Imagine building tall structures or measuring the distance between tall buildings. Isn’t that fascinating? The answer lies in the chapter on Trigonometry. Trigonometry and Its Equations - NCERT Exemplar Class 10 introduces students to important trigonometric ratios, which are essential for solving problems involving angles, heights, and distances. Students gain a foundation of concepts, such as the angle of elevation and depression, and learn how to calculate unknown values by applying these ratios to right-angled triangles.
This Story also Contains
Regular practice of exercises and following the CBSE Syllabus for Class 10 improves students' problem-solving skills and comprehension of the different kinds of exam questions. An in-depth understanding of the subject provides a solid foundation for advanced mathematics and practical applications in fields such as engineering, architecture, and navigation. For students preparing for both academic advancement and competitive exams, this chapter is crucial.
Also, read,
| Class 10 Maths Chapter 8 Exemplar Solutions Exercise: 8.1 Page number: 89-91 Total questions: 15 |
Question 1
If cos A =$\frac45$ , then the value of tan A is
1.$\frac{3}{5}$ (b) $\frac{3}{4}$ (c) $\frac{4}{3}$ (d) $\frac{5}{3}$
Answer:
Answer. [B]
Solution: It is given that cos A = $\frac45$
$\text{We know that cos}\theta=\frac{Base}{Hypotenuse}$
$\therefore$ value of base = 4
Hypotenuse = 5
Use Pythagoras' theorem in $\bigtriangleup$ABC
(Hypotenuse)2 = (Base)2 + (perpendicular)
$\left ( AC \right )^{2}= \left ( BC \right )^{2}+\left ( AB \right )^{2}$
$\left ( 5 \right )^{2}= \left ( 4 \right )^{2}+\left ( AB \right )^{2}$
$25-16= \left ( AB \right )^{2}$
$9= \left ( AB \right )^{2}$
$\sqrt{9}= AB$
$3= AB$
The value of perpendicular is 3
$\text{Also we know that tan}\theta=\frac{perpendicular}{base}$
$\therefore \tan \, A= \frac{3}{4}$
Hence, option (B) is correct.
Question 2
If sin A =$\frac 12$, then the value of cot A is
a) $\sqrt{3}$ (b) $\frac{1}{\sqrt{3}}$ (c) $\frac{\sqrt{3}}{2}$ (d) 1
Answer:
$\\sinA=\frac{1}{2}\text{ for angle }30^0\\cosA=\frac{\sqrt{3}}{2}\\cotA=\frac{cosA}{sinA}=\frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}}=\sqrt{3}$
Hence, option (a) is correct.
Question 3
The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is
(A) – 1 (B) 0 (C) 1 (D)$\frac{3}{2}$
Answer:
Answer. $\quad[B]$
Solution: Given expression is :
$
\begin{aligned}
& {\left[\operatorname{cosec}\left(75^{\circ}+\theta\right)-\sec \left(15^{\circ}-\theta\right)-\tan \left(55^{\circ}+\theta\right)+\cot \left(35^{\circ}-\theta\right)\right]} \\
& {\left[\operatorname{cosec}(90-(15-\theta))-\sec \left(15^{\circ}-\theta\right)-\tan (90-(35-\theta))+\cot \left(35^{\circ}-\theta\right)\right]} \\
& \{\because \text { we can write }(75+\theta)=(90-(15-\theta)) \text { and }(55+\theta)=(90-(35-\theta))\} \\
& \{\because \operatorname{cosec}(90-q)=\sec q \text { and tan }(90-q)=\cot q\} \\
& {[\sec (15-\theta)-\sec (15-\theta)-\cot (35-\theta)+\cot (35-\theta)]=0}
\end{aligned}
$
Hence, option (B) is correct
Question 4
Given that sinθ =a/b, then cosθ is equal to
(A) $\frac{b}{\sqrt{b^{2}-a^{2}}}$ (B) $\frac{b}{a}$ (C) $\frac{\sqrt{b^{2}-a^{2}}}{b}$ (D)$\frac{a}{\sqrt{b^{2}-a^{2}}}$
Answer:
Answer. [C]
Solution: It is given that sin$\theta$ = a/b
$cos\theta=\sqrt{1-sin^2\theta}=\sqrt{1-\frac{a^2}{b^2}}$
$\therefore \cos \theta = \frac{\sqrt{b^{2}-a^{2}}}{b}$
Hence, option (C) is correct.
Question 5
If cos (α + β) = 0, then sin (α – β) can be reduced to
(A) cos β (B) cos 2β (C) sin α (D) sin 2α
Answer:
$\\\text{Given that }\cos(\alpha+\beta)=0\\\Rightarrow (\alpha+\beta)=90^0...........(1)$
$\text{wehave to find }\sin(\alpha-\beta)$
$ \text{from(1) we can write }\alpha=90-\beta$
$ \therefore \ \sin(\alpha-\beta)=\sin(90-\beta-\beta)$
$=\sin(90-2\beta)=\cos2\beta $
$ \text{since sin(90-x)=cosx})$
Hence, option B is correct.
Question 6
The value of (tan1° tan2° tan3° ... tan89°) is
(A) 0 (B) 1 (C) 2 (D)$\frac 12$
Answer:
Answer. [B]
Solution: Given :-tan1° tan2° tan3° ... tan89°
tan1° tan2° tan3° ... tan89°tan87° tan 88° tan89° …(1)
We can also write equation (1) in the form of
[tan (90° – 89°). tan (90° – 88°). tan (90° – 87°) …… tan 87°. tan 88° tan 89°]
[$\because$ we can write tan 1° in the form of tan (900 – 890) similarly, we can write other values]
[cot 890. cot 880. cot 870 …. tan 870. tan 880. tan 890]
$\because$ [tan (902 – $\theta$) = cot$\theta$ ]
Also
$\left [ \frac{1}{\tan 89^{\circ}}\frac{1}{\tan 88^{\circ}} \frac{1}{\tan 87^{\circ}}\cdots \tan 87^{\circ}.\tan 88^{\circ}\tan 89^{\circ} \right ]$
$\because$ Throughout all terms are cancelled by each other, and the remaining will be tan45
Hence, the value is 1
$\because$ option B is correct.
Question 7
If cos 9α = sinα and 9α < 90° , then the value of tan5α is
(A) $\frac{1}{\sqrt{3}}$
(B) $\sqrt{3}$
(C) $1$
(D) $0$
Answer:
Answer. [C]
Solution: Given :- cos 9$\alpha$ = sin$\alpha$
cos9 $\alpha$ = cos(90 – $\alpha$)
$\because$ (cos (90 – $\alpha$) = sin$\alpha$)
9$\alpha$ = 90 – $\alpha$
9$\alpha$+ $\alpha$ = 90
10 $\alpha$= 90
$\alpha = \frac{90}{10}$
Now tan 5$\alpha$ is
Put $\alpha$ = 9 we get
tan 5$\times$ (9)
tan 45°
= 1
{$\because$ from the table of trigonometric ratios of angles we know that tan 45° = 1}
Hence, option C is correct.
Question 8
If ΔABC is right-angled at C, then the value of cos (A+B) is
$(A) 0 \ \ \ \ \ (B) 1 \ \ \ \ \ (C)$\frac 12$ \ \ \ \ \ (D)\frac{\sqrt{3}}{2}$
Answer:
Answer. [A]
Solution: It is given that $\angle$C = 90°
In $\bigtriangleup$ABC
$\angle$A +$\angle$B +$\angle$C = 180 [$\because$ sum of interior angles of triangle is 180°]
$\angle$A + $\angle$B + 90° = 180 [$\because$ C = 90° (given)]
$\angle$A + $\angle$B = 180° – 90°
$\angle$A + $\angle$B = 90° …(1)
cos($\angle$A +$\angle$B) = cos (90°)
cos(90°) = 0
[$\because$ from the table of trigonometric ratios of angles we know that cos 90° = 0]
Hence, option A is correct.
Question 9
If sinA + sin2A = 1, then the value of the expression (cos2A+ cos4A) is
(A) 1 (B)$\frac 12$ (C) 2 (D) 3
Answer:
Answer. [A]
Solution: It is given that sinA + sin2A = 1 …(*)
sinA = 1 – sin2AsinA = cos2A …(1) ( $\because$ 1 – sin2A = cos2A)
Squaring both sides we get
sin2 A = cos4A …(2)
Hence, cos2A + cos4A =
= sinA + sin2A {using (1) and (2)}
= sinA + sin2A = 1 (given)
Hence, option (A) is correct.
Question 10
Given that sinα =$\frac 12$ and cosβ =$\frac 12$ , then the value of (α + β) is
(A) 0° (B) 30° (C) 60° (D) 90°
Answer:
Answer. [D]
Solution:
$\\\sin \alpha=$\frac 12$\Rightarrow \alpha=30^0\\\cos \beta=$\frac 12$\Rightarrow \beta=60^0\\\therefore \alpha+\beta=90^0$
Hence, option (D) is correct.
