse}$

$AO= AB\sin \alpha \cdots \left ( 2 \right )$
Similarly In $\bigtriangleup$DOC
$\cos \beta = \frac{OC}{DC}$
$OC= DC\cos \beta \cdots \left ( 3 \right )$
$\sin \beta = \frac{OD}{DC}$
$OD= DC\sin \beta \cdots \left ( 4 \right )$
Now subtract equation (1) from (3) we get
OC – OB = DC cos$\beta$ – AB cos$\alpha$
Here OC – OB = P
and DC = AB because length of ladder remains $\Rightarrow$ P = AB cos
$\beta$ – AB cos$\alpha$
P = AB (cos$\beta$ – cos$\alpha$) …(5)
Subtract equation (4) from (2) we get
AO – OD = AB sina – DC sin $\beta$
Here AO – OD = q
and AB = DC because length of ladder remains same
$\Rightarrow$ q = AB sin $\alpha$ – AB sin$\beta$
q = AB (sin $\alpha$ – sin $\beta$) …(6)
on dividing equation (5) and (6) we get
$\frac{p}{q}= \frac{AB\left ( \cos \beta -\cos \alpha \right )}{AB\left ( \sin \alpha -\sin \beta \right )}$
$\frac{p}{q}= \frac{\cos \beta -\cos \alpha}{\sin \alpha -\sin \beta}$
Hence, proved

Question 16

The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point, 10 m vertically above the first, its angle of elevation is 45°. Find the height of the tower.

Answer:

Solution: According to question

Let h is the height of the tower
In $\bigtriangleup$ABE
$\tan \theta = \frac{P}{B}$
$\tan 60^{\circ} = \frac{h}{AB}$ $\left ( \because \theta = 60^{\circ} \right )$
$\sqrt{3}= \frac{h}{AB}$ $\left ( \because \tan 60^{\circ}= \sqrt{3} \right )$
$AB= \frac{h}{\sqrt{3}}\: \cdots \left ( 1 \right )$
In $\bigtriangleup$EDC
$\tan \theta = \frac{P}{B}$
$\tan 45^{\circ} = \frac{h-10}{DC}$
$1= \frac{h-10}{AB}$ $\left ( \because AB-DC,\tan 45^{\circ}= 1 \right )$
$AB= h-10\: \cdots \left ( 2 \right )$
from equation (1) and (2)
$h-10= \frac{h}{\sqrt{3}}$
$\sqrt{3}h-\sqrt{3}10= h$
$\sqrt{3}h-h= \sqrt{3}\times 10$
$h\left ( \sqrt{3}-1 \right )= 10\sqrt{3}$
$h= \frac{10\sqrt{3}}{\sqrt{3}-1}$
Hence, the height of the tower
$h= \frac{10\sqrt{3}}{\sqrt{3}-1}m$

Question 17

A window of a house is h metres above the ground. From the window, the angles of elevation and depression of the top and the bottom of another house situated on the opposite side of the lane are found to be α and β, respectively. Prove that the height of the other house is h (1 + tan α cot β) metres.

Answer:

Solution: According to the question :


Let the height of the other house is X.
In $\bigtriangleup$DCF.
$\tan \alpha = \frac{P}{B}= \frac{EC}{DC}$
$\tan \alpha =\frac{x-h}{DC}$
$DC= \frac{x-h}{\tan \alpha }\cdots \left ( 1 \right )$
In $\bigtriangleup$DAB
$\tan \beta = \frac{P}{B}= \frac{DA}{AB}$
$\tan \beta = \frac{h}{AB}= \frac{h}{DC}$ $\left ( \because AB= DC \right )$
$\tan \beta = \frac{h}{DC}$
$DC= \frac{h}{\tan \beta }\cdots \left ( 2 \right )$
from equation (1) and (2)
$\frac{X-h}{\tan \alpha}= \frac{h}{\tan \beta}$
$X-h= \frac{\tan \alpha h}{\tan \beta }$
$X= \frac{\tan \alpha h+\tan \beta h}{\tan \beta}$
$X= \frac{h\left ( \tan \alpha +\tan \beta \right )}{\tan \beta}$
separately divide
$X= h\left ( \frac{\tan \alpha }{\tan \beta }+1 \right )$
$X= h\left ( 1+\tan \alpha \cot \beta \right )$ $\left ( \because \frac{1}{\tan \theta }= \cot \theta \right )$
$X= h\left ( 1+\tan \alpha \cot \beta \right )$
Hence, proved

Question 18

The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30°, respectively. Find the height of the balloon above the ground.