Question 11
The value of the expression
$\left [ \frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}\sin 27^{\circ} \right ]\ is$
(A) 3 (B) 2 (C) 1 (D) 0
Answer:
Answer. [B]
Solution:
$\left [ \frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}\sin 27^{\circ} \right ]$
$\frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}\sin \left ( 90^{\circ}-63^{\circ} \right )$
$\left [ \because \sin \left ( 90^{\circ}-\theta \right )= \cos \theta \right ]$
$\frac{\sin ^{2}22^{\circ}+\sin ^{2}68^{\circ}}{\cos ^{2}22^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos 63^{\circ}\times \cos 63^{\circ}$
$= \frac{\sin ^{2}22^{\circ}+\sin ^{2}\left (90^{\circ}-22^{\circ} \right )}{\cos ^{2}\left ( 90^{\circ}-68^{\circ} \right )+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}$
$\begin{Bmatrix} \because 68^{\circ}= \left ( 90^{\circ}-22^{\circ} \right ) & \\ 22^{\circ}= \left ( 90^{\circ}-68^{\circ} \right )& \end{Bmatrix}$
$= \frac{\sin ^{2}22^{\circ}+\cos ^{2}22^{\circ}}{\sin ^{2}68^{\circ}+\cos ^{2}68^{\circ}}+\sin ^{2}63^{\circ}+\cos ^{2}63^{\circ}$
$\begin{Bmatrix} \because \sin \left ( 90^{\circ}-\theta \right ) = \cos \theta & \\ \cos \left ( 90^{\circ} -\theta \right )= \sin \theta & \end{Bmatrix}$
$= \frac{1}{1}+1\; \left [ \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right ]$
= 1+ 1 =2
Hence, option (B) is correct.
Question 12
If $4 \tan\theta= 3$ then $\left ( \frac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta } \right )$ is equal to
$(A)\frac{2}{3}$ $(B)\frac{1}{3}$ $(C)\frac{1}{2}$ $(D)\frac{3}{4}$
Answer:
Hence, option (C) is correct.
$\\\left ( \frac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta } \right )\text{ Divide numerator and denominator by and rewriting the given expression}\\\\\Rightarrow ( \frac{4\sin \theta -\cos \theta }{4\sin \theta +\cos \theta })=\frac{4\frac{\sin\theta}{cos\theta}-\frac{cos\theta}{cos\theta}}{4\frac{\sin\theta}{cos\theta}+\frac{cos\theta}{cos\theta}}\\\\=\frac{4\tan\theta-1}{4\tan\theta+1}=\frac{3-1}{3+1}=\frac{2}{4}=\frac{1}{2}\ (\text{Given }4\tan\theta=3)$
Question 13
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is
(A) 1 (B)3/4 (C) $\frac 12$ (D) 1/4
Answer:
$\sin\theta-\cos\theta=0$
squaring both sides we get
$(\sin\theta-\cos\theta)^2=0$
$\sin^2\theta+\cos^2\theta-2\sin\theta\cos\theta=0$
($\therefore$ (a – b)2 = a2 + b2 – 2ab)
$\sin^2\theta+\cos^2\theta=2\sin\theta\cos\theta.......(1)$
$1=2\sin\theta\cos\theta\because (\sin^2\theta+\cos^2\theta=1)$
$\frac{1}{2}=\sin \theta \cos \theta$
Squaring both sides we get
$\frac{1}{4}=\sin^{2} \theta \cos^{2} \theta$ …(2)
Now squaring both side of equation (1) we get
$\left ( \sin ^{2}\theta +\cos ^{2}\theta \right )^{2}= \left ( 2\sin \theta \cos \theta \right )^{2}$
$\left ( \sin ^{2}\theta \right )^{2}+\left ( \cos ^{2}\theta \right )^{2}+2\sin ^{2}\theta \cdot \cos ^{2}\theta = 4\sin ^{2}\theta \cos ^{2}\theta$
$\left [ \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right ]$
$\left ( \sin ^{4}\theta \right )+\left ( \cos ^{4}\theta \right )= 4\sin ^{2}\theta \cos ^{2}\theta -2\sin ^{2}\theta \cos ^{2}\theta$
$\sin ^{4}\theta +\cos ^{4}\theta = 2\sin ^{2}\theta \cos ^{2}\theta$
(Use equation (2))
$\sin ^{4}\theta +\cos ^{4}\theta = 2\left ( \frac{1}{4} \right )$
$\sin ^{4}\theta +\cos ^{4}\theta =\frac{1}{2}$
Hence, option (C) is correct.
Question 14
sin (45° + θ) – cos (45° – θ) is equal to
(A) 2cosθ (B) 0 (C) 2sinθ (D) 1
Answer:
Answer. [B]
Solution: Here
:$\sin \left ( 45^{\circ}+\theta \right )-\cos \left ( 45^{\circ}-\theta \right )$
Sin[90° - (45°- θ)] – cos(45°- θ)
$\left [ \because \left ( 45^{\circ} +\theta \right ) = \left ( 90^{\circ}-\left ( 45-\theta \right ) \right )\right ]$
Cos(45°- θ) – cos(45°- θ) [$\because$ sin (90 – θ) = cosθ]
= 0
Hence, option (B) is correct
Question 15
A pole 6 m high casts a shadow 2$\sqrt{3}$ m long on the ground, then the Sun’s elevation is
(A) 60° (B) 45° (C) 30° (D) 90°
Answer:
Answer. [A]
Solution: Given :
height pole = 6 m
Shadow of pole = $2\sqrt{3}m$
Now make figure according to given condition
Let angle of elevation is $\alpha$
$\therefore \tan \alpha = \frac{Perpendicular}{base}$
$\tan \alpha = \frac{6}{2\sqrt{3}}$
$\tan \alpha = \frac{3}{\sqrt{3}}= \sqrt{3}$
$\tan \alpha = \tan 60^{\circ}$ $\left [ \because \tan 60^{\circ}=\sqrt{3} \right ]$
a = 60°
Hence, the Sun's elevation is 60°.
| Class 10 Maths Chapter 8 Exemplar Solutions Exercise: 8.2 Page number: 93 Total questions: 12 |
Question 1
Answer:
$\frac{\tan 47^{\circ}}{\cot 43^{\circ}}= 1$
Taking L.H.S.
$\frac{\tan 47^{\circ}}{\cot 43^{\circ}}$
$\frac{\tan \left ( 90^{\circ} -43^{\circ}\right )}{\cot 43^{\circ}}$ $\left ( \because 47= \left ( 90-43 \right ) \right )$
$\frac{\cot 43^{\circ}}{\cot 43^{\circ}}= 1$ $\left ( \because \tan \left ( 90-\theta \right )= \cot \theta \right )$
Hence, L.H.S. = R.H.S.
So, the given expression is true.
Question 2
The value of the expression (cos2 23° – sin2 67°) is positive.
Answer:
Answer. [False]
Solution: (cos2 23° – sin2 67°)
= $\left ( \cos ^{2}\left ( 90^{\circ}-67^{\circ} \right )-\sin ^{2}67^{\circ} \right )$ $\left ( \because 23^{\circ}= 90^{\circ}-67^{\circ} \right )$
= Sin267° - sin267° (cos(90-θ) = sin θ)
= 0
Hence, the value of the expression is neutral
So, the given statement is false.
Question 3
The value of the expression (sin 80° – cos80°) is negative.
Answer:
Answer. [False]
Solution: (sin 80° – cos 80°)
We know that from 0 to 90° sin$\theta$ and cos$\theta$ both are positive i.e.
$0< \sin \theta \leq 90^{\circ}$ (always positive)
$0< \cos \theta \leq 90^{\circ}$ (always positive)
At 45° both the values of sin$\theta$ and cos$\theta$ are the same but after 45° to 90° value of sin is greater than the value of cos$\theta$ Hence, sin 80° > cos 80°.
If we subtract a smaller term from bigger than the result is positive.
Hence, (sin 80° – cos80°) > 0
So, the given statement is false
Question 4
Prove that $\sqrt{\left ( 1-\cos ^{2}\theta \right )\sec ^{2}\theta }= \tan \theta$
Answer:
L.H.S
$\sqrt{\left ( 1-\cos ^{2}\theta \right )\sec ^{2}\theta } \cdots \left ( 1 \right )$
We know that
$1-\cos ^{2}\theta = \sin ^{2}\theta\text{ in (1)}$
$\sqrt{\sin ^{2}\theta \cdot \sec ^{2}\theta }$
$=\sqrt{\sin ^{2}\theta \times \frac{1}{\cos ^{2}\theta } }$ $\left ( \because \sec \theta = \frac{1}{\cos \theta } \right )$
$=\sqrt{\frac{\sin ^{2}\theta }{\cos ^{2}\theta }}$
$=\sqrt{\tan ^{2}\theta }= \tan \theta$ $\left ( \because \frac{\sin \theta }{\cos \theta }= \tan \theta \right )$
L.H.S. = R.H.S.
Hence, the given expression is true.
Question 5
If cosA + cos2A = 1, then sin2A + sin4A = 1.
Answer:
Given
cosA + cos2A = 1 …(1) cos A = 1 – cos2A
cosA = sin2A …(2) ($\because$ sin2$\theta$ = 1 – cos2$\theta$)
$\sin ^{2} A+\sin ^{4}A= 1$
L.H.S.
$\sin ^{2} A+\sin ^{4}A$
$\sin ^{2} A+ \left ( \sin ^{2}A \right )^{2}$
$\cos A+\left ( \cos A \right )^{2}$ (from (2))
cosA + cos2A
= 1 (R.H.S.) (from (1))
Hence, sin2A + sin4A = 1
So, the given statement is true.
Question 6
(tanθ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ.
Answer:
(tanθ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ
Taking L.H.S.
(tanθ + 2) (2 tan θ + 1)
tanθ.(2tan θ+1) + 2(2tan θ +1)
$2\tan ^{2}\theta +\tan \theta +4\tan \theta+2$
$2\tan ^{2}\theta +5\tan \theta+2$
$2\left ( \tan ^{2}\theta +1 \right )+5\tan \theta\: \cdots \left ( 1 \right )$
We know that
$\sec ^{2 }\theta-\tan ^{2}\theta= 1$
$\left ( 1+\tan ^{2}\theta= \sec ^{2}\theta \right )$
Put the above value in (1)we get
$2\sec ^{2}\theta +5\tan \theta \neq 5\tan \theta +\sec ^{2}\theta$
L.H.S. $\neq$ R.H.S.
Hence, the given expression is false.
Question 7
Answer:
Answer. [False]
Solution: Let us take 2 cases.
Case 1:
Case 2 :
$\theta _{1}$ is the angle when length is small and $\theta _{2}$ is the angle when shadow length is increased.
for finding $\theta _{1}$, $\theta _{2}$ find tan $\theta$
$\tan \theta_{1} = \frac{Perpendicular}{Base}= \frac{height\, of\, tower}{length\, of\, shadow}$
$\tan \theta_{2} = \frac{height\, of\, tower}{length\, of\, shadow}$
In both the case height of the tower is the same but in case 2 length of the shadow is increased and if the length of shadow increased value of $\theta _{2}$ decreased.
Hence, the given statement is false.
Question 8
Answer:
Answer. [False]
Solution: According to question.
In the figure $\theta _{1}$ is the angle of elevation and $\theta _{2}$ is the angle of depression of the cloud.
For finding $\theta _{1}$find tanq in $\bigtriangleup$ECD
$\tan \theta _{1}= \frac{perpendicular}{Base}= \frac{DC}{EC}= \frac{H}{\iota }$
Find tan$\theta$ in $\bigtriangleup$ECB for $\theta _{2}$
$\tan \theta _{2}= \frac{BC}{EC}= \frac{3}{\iota }$
Here we found that $\theta _{1}$ and $\theta _{2}$ both are different.
Hence, the given statement is false.
Question 9
The value of 2sinθ can be a+1/a , where a is a positive number, and a ≠ 1.
Answer:
Answer. [False]
Solution: We know that
-1≤ sin θ ≤ 1
Multiply by 2.
-2≤ 2 sin θ ≤ 2
Here we found that value of 2 sin $\theta$ is lies from – 2 to 2.
But if we take a > 0 and a $\neq$ 1 then
$a+\frac{1}{a}> 2$
For example a = 3
3 + 1/3 = 3.33
Hence, $a+\frac{1}{a}$ is always greater than 2 in case of positive number except 1
But value of 2 sin $\theta$ is not greater than 2
Hence, the given statement is false
Question 10
$\cos \theta = \frac{a^{2}+b^{2}}{2ab}$ where a and b are two distinct numbers such that ab> 0.
Answer:
We know that
$-1\leq \cos \theta \leq 1$
We also know that
$\left ( a-b \right )^{2}= a^{2}+b^{2}-2ab$
$\text{Since }$ $\left ( a-b \right )^{2}$ $\text{is a square term Hence, it is always positive }$
$\left ( a-b \right )^{2}> 0$
a2 + b2 – 2ab > 0
$a^{2}+b^{2}> 2ab$
We observe that $a^{2}+b^{2}$ is always greater than 2ab.
Hence,
$\frac{a^{2}+b^{2}}{2ab}> 1$
Because if we divide a big term by small then the result is always greater than 1.
cos$\theta$ is always less than or equal to 1
Hence, the given statement is false.
Question 11
Answer:
Answer. [False]
Solution: According to question
Case: 1
Here BC is the tower.
Let the height of the tower is H and distance AB = a
In $\bigtriangleup$ABC
$\tan\theta=\frac{Perpendicular}{Base}$
$\tan 30^{\circ}= \frac{H}{a}$ $\left ( \because \theta = 30^{\circ} \right )$
$\frac{1}{\sqrt{3}}= \frac{H}{a}\; \cdots \left ( 1 \right )$ $\left ( \because \tan 30^{\circ} = \frac{1}{\sqrt{3}}\right )$
Case :2 When height is doubled
Here ED = a
In $\bigtriangleup DEF$
$\tan \theta = \frac{2H}{a}$
$\tan \theta = \frac{2}{3}$ (from (1))
But $\tan 60^{\circ}= \sqrt{3}$ (If the angle is double)
$\sqrt{3}\neq \frac{2}{\sqrt{3}}$
Hence, the given statement is false.
Question 12
Answer:
Answer. [True]
Solution: According to question
In case-1. Height is H and observation distance is a.
In case-2, both height and observation distance is increased by 10%.
In case -1
$\tan \theta _{1}= \frac{H}{a}$ $\left ( \because \tan \theta = \frac{perpendicular}{Base} \right )$ .....(1)
In case -2
$\tan \theta _{2}= \frac{H+\frac{H}{10}}{a+\frac{a}{10}}$
$= \frac{\frac{11H}{10}}{\frac{11a}{10}}= \frac{11H}{10}\times \frac{10}{11a}= \frac{H}{a}$
$\tan \theta _{2}= \frac{H}{a} \cdots \left ( 2 \right )$
from equation (1) and (2) we observe that $\theta _{1}= \theta _{2}$
Hence, the given statement is true.
| Class 10 Maths Chapter 8 Exemplar Solutions Exercise: 8.3 Page number: 95 Total questions: 15 |
Question 1
Answer:
$\frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta}{\sin \theta}= 2\cos ec\theta$
Taking L.H.S.
$= \frac{\sin \theta }{1+\cos \theta }+\frac{1+\cos \theta}{\sin \theta}$
Taking LCM
$= \frac{\sin ^{2}\theta +\left ( 1+\cos \theta \right )^{2}}{\left ( 1+\cos \theta \right )\sin \theta }$
$= \frac{\sin ^{2}\theta +\cos ^{2}\theta +2\cos \theta }{\left ( 1+\cos \theta \right )\sin \theta }$ $\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
$= \frac{1+1+2\cos \theta }{\left ( 1+\cos \theta \right )\sin \theta }$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
$= \frac{2\left ( 1+\cos \theta \right )}{\left ( 1+\cos \theta \right )\sin \theta }$
$= \frac{2}{\sin \theta }$
$= 2 \cos ec\theta$ $\left ( \because \frac{1}{\sin \theta } = \cos ec \theta \right )$
L.H.S. = R.H.S.
Hence, proved.
Question 2
Prove the following :
$\frac{tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}= 2cosecA$
Answer:
Solution:
$\frac{tan A}{1+\sec A}-\frac{\tan A}{1-\sec A} = 2cosecA$
Taking L.H.S.
$= \frac{\tan A}{1+\sec A}-\frac{\tan A}{1-\sec A}$
Taking L.C.M.
$=\frac{\tan A\left ( 1-\sec A \right )-\tan A\left ( 1+\sec A \right )}{\left ( 1+\sec A \right )\left ( 1-\sec A \right )}$
$=\frac{\tan A-\tan A\\sec A-\tan A-\tan A\sec A}{1-\sec ^{2}A}$ $\left ( \because \left ( a-b \right )\left ( a+b \right ) = a^{2}-b^{2}\right )$
$= \frac{-2\tan A\sec A}{-\tan ^{2}A}$ $\left ( \because \sec ^{2}A-\tan ^{2}A= 1 \right )$
$= \frac{2\sec A}{\tan A}$
$= \frac{2}{\cos A}\times \frac{\cos A}{\sin A}$ $\begin{pmatrix} \because \sec \theta = \frac{1}{\cos \theta } & \\ \because \tan \theta =\frac{\sin \theta }{\cos \theta } & \end{pmatrix}$
$= \frac{2}{\sin A}= 2\cos ec A$ $\left ( \because \frac{1}{\sin \theta }= \cos ec\theta \right )$
L.H.S. = R.H.S.