Answer:

Solution

Let y be the height of the balloon from the second window
In $\bigtriangleup$AOB
$\tan 30= \frac{y}{d} \; \; \left ( \because \tan \theta = \frac{Perpendicular}{Base} \right )$
$d= y\sqrt{3}\; \cdots \left ( 1 \right )$ $\left ( \because \tan 30= 1\sqrt{3} \right )$
In $\bigtriangleup$OCD
$\tan 60= \frac{4+y}{d}$
$\sqrt{3}d= 4+y$
$d= \frac{4+y}{\sqrt{3}}\cdots \left ( 2 \right )$
Equating equations (1) & (2), we get
$y\sqrt{3}= \frac{4+y}{\sqrt{3}}$
$y\sqrt{3}\times \sqrt{3}= 4+y$
$3y-y= 4$
$2y= 4$
$y= \frac{4}{2}$
y = 2
Height of balloon = 2 + 4 + y
= 2 + 4 + 2
= 8m

NCERT Exemplar Solutions Class 10 Maths Chapter 8 Important Topics

  • Trigonometric ratios
  • Trigonometric identities
  • Proof of some theorems based on these trigonometric identities.
  • Trigonometric ratios of complementary angles.
  • Class 10 Maths NCERT Exemplar chapter 8 Solutions discuss the values of trigonometric ratios for some angles as 30°, 45°, 60°, etc.

NCERT Solutions of class 10 - Subject Wise

Here are the subject-wise links for the NCERT Solutions of class 10:

NCERT Notes of class 10 - Subject Wise

Use these subject-wise NCERT notes to revise important concepts and prepare confidently for examinations.

NCERT Books and NCERT Syllabus

As students step into a new class, they must first explore the latest syllabus to identify the chapters included. Below are the links to the most recent syllabus and essential reference books.

NCERT Class 10 Exemplar Solutions - Subject Wise

Given below are the subject-wise Exemplar Solutions of class 10 NCERT:

Frequently Asked Questions (FAQs)

Q: If we know the value of sine A Then what is the value of cos (90 - A)?
A:

We know that sine is the ratio of perpendicular and hypotenuse. 

We know that cos is the ratio of base and hypotenuse.

Therefore, we can say that for complementary angles sine and cosine will give the same values.

Q: What is the maximum value of sine?
A:

We know that sine is the ratio of perpendicular and hypotenuse. Hypotenuses cannot have a smaller length on the perpendicular side; hence, the maximum possible value can be one.

Q: Is the chapter Introduction to Trigonometry & Its Equations important for Board examinations?
A:

The chapter Introduction to Trigonometry & Its Equations is quite important for Board exams as it carries around 8-10% weightage of the whole paper.

Q: How many types of questions from Introduction to Trigonometry & Its Equations appear in the board examination?
A:

Generally, MCQs, Very short, Short, and Long answers type of questions are asked in the board examinations and NCERT exemplar Class 10 Maths solutions chapter 8 are adequate to score well in this chapter.

Articles
|
Upcoming School Exams
Ongoing Dates
CGSOS 12th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
CGSOS 10th Application Date

1 Dec'25 - 15 Jan'26 (Online)

Ongoing Dates
Manipur Board HSLC Application Date

10 Dec'25 - 15 Jan'26 (Online)

Certifications By Top Providers
Economic Evaluation for Health Technology Assessment
Via Postgraduate Institute of Medical Education and Research Chandigarh
Aspen Plus Simulation Software a Basic Course for Beginners
Via Indian Institute of Technology Guwahati
Yoga Practices 1
Via Swami Vivekananda Yoga Anusandhana Samsthana, Bangalore
Introduction to Biomedical Imaging
Via The University of Queensland, Brisbane
Brand Management
Via Indian Institute of Management Bangalore
Edx
 1071 courses
Coursera
 816 courses
Udemy
 394 courses
Futurelearn
 264 courses
Explore Top Universities Across Globe

Questions related to CBSE Class 10th

On Question asked by student community

Have a question related to CBSE Class 10th ?

HELLO,

I am attaching the link through which you can download and access the Bangalore Sahodaya Class 10th CBSE question paper of Mathematics ( Basic )

Here is the link :- https://school.careers360.com/download/ebooks/bangalore-sahodaya-class-10-mathematics-basic-question-paper-2025-26

It will help you to practice basic level numerical questions, strengthen fundamentals and prepare confidently for the board

HELLO,

Below i am attaching the direct link of Careers360 through which you can download the Bangalore Sahodaya Class 10th Mathematics Basic Question paper 2025 2026

Here is the link :- https://school.careers360.com/download/ebooks/bangalore-sahodaya-class-10-mathematics-basic-question-paper-2025-26

Hope this will help you!

Hello

You will be able to download the CBSE Class 10th Maths Sample Paper 2025-26 using the link which is given below.

https://school.careers360.com/boards/cbse/cbse-10th-maths-sample-papers-2025-26

I hope this information helps you.

Thank you.

Hello,

Here you can access the last 5 years CBSE Class 10 Board Exam Question Papers from the mentioned link below:

https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers-class-10

Hope it helps.

You can check the Class 11 English half yearly question paper and answer key for 2025 26 on the Careers360 website. These papers help students practice, understand the exam pattern, and check their answers for better preparation.

You can visit this Careers360 link to access the English question paper and