Hence, proved
Question 3
If tan A = 3/4 , then show that sinAcos A = 12/25 .
Answer:
Given:-
$\tan A= \frac{3}{4}$
To prove:-
$sin A\cos A= \frac{12}{25}...........(1)$
we know that
$\tan \theta = \frac{P}{B}$
$\frac{P}{B}= \frac{3}{4}$
P=3, B = 4
Using Pythagoras theorem
$H^{2}= B^{2}+P^{2}$
$H^{2}= \left ( 4^{2} \right )+\left ( 3^{2} \right )$
$H^{2}= 9+16$
$H^{2}= 25$
$H= \sqrt{25}= 5$
H = 5
we know that
$\sin \theta = \frac{P}{H},\cos \theta = \frac{B}{H}$
Hence,
$\sin A= \frac{3}{5},\cos A= \frac{4}{5}$
Put the value of sinA and cosA in equation (1)
$\frac{3}{5}\times \frac{4}{5}= \frac{12}{25}$
L.H.S. = R.H.S.
Hence, proved.
Question 4
Prove the following : (sin α + cos α) (tan α + cot α) = sec α + cosec α
Answer:
Solution:
(sin α + cos α) (tan α + cot α) = sec α + cosec α
Taking L.H.S.
$\left ( \sin \alpha +\cos \alpha \right )\left ( \tan \alpha +\cot \alpha \right )$
$= \left ( \sin \alpha +\cos \alpha \right )\left ( \frac{\sin \alpha }{\cos \alpha } +\frac{\cos \alpha}{\sin \alpha } \right )\left ( \because \tan \theta = \frac{\sin \theta }{\cos \theta },\cot \theta = \frac{\cos \theta }{\sin \theta } \right )$
Taking L.C.M.
$= \frac{\left ( \sin \alpha +\cos \alpha \right )\left ( \sin ^{2}\alpha +\cos^{2} \alpha \right )}{\sin \alpha +\cos \alpha }$
$= \frac{\sin \alpha }{\sin \alpha \cos \alpha }+\frac{\cos \alpha }{\sin \alpha +\cos \alpha }$ $\left ( \because \sin^{2} \theta +\cos^{2} \theta = 1 \right )$
by separately divide
$= \frac{\sin \alpha }{\sin \alpha \cos \alpha }+\frac{\cos \alpha }{\sin \alpha +\cos \alpha }$
$= \frac{1}{\cos \alpha }+\frac{1}{\sin \alpha }$
$= \sec \alpha +\cos ec \, \alpha$ $\left ( \because \frac{1}{\cos \theta }= \sec \theta ,\frac{1}{\sin \theta }= \cos ec\theta \right )$
L.H.S. = R.H.S.
Hence, proved.
Question 5
$\left ( \sqrt{3}+1 \right )\left ( 3-\cot 30^{\circ} \right )= \tan ^{3}60^{\circ}-2\sin 60^{\circ}$
Taking L.H.S
$\left ( \sqrt{3}+1 \right )\left ( 3-\cot 30^{\circ} \right )$
$= \sqrt{3}\left ( 3-\cot 30^{\circ} \right )+1\left ( 3-\cot 30^{\circ} \right )$
$=3 \sqrt{3}-\sqrt{3}\cot 30^{\circ}+3-\cot 30^{\circ}$
We know that
$\cot 30^{\circ}= \sqrt{3}$
$= 3\sqrt{3}-\sqrt{3}\left (\sqrt{3} \right )+3-\sqrt{3}$
$= 3\sqrt{3}-3+3-\sqrt{3}$
$= 3\sqrt{3}-\sqrt{3}$
$= 2\sqrt{3}$
R.H.S.
$\tan ^{3}60^{\circ}-2\sin 60^{\circ}$
We know that
$tan 60^o = \sqrt{3}$
$\tan ^{3}60^{\circ}-2\sin 60^{\circ}= \left ( \sqrt{3} \right )^{3}-2\left ( \frac{\sqrt{3}}{2} \right )$
$= 3\sqrt{3}-\sqrt{3}= 2\sqrt{3}$
Hence, proved
Question 6
Prove the following :
$1+\frac{\cot ^{2}\alpha }{1+\cos ec\alpha }= \cos ec\, \alpha$
Answer:
$1+\frac{\cot ^{2}\alpha }{1+\cos ec\alpha }= \cos ec\, \alpha$
Taking L.H.S.
$= 1+\frac{\cot ^{2}\alpha }{1+\cos ec\, \alpha }$
$= \frac{1+\cos ec\, \alpha +\cot ^{2}\alpha }{1+\cos ec\, \alpha }$
$= \frac{\cos ec^{2}\alpha-\cot ^{2}\alpha+ \cos ec\, \alpha+\cot ^{2}\alpha \, \, }{1+\cos ec\, \alpha }$ $\left ( \because \cos ec^{2}\theta -\cot ^{2}\theta = 1 \right )$
$= \frac{\cos ec^{2}\alpha +\cos ec\, \alpha }{1+\cos ec\, \alpha }$
$= \frac{\cos ec\, \alpha \left ( \cos ec\, \alpha+1 \right ) }{\left ( 1+\cos ec\, \alpha \right )}$
$= \cos ec\, \alpha$
L.H.S. = R.H.S.
Hence, proved.
Question 7
Prove the following: tan θ + tan (90° – θ) = sec θ sec (90° – θ)
Answer:
Solution:
tan θ + tan (90° – θ) = sec θ sec (90° – θ)
Taking L.H.S.
= tan θ + tan (90° – θ)
= tanθ + cotθ ($\because$ tan (90 – θ) = cot θ)
$=\frac{\sin \theta }{\cos \theta }+\frac{\cos \theta }{\sin \theta }$ $\left ( \because \tan \theta = \frac{\sin \theta }{\cos \theta },\cot \theta = \frac{\cos \theta }{\sin \theta } \right )$
Taking L.C.M.
$\frac{\sin ^{2}\theta +\cos ^{2}\theta }{\sin \theta \cos \theta }$
$= \frac{1}{\cos \theta \cdot \sin \theta }$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
$= \frac{1}{\cos \theta }\times \frac{1}{\sin \theta }$
$= \sec \theta \times \cos ec\, \theta$ $\left ( \because \frac{1}{\cos \theta } = \sec \theta ,\frac{1}{\sin \theta }= \cos ec\, \theta \right )$
$= \sec \theta \times \sec \left ( 90^{\circ}-\theta \right )$ $\left ( \because \sec \left ( 90-\theta \right ) = \cos ec\, \theta \right )$
L.H.S. = R.H.S.
Hence, proved.
Question 8
Answer:
Answer. [30°]
Solution: According to question
Here BC is the height of the pole i.e. h meters and AB is the length of shadow i.e. $\sqrt{3}h$ .
For finding angle q we have to find tanq in $\bigtriangleup$ABC
$\tan \theta = \frac{Perpendicular}{Base}$
$= \tan \theta = \frac{h}{\sqrt{3}h}$
$\theta = 30^{\circ}$ $\left ( \because \tan 30^{\circ}= \frac{1}{\sqrt{3}} \right )$
Hence, angle of elevation is 30°.
Question 9
If $\sqrt{3}$ tan θ = 1, then find the value of sin2θ – cos2θ.
Answer:
Given :
$\sqrt{3}\tan\theta=1$
$\tan \theta = \frac{1}{\sqrt{3}}$
$\theta = 30^{\circ}$ $\left ( \because \tan30^{\circ}= \frac{1}{\sqrt{3}} \right )$
$\sin ^{2}\theta -\cos ^{2}\theta = \sin ^{2}30^{\circ}-\cos ^{2}30^{\circ}$
(Because θ = 300)
$= \left ( \frac{1}{2} \right )^{2}-\left ( \frac{\sqrt{3}}{2} \right )^{2}$ $\begin{bmatrix} \because \sin 30^{\circ}= \frac{1}{2} & \\ \cos 30^{\circ}= \frac{\sqrt{3}}{2}& \end{bmatrix}$
$= \frac{1}{4}-\frac{3}{4}$
Taking L.C.M.
$= \frac{1-3}{4}= \frac{-2}{4}$
$\sin ^{2}\theta -\cos ^{2}\theta = \frac{-1}{2}$
Question 10
Answer:
Length of ladder = 15 m
The angle between wall and ladder = 60°
Let the height of wall = H
In $\bigtriangleup$ABC $\angle$C = 60°, $\angle$B = 90°
We know that
$\angle$A + $\angle$B + $\angle$C = 180° (Sum of interior angles of a triangle is 180)
$\angle$A + 90 + 60 = 180°
$\angle$A = 30°
In $\bigtriangleup$ABC
$\sin 30^{\circ} = \frac{H}{15}$
$H= \sin 30^{\circ} \times 15$
$H= \frac{1}{2} \times 15$ $\left ( \because \sin 30^{\circ} = \frac{1}{2}\right )$
$H= 7\cdot 5\, m$
Hence, the height of the wall is 7.5 m
Question 11
$\text{Simplify} (1+tan^2\theta)(1-sin\theta)(1+sin\theta)$
Answer:
$(1+tan^2\theta)(1-sin\theta)(1+sin\theta)$
$= \left ( \sec ^{2}\theta \right )\left ( \left ( 1 \right )^{2} -\left ( \sin \theta \right )^{2}\right )$ $\left ( \because \left ( a-b \right )\left ( a+b \right ) = a^{2}-b^{2}\right )$
$= \left ( \sec ^{2}\theta \right )\left ( 1-\sin ^{2}\theta \right )$
$= \left ( \sec ^{2}\theta \right )\left ( \cos ^{2}\theta \right )$ $\left ( \because \sin ^{2}\theta + \cos ^{2}\theta= 1 \right )$
$= \frac{1}{ \cos ^{2}\theta}\times \cos ^{2}\theta$ $\left ( \because \sec ^{2}\theta = \frac{1}{\cos \theta } \right )$
= 1
Question 12
If 2sin2θ – cos2θ = 2, then find the value of θ.
Answer:
2sin2θ – cos2θ = 2
$2\left ( 1-\cos ^{2}\theta \right )-\cos ^{2}\theta = 2$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta= 1 \right )$
$2-2\cos ^{2}\theta-\cos ^{2}\theta= 2$
$2-3\cos ^{2}\theta-2= 0$
$-3\cos ^{2}\theta= 0$
$\cos ^{2}\theta= 0$
$\cos \theta= 0$
$\theta= 90^{\circ}$ $\left ( \because \cos 90^{\circ}= 0 \right )$
Hence, value of $\theta$ is 90°
Question 13
Answer:
L.H.S
$= \frac{\cos ^{2}\left ( 90-\left ( 45-\theta ^{\circ} \right ) \right )+\cos ^{2}\left ( 45-\theta ^{\circ} \right ) }{\tan \left ( 60^{\circ}+\theta \right )\tan \left ( 30^{\circ}-\theta \right )}$ $\left ( \because \sin \left ( 90^{\circ}-\theta \right ) = \cos \theta \right )$
$= \frac{\sin ^{2}\left ( 45^{\circ}-\theta \right )+\cos ^{2}\left ( 45^{\circ} -\theta\right )}{\tan \left ( 90^{\circ}-\left (30^{\circ} -\theta \right ) \right )\tan \left ( 30^{\circ}-\theta \right )}$ $\left ( \because \tan \left ( 90-\theta \right )= \cot \theta \right )$
$= \frac{\sin ^{2}\left ( 45-\theta \right )+\cos ^{2}\left ( 45-\theta \right )}{\cot \left ( 30^{\circ}-\theta \right )\tan \left ( 30^{\circ}-\theta \right )}$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
$= \frac{1}{\frac{1}{\tan \left ( 30^{\circ}-\theta \right )}\times \tan \left ( 30-\theta \right )}$ $\left ( \because \cot \theta= \frac{1}{\tan \theta} \right )$
$= \frac{1}{1}=1$
L.H.S. = R.H.S.
Hence, proved.
Question 14
Answer:
Answer. [45°]
Solution: According to the question.
In $\bigtriangleup$EDC EC = 20.5 m
DC = 20.5 m
To find angle $\theta$ in $\bigtriangleup$EDC we need to find tan$\theta$.
$\tan \theta = \frac{P}{B}$
$\tan \theta = \frac{EC}{DC}$
$\tan \theta = \frac{20\cdot 5}{20\cdot 5}$
$\tan \theta = 1$
$\theta = 45^{\circ}$ $\left ( \because \tan 45^{\circ}= 1 \right )$
Hence, the angle of elevation is 45°.
Question 15
Show that tan4θ + tan2θ = sec4θ – sec2θ.
Answer:
Taking L.H.S.
tan4θ + tan2θ
(tan2θ) + tan2θ…(1)
We know that sec2θ – tan2θ = 1
Put
$\tan ^{2}\theta = \sec ^{2}\theta -1$ in (1)
$= \left ( \sec ^{2}\theta -1 \right )^{2}+\sec ^{2}\theta -1$
$= \left ( \sec ^{2}\theta \right )^{2}+\left ( 1 \right )^{2}-2\left ( \sec ^{2}\theta \right )\left ( 1 \right )+\sec ^{2}\theta -1$
$\left ( \because \left ( a-b \right )^{2} = a^{2}+b^{2}-2ab\right )$
$= \sec ^{4}\theta +1-2\sec ^{2}\theta +\sec ^{2}\theta -1$
$= \sec ^{4}\theta -\sec ^{2}\theta$
LHS = RHS
Hence, proved
| Class 10 Maths Chapter 13 Exemplar Solutions Exercise: 8.4 Page number: 99-100 Total questions: 18 |
Question 1
If cosecθ + cotθ = p, then prove that
$cos\theta=\frac{p^{2}-1}{p^{2}+1}$ .
Answer:
Given: cosecθ + cotθ = p …(1)
Taking right hand side.
$\frac{p^{2}-1}{p^{2}+1}$
Put value of p from equation (1) we get
$= \frac{\left ( \cos ec\, \theta +\cot \theta \right )^{2}-1}{\left ( \cos ec\, \theta +\cot \theta \right )^{2}+1}$
$= \frac{ \cos ec\,^{2} \theta +\cot^{2} \theta+2 \cos ec\, \theta \cot \theta-1}{ \cos ec\,^{2} \theta +\cot^{2} \theta+2 \cos ec\, \theta \cot \theta+1}$
$\left [ \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab \right ]$
$= \frac{\frac{1}{\sin ^{2}\theta }+\frac{\cos ^{2}\theta }{\sin ^{2}\theta}+\frac{2\cos \theta}{\sin ^{2}\theta}-1}{\frac{1}{\sin ^{2}\theta }+\frac{\cos ^{2}\theta }{\sin ^{2}\theta}+\frac{2\cos \theta}{\sin ^{2}\theta}+1}$
$\left [ \because \cos ec\, \theta = \frac{1}{\sin \theta } ,\cot \theta = \frac{\cos \theta }{\sin \theta }\right ]$
$= \frac{\frac{1+\cos ^{2}\theta +2\cos \theta -\sin ^{2}\theta }{\sin ^{2}\theta}}{\frac{1+\cos ^{2}\theta +2\cos \theta +\sin ^{2}\theta }{\sin ^{2}\theta}}$ [by taking LCM]
$= \frac{1+\cos ^{2}\theta +2\cos \theta -\sin ^{2}\theta }{1+\cos ^{2}\theta +2\cos \theta +\sin ^{2}\theta}$
$= \frac{1-\sin ^{2}\theta +\cos \theta +2\cos \theta }{1+\sin ^{2}\theta +\cos \theta +2\cos\theta}$
$= \frac{\cos ^{2}\theta +\cos ^{2}\theta+2\cos \theta }{1+1+2\cos \theta }$ $\begin{bmatrix} \because 1-\sin ^{2\theta }= \cos ^{2} \theta & \\ \sin ^{2 }+\cos ^{2}\theta = 1 & \end{bmatrix}$
$= \frac{2\cos ^{2}\theta +2\cos \theta }{2+2\cos \theta}$
$= \frac{2\cos \theta \left ( \cos \theta +1 \right )}{2 \left ( \cos \theta +1 \right )}$
$= \frac{2\cos \theta }{2}$
$= \cos \theta$
which is equal to the eft-hand side
Hence, proved.
Question 2
Prove that $\sqrt{\sec ^{2}\theta +\cos ec^{2}\theta }= \tan \theta +\cot \theta$
Answer:
Taking left-hand side
$\sqrt{\sec ^{2}\theta +\cos ec^{2}\theta }$
$= \sqrt{\frac{1}{\cos ^{2}\theta }+\frac{1}{\sin ^{2}\theta }}$ $\left [ \because \sec \theta = \frac{1}{\cos \theta } ,\cos ec= \frac{1}{\sin \theta }\right ]$
$= \sqrt{\frac{\sin ^{2}\theta +\cos ^{2}\theta }{\cos ^{2}\theta \cdot \sin ^{2}\theta }}$
$= \sqrt{\frac{1}{\cos ^{2}\theta\cdot \sin ^{2} \theta }}$ $\left [ \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right ]$
$\frac{1}{\cos \theta \sin \theta }=\frac{sin^2\theta+cos^2\theta}{cos \theta sin\theta}=\frac{sin^2\theta}{cos \theta sin\theta}+\frac{cos^2\theta}{cos \theta sin\theta}\\\\=\frac{sin\theta}{cos\theta}+\frac{cos\theta}{sin\theta}=tan\theta+cot\theta=RHS\\\text{Hence, proved}$
Question 3
Answer:
Answer. [27.322 m]
Solution:
The angle of elevation of the top of a tower AB from certain point C is 30°
Let observer moves from C to D that is CD = 20m
Now angle of elevation increased by 15° that is 45° on point D
In $\bigtriangleup$ABD
$\tan 45^{\circ}= \frac{AB}{BD}$ $\left [ \because \tan \theta = \frac{Perpendicular}{Base} \right ]$
$1= \frac{AB}{BD}$
BD = AB …(1)
In $\bigtriangleup$ABC
$\tan 30^{\circ}= \frac{AB}{BC}$ $\left [ \because \tan \theta = \frac{Perpendicular}{Base} \right ]$
$\frac{1}{\sqrt{3}}= \frac{AB}{BD+DC}$ $\begin{bmatrix} \because \tan 30= \frac{1}{\sqrt{3}} & \\ BC= BD+DC & \end{bmatrix}$
$\frac{1}{\sqrt{3}}= \frac{AB}{BD+20}$ $\left ( \because DC= 20 \right )$
By cross multiplication we get
$BD+20= \sqrt{3}AB$
Now put the value of BD from equation (1) we have
$AB+20= \sqrt{3}AB$
$20= \sqrt{3}AB-AB$
$20= AB\left ( \sqrt{3}-1 \right )$
$AB= \frac{20}{\sqrt{3}-1}$
$AB= \frac{20}{1\cdot 732-1}= \frac{20}{0\cdot 732}$
AB = 27.322
Hence, the height of the tower is 27.322 m
Question 4
If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or$\frac 12$
Answer:
Solution: Given : 1 + sin2θ = 3sinθ cosθ
To Prove - tanθ = 1 or $\frac 12$
Dividing both side by sinθ we get
$\frac{1+\sin ^{2}\theta }{\sin ^{2}\theta}= \frac{3\cos \theta }{\sin \theta }$
$\frac{1}{\sin ^{2}\theta}+\frac{\sin ^{2}\theta}{\sin ^{2}\theta}= 3\cot \theta$ $\left ( \because \frac{\cos \theta }{\sin \theta } = \cot \theta \right )$
$\cos ec^{2}\theta +1= 3\cot \theta$ $\left ( \because \frac{1}{\sin ^{2}\theta}= \cos ec^{2}\theta \right )$
$1+\cot ^{2}\theta +1= 3\cot \theta$ $\left ( \because \cos ec^{2}\theta = 1+\cot ^{2} \theta \right )$
$2+\cot ^{2} \theta+3\cot \theta= 0$
$\cot ^{2} \theta+3\cot \theta+2= 0$
$\cot ^{2} \theta-2\cot \theta-\cot \theta +2= 0$
$\cot \theta\left ( \cot \theta-2 \right )-1\left ( cot \theta-2\right )= 0$
$\left ( \cot \theta-2 \right )\left ( \cot \theta-1 \right )= 0$
$\cot \theta = 1,2$
We know that
$\tan \theta = \frac{1}{\cot \theta }$
$\therefore \tan \theta = 1,\frac{1}{2}$
Hence, proved.
Question 5
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Answer:
Solution: Given:- sinθ + 2cosθ = 1
squaring both sides we have
$\left ( \sin \theta +2\cos \theta \right )^{2}= 1^{2}$
$\sin ^{2}\theta +4\cos ^{2}\theta +4\sin \theta \cos \theta = 1$
$\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
$\sin ^{2}\theta +4\cos ^{2}\theta = 1-4\sin \theta \cos \theta \cdots \left ( 1 \right )$
To prove :
$2\sin \theta -\cos \theta = 2$
Taking the left-hand side
$2\sin \theta -\cos \theta \cdots \left ( 2 \right )$
On squaring equation (2) we get
$\left (2 \sin \theta -\cos \theta \right )^{2}$
$= 4\sin ^{2}\theta +\cos ^{2}\theta -4\sin \theta \cos \theta$
$\left( \because (a - b)^{2} = a^{2} + b^{2} - 2ab \right)$
$= 3\sin ^{2}\theta +\sin ^{2}\theta+\cos ^{2}\theta -4\sin \theta \cos \theta$
$= 3\sin ^{2}\theta +1-4\sin \theta \cos \theta$ $\left [ \because \sin ^{2} \theta +\cos ^{2} \theta= 1\right ]$
$= 3\sin ^{2} \theta+\sin^{2} \theta+4\cos ^{2} \theta$ [use equation (1)]
$= 4\sin ^{2}\theta +4\cos ^{2}\theta$
$= 4\left ( \sin ^{2}\theta +\cos ^{2}\theta \right )$
= 4
$\left [ \because \sin ^{2} \theta +\cos ^{2} \theta= 1\right ]$
So here we get the value of (2sin$\theta$ – cos$\theta$)2 is 4
$\left ( 2\sin \theta -\cos \theta \right )^{2}= 4$
$2\sin \theta -\cos \theta = \sqrt{4}$
$2\sin \theta -\cos \theta = 2$
Hence, proved
Question 6
Answer:
Solution: According to question
Let the height of tower = h
the distance of the first point from its foot = s
the distance of the second point from its foot = t
$\tan \theta = \frac{h}{s}\cdots \left ( 1 \right )$ $\left ( \because \tan \theta = \frac{Perpendicular}{Base} \right )$
$\tan \left ( 90-\theta \right )= \frac{h}{t}$
$\cot \theta = \frac{h}{t}\cdots \left ( 2 \right )$
Multiply equation (1) and (2) we get
$\tan \theta \times \cot \theta= \frac{h}{t}\times \frac{h}{s}$
$\tan \theta \frac{1}{ \tan \theta }= \frac{h^{2}}{st}$ $\left ( \because \cot \theta = \frac{1}{\tan \theta } \right )$
$1= \frac{h^{2}}{st}$
$st= h^{2}$
$h= \sqrt{st}$
Hence, proved.
Question 7
Answer:
Solution: According to question
Let the height of tower = h
$\tan 60^{\circ}= \frac{h}{BD}$ $\left [ \because \tan \theta = \frac{Perpendicular}{Base} \right ]$
$\sqrt{3}= \frac{h}{BD}$ $\left [ \because \tan 60^{\circ}= \sqrt{3} \right ]$
$BD= \frac{h}{\sqrt{3}}\cdots \left ( 1 \right )$
$\tan 30^{\circ}= \frac{h}{BC}= \frac{h}{BD+DC}$ $\left [ \because BC= BD+DC \right ]$
$\frac{1}{\sqrt{3}}= \frac{h}{BD+50}$
$BD+50= \sqrt{3h}$
[by cross multiplication]
$\frac{h}{\sqrt{3}}+50= \sqrt{3h}$
[from equation (1)]
$\frac{h}{\sqrt{3}}= \sqrt{3h}-50$
$h= 3h-50\sqrt{3}$
$h= \frac{50\sqrt{3}}{2}$
$h= 25\sqrt{3}m$
Question 8
Answer:
According to question
Here $h$ is the height of Flagstaff AD.
Let $l$ is the height of the tower
$\alpha$ and $\beta$ be the angle of elevation of the bottom and the top of the flagstaff.
In $\triangle B D C$
$
\tan \alpha=\frac{l}{B C}\left[\because \tan \theta=\frac{\text { Perpendicular }}{\text { Base }}\right]
$
$
B C=\frac{l}{\tan \alpha} \cdots
$
In $\triangle \mathrm{ABC}$
$
\tan \beta=\frac{A B}{B C}
$
$
\tan \beta=\frac{h+l}{B C}
$
$
B C=\frac{h+l}{\tan \beta} \cdots
$
Equate equation (1) and (2) we get
$
\begin{aligned}
& \frac{l}{\tan \alpha}=\frac{h+l}{\tan \beta} \\
& l \tan \beta=h \tan \alpha+l \tan \alpha[\text { by cross multiplication] } \\
& l \tan \beta-l \tan \alpha=h \tan \alpha \\
& l(l \tan \beta-\tan \alpha)=h \tan \alpha \\
& l=\frac{h \tan \alpha}{\tan \beta-\tan \alpha}
\end{aligned}
$
Hence, Proved
Question 9
If tanθ + secθ =$l$, then prove that
$sec\theta=\frac{l ^{2}+1}{2l }$
Answer:
Solution: Given : $\tan \theta+\sec \theta=1$
There fore
$
\begin{aligned}
& \frac{l^2+1}{2 l}=\frac{(\tan \theta+\sec \theta)^2+1}{2(\tan \theta+\sec \theta)} \\
& \frac{\tan ^2 \theta+\sec ^2 \theta+2 \tan \theta \sec \theta+1}{2(\tan \theta)+2 \sec \theta} \\
& \frac{\sec ^2 \theta+\sec ^2 \theta+2 \tan \theta \sec \theta}{2(\tan \theta+\sec \theta)} \quad\left[\because 1+\tan ^2 \theta=\sec ^2 \theta\right] \\
& \frac{2 \sec ^2 \theta+2 \tan \theta \sec \theta}{2(\tan \theta+2 \sec \theta)} \\
& \frac{2 \sec \theta(\sec \theta+\tan \theta)}{2(\tan \theta+\sec \theta)} \\
& =\sec \theta(\text { R.H.S) }
\end{aligned}
$
Hence, proved
Question 10
If sinθ + cosθ = p and secθ + cosecθ = q, then prove that q (p2 – 1) = 2p.
Answer:
Solution: Given :-sinθ + cosθ = p
and secθ + cosecθ = q
To prove :-q (p2 – 1) = 2p
Taking left hand side
q.(p2– 1) =
Put value of q and p we get
$\left ( \sec \theta +\cos ec\theta \right )\left [ \left ( \sin \theta +\cos \theta \right )^{2}-1 \right ]$
$\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
= $\left ( \frac{1}{\cos \theta +\frac{1}{\sin \theta }} \right )\left [ \left ( \sin^{2} \theta+\cos^{2} \theta+2 \sin \theta \cos \theta \right ) -1\right ]$
$\left ( \because \sec \theta = \frac{1}{\cos \theta } ,\cos ec\theta =\frac{1}{\sin \theta } \right )$
$= \frac{1}{\cos \theta }\left [ \sin ^{2}\theta +\cos ^{2}\theta +2\sin \theta \cos \theta -1 \right ]$
$+ \frac{1}{\sin \theta }\left [ \sin ^{2}\theta +\cos ^{2}\theta +2\sin \theta \cdot \cos \theta -1 \right ]$
$= \frac{\sin ^{2}}{\cos \theta }+\cos \theta+2\sin \theta -\frac{1}{\cos \theta}+\sin \theta+\frac{\cos^{2} \theta}{\sin \theta}+2\cos \theta-\frac{1}{\sin \theta}$
$= 3\cos \theta +3\sin \theta -\frac{1}{\cos \theta}+\frac{\left ( 1+\cos ^{2}\theta \right )}{\cos \theta }+\frac{\left ( 1+\sin ^{2}\theta \right )}{\sin \theta }-\frac{1}{\sin \theta }$
$\left ( \because \sin ^{2}\theta = 1-\cos ^{2}\theta \right )$
$\left ( \because \cos ^{2}\theta = 1-\sin ^{2}\theta \right )$
$= 3\cos \theta +3\sin \theta+\frac{1}{\cos \theta}\times \left ( -1+1-\cos^{2} \theta \right )+\frac{1}{\sin \theta }\times \left ( 1-\sin^{2} \theta-1 \right )$
$\left ( \because \sin^{2} \theta+\cos^{2} \theta= 1 \right )$
$= 3\cos \theta -\cos \theta +3\sin \theta -\sin \theta$
$= 2\cos \theta +2\sin \theta$
$= 2\left ( \cos \theta +\sin \theta \right )$
2p (R.H.S)
Hence, proved.
Question 11
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ =$\sqrt{a^{2}+b^{2}-c^{2}}$
Answer:
Solution: Given:- asinθ + b cosθ = c
squaring both side we get
$\left ( a\sin \theta +b\cos \theta \right )^{2}= c^{2}$
$a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta+2ab\sin \theta \cos \theta = c^{2}$
$\left ( \because \left ( a+b \right )^{2} = a^{2}+b^{2}+2ab\right )$
$\Rightarrow 2ab\sin \theta \cos \theta = c^{2}-a^{2}\sin ^{2}\theta -b^{2}\cos ^{2}\theta \cdots \left ( 1 \right )$
To prove : acosθ – b sinθ =$\sqrt{a^{2}+b^{2}-c^{2}}$
Taking left hand side : a cosθ – b sinθ and square it we get
$\left ( a\cos \theta -b \sin \theta \right )^{2}$
$= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta -2ab\cos \theta \sin \theta$
$\left [ \because \left ( a-b \right )^{2} = a^{2}+b^{2}-2ab\right ]$
$= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta -\left ( c^{2}-a^{2}\sin ^{2}\theta -b^{2}\cos ^{2}\theta \right )$ $\text{[Using (1)]}$
$= a^{2}\cos ^{2}\theta +b^{2}\sin ^{2}\theta - c^{2}+a^{2}\sin ^{2}\theta +b^{2}\cos ^{2}\theta$
$= a^{2}\left ( \cos ^{2}\theta+\sin ^{2}\theta \right )+b^{2}\left ( \sin ^{2}\theta+ \cos ^{2}\right )-c^{2}$
$= a^{2}+b^{2} - c^{2}$ $\left ( \because \sin ^{2}\theta +\cos ^{2}\theta = 1 \right )$
Hence, $\left ( a\cos \theta -b\sin \theta \right )^{2}= a^{2}+b^{2}-c^{2}$
$\Rightarrow \left ( a\cos \theta -b\sin \theta \right )= \sqrt{a^{2}+b^{2}-c^{2}}$
Hence, proved.
Question 12
Answer:
Solution To prove :- $\frac{1+\sec \theta -\tan \theta }{1+\sec \theta +\tan \theta }= \frac{1-\sin \theta }{\cos \theta }$
Taking left hand side
$\frac{1+\sec \theta -\tan \theta }{1+\sec \theta +\tan \theta }$
$=\frac{1+\frac{1}{\cos \theta }-\frac{\sin \theta }{\cos \theta }}{1+\frac{1}{\cos \theta }+\frac{\sin \theta }{\cos \theta }}$ $\begin{bmatrix} \because \because \sec \theta = \frac{1}{\cos \theta } & \\ \tan \theta = \frac{\sin \theta }{\cos \theta }& \end{bmatrix}$
$=\frac{\frac{\cos \theta+1-\sin \theta}{\cos \theta}}{\frac{\cos +1+\sin \theta}{\cos \theta}}$
$\frac{\cos \theta+1-\sin \theta}{\cos \theta+1+\sin \theta}$
Multiply nominator and denominator by (1 – sin $\theta$)
$=\frac{\left ( \cos \theta +1-\sin \theta \right )\left ( 1-\sin \theta \right )}{\left ( \cos \theta +1+\sin \theta \right )\left ( 1-\sin \theta \right )}$
$=\frac{\cos \theta-\cos \theta\sin \theta+1-\sin \theta-\sin \theta+\sin^{2} \theta}{\cos \theta-\sin \theta\cos \theta+1-\sin \theta+\sin \theta-\sin^{2} \theta}$
$=\frac{\cos ec\left ( 1-\sin \theta \right )+\left ( 1-\sin \theta \right )-\sin \left ( 1-\sin \theta \right )}{\cos \theta -\sin \theta \cos \theta+1-\sin ^{2} \theta}$
$=\frac{\left ( 1-\sin \theta \right )\left ( \cos \theta +1-\sin \theta \right )}{\cos \theta-\sin \theta\cos \theta+\cos^{2} \theta}$ $\left ( \because 1-\sin ^{2}\theta = \cos ^{2}\theta \right )$
$=\frac{\left ( 1-\sin \theta \right )\left ( \cos \theta +1-\sin \theta \right )}{\cos \theta\left ( \cos \theta+1-\sin \theta \right )}$
$= \frac{1-\sin \theta}{\cos \theta}$
Hence, proved
Question 13
Answer:
Solution: According to the question
Here 30 m is the length of tower AB.
Let h is the height of tower DC
Let the distance between them is x
In $\bigtriangleup$ABC
$\tan 60^{\circ}= \frac{30}{x}$ $\left [ \tan \theta = \frac{Perpendicular}{Base} \right ]$
$\sqrt{3}= \frac{30}{x}$
$x= \frac{30}{\sqrt{3}}\cdots \left ( 1 \right )$
In $\bigtriangleup$BDC
$\tan 30^{\circ}= \frac{h}{x}$
$\frac{1}{\sqrt{3}}= \frac{h}{30}\times \sqrt{3}$ (using (1))
$\frac{30}{\sqrt{3}}=h\sqrt{3}$
$\frac{30}{\sqrt{3}\times\sqrt{3} }= h$
$\frac{30}{3}= h$
h = 10m
Hence, the height of the second tower is 10
Distance between them
$=\frac{30}{\sqrt{3}}m$ .
Question 14
Answer:
According to question
Let x and y are two objects and $\beta$ and $\alpha$ use the angles of depression of two objects.
In $\bigtriangleup$AOX
$\tan \beta = \frac{h}{Ox}$ $\because \tan \theta = \frac{Perpendicular}{Base}$
$Ox= \frac{h}{\tan \beta }$
$Ox= h\cot \beta \cdots \left ( 1 \right )$
In $\bigtriangleup$AOY
$\tan \alpha = \frac{h}{Oy}= \frac{h}{Ox+xy}\; \; \left ( \because Oy= Ox+xy \right )$
$Ox+xy= \frac{h}{\tan \alpha }$
$Ox+xy= h\cot \alpha$
$xy= h\cot \alpha- Ox$
$xy= h\cot \alpha- h\cot \beta$ (from equation (1))
$xy= h\left ( \cot \alpha- \cot \beta \right )$
Hence, the distance between two objects is
$h\left ( \cot \alpha- \cot \beta \right )$ .
Question 15
Answer:
Solution: According to the Question -
Here a and b be the angles of indication when the ladder at rest and when it pulled away from the wall
In $\bigtriangleup$AOB
$\cos \alpha = \frac{OB}{AB}$ $cos \theta = \frac{Base}{Hypotenuse}$
$OB= AB\cos \alpha \cdots \left ( 1 \right )$
$\sin \alpha = \frac{AO}{AB}$ $\sin \theta = \frac{Perpendicular}{hypotenuse}$
$AO= AB\sin \alpha \cdots \left ( 2 \right )$
Similarly In $\bigtriangleup$DOC
$\cos \beta = \frac{OC}{DC}$
$OC= DC\cos \beta \cdots \left ( 3 \right )$
$\sin \beta = \frac{OD}{DC}$
$OD= DC\sin \beta \cdots \left ( 4 \right )$
Now subtract equation (1) from (3) we get
OC – OB = DC cos$\beta$ – AB cos$\alpha$
Here OC – OB = P
and DC = AB because length of ladder remains $\Rightarrow$ P = AB cos
$\beta$ – AB cos$\alpha$
P = AB (cos$\beta$ – cos$\alpha$) …(5)
Subtract equation (4) from (2) we get
AO – OD = AB sina – DC sin $\beta$
Here AO – OD = q
and AB = DC because length of ladder remains same
$\Rightarrow$ q = AB sin $\alpha$ – AB sin$\beta$
q = AB (sin $\alpha$ – sin $\beta$) …(6)
on dividing equation (5) and (6) we get
$\frac{p}{q}= \frac{AB\left ( \cos \beta -\cos \alpha \right )}{AB\left ( \sin \alpha -\sin \beta \right )}$
$\frac{p}{q}= \frac{\cos \beta -\cos \alpha}{\sin \alpha -\sin \beta}$
Hence, proved
Question 16
Answer:
Solution: According to question
Let h is the height of the tower
In $\bigtriangleup$ABE
$\tan \theta = \frac{P}{B}$
$\tan 60^{\circ} = \frac{h}{AB}$ $\left ( \because \theta = 60^{\circ} \right )$
$\sqrt{3}= \frac{h}{AB}$ $\left ( \because \tan 60^{\circ}= \sqrt{3} \right )$
$AB= \frac{h}{\sqrt{3}}\: \cdots \left ( 1 \right )$
In $\bigtriangleup$EDC
$\tan \theta = \frac{P}{B}$
$\tan 45^{\circ} = \frac{h-10}{DC}$
$1= \frac{h-10}{AB}$ $\left ( \because AB-DC,\tan 45^{\circ}= 1 \right )$
$AB= h-10\: \cdots \left ( 2 \right )$
from equation (1) and (2)
$h-10= \frac{h}{\sqrt{3}}$
$\sqrt{3}h-\sqrt{3}10= h$
$\sqrt{3}h-h= \sqrt{3}\times 10$
$h\left ( \sqrt{3}-1 \right )= 10\sqrt{3}$
$h= \frac{10\sqrt{3}}{\sqrt{3}-1}$
Hence, the height of the tower
$h= \frac{10\sqrt{3}}{\sqrt{3}-1}m$
Question 17
Answer:
Solution: According to the question :
Let the height of the other house is X.
In $\bigtriangleup$DCF.
$\tan \alpha = \frac{P}{B}= \frac{EC}{DC}$
$\tan \alpha =\frac{x-h}{DC}$
$DC= \frac{x-h}{\tan \alpha }\cdots \left ( 1 \right )$
In $\bigtriangleup$DAB
$\tan \beta = \frac{P}{B}= \frac{DA}{AB}$
$\tan \beta = \frac{h}{AB}= \frac{h}{DC}$ $\left ( \because AB= DC \right )$
$\tan \beta = \frac{h}{DC}$
$DC= \frac{h}{\tan \beta }\cdots \left ( 2 \right )$
from equation (1) and (2)
$\frac{X-h}{\tan \alpha}= \frac{h}{\tan \beta}$
$X-h= \frac{\tan \alpha h}{\tan \beta }$
$X= \frac{\tan \alpha h+\tan \beta h}{\tan \beta}$
$X= \frac{h\left ( \tan \alpha +\tan \beta \right )}{\tan \beta}$
separately divide
$X= h\left ( \frac{\tan \alpha }{\tan \beta }+1 \right )$
$X= h\left ( 1+\tan \alpha \cot \beta \right )$ $\left ( \because \frac{1}{\tan \theta }= \cot \theta \right )$
$X= h\left ( 1+\tan \alpha \cot \beta \right )$
Hence, proved
Question 18
Answer:
Solution
Let y be the height of the balloon from the second window
In $\bigtriangleup$AOB
$\tan 30= \frac{y}{d} \; \; \left ( \because \tan \theta = \frac{Perpendicular}{Base} \right )$
$d= y\sqrt{3}\; \cdots \left ( 1 \right )$ $\left ( \because \tan 30= 1\sqrt{3} \right )$
In $\bigtriangleup$OCD
$\tan 60= \frac{4+y}{d}$
$\sqrt{3}d= 4+y$
$d= \frac{4+y}{\sqrt{3}}\cdots \left ( 2 \right )$
Equating equations (1) & (2), we get
$y\sqrt{3}= \frac{4+y}{\sqrt{3}}$
$y\sqrt{3}\times \sqrt{3}= 4+y$
$3y-y= 4$
$2y= 4$
$y= \frac{4}{2}$
y = 2
Height of balloon = 2 + 4 + y
= 2 + 4 + 2
= 8m
Careers360 has collected all NCERT Class 10 Maths Exemplar Solutions in one place for students. Just use the links below to check them.
Careers360 has put all NCERT Class 10 Maths Solutions in one place to help students. Use the links below to open them.
Here are the subject-wise links for the NCERT Solutions of class 10:
Use these subject-wise NCERT notes to revise important concepts and prepare confidently for examinations.
As students step into a new class, they must first explore the latest syllabus to identify the chapters included. Below are the links to the most recent syllabus and essential reference books.
Given below are the subject-wise Exemplar Solutions of class 10 NCERT:
Frequently Asked Questions (FAQs)
We know that sine is the ratio of perpendicular and hypotenuse.
We know that cos is the ratio of base and hypotenuse.
Therefore, we can say that for complementary angles sine and cosine will give the same values.
We know that sine is the ratio of perpendicular and hypotenuse. Hypotenuses cannot have a smaller length on the perpendicular side; hence, the maximum possible value can be one.
The chapter Introduction to Trigonometry & Its Equations is quite important for Board exams as it carries around 8-10% weightage of the whole paper.
Generally, MCQs, Very short, Short, and Long answers type of questions are asked in the board examinations and NCERT exemplar Class 10 Maths solutions chapter 8 are adequate to score well in this chapter.
On Question asked by student community
HELLO,
I am attaching the link through which you can download and access the Bangalore Sahodaya Class 10th CBSE question paper of Mathematics ( Basic )
Here is the link :- https://school.careers360.com/download/ebooks/bangalore-sahodaya-class-10-mathematics-basic-question-paper-2025-26
It will help you to practice basic level numerical questions, strengthen fundamentals and prepare confidently for the board
HELLO,
Below i am attaching the direct link of Careers360 through which you can download the Bangalore Sahodaya Class 10th Mathematics Basic Question paper 2025 2026
Here is the link :- https://school.careers360.com/download/ebooks/bangalore-sahodaya-class-10-mathematics-basic-question-paper-2025-26
Hope this will help you!
Hello
You will be able to download the CBSE Class 10th Maths Sample Paper 2025-26 using the link which is given below.
https://school.careers360.com/boards/cbse/cbse-10th-maths-sample-papers-2025-26
I hope this information helps you.
Thank you.
Hello,
Here you can access the last 5 years CBSE Class 10 Board Exam Question Papers from the mentioned link below:
https://school.careers360.com/boards/cbse/cbse-previous-year-question-papers-class-10
Hope it helps.
You can check the Class 11 English half yearly question paper and answer key for 2025 26 on the Careers360 website. These papers help students practice, understand the exam pattern, and check their answers for better preparation.
You can visit this Careers360 link to access the English question paper and
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters