Careers360 Logo
NCERT Exemplar Class 10 Maths Solutions Chapter 8 - Introduction To Trigonometry And Its Equations

NCERT Exemplar Class 10 Maths Solutions Chapter 8 - Introduction To Trigonometry And Its Equations

Edited By Komal Miglani | Updated on Apr 09, 2025 03:04 PM IST | #CBSE Class 10th

Imagine building tall structures or measuring the distance of tall buildings. Isn’t that fascinating? The answer lies in the chapter on Trigonometry. Trigonometry and Its Equations- NCERT Exemplar Class 10 introduces students to important trigonometric ratios, which are important for problems involving angles, heights, and distances. Students gain a foundation of concepts, such as the angle of elevation and depression, and learn how to calculate unknown values by applying these ratios to right-angled triangles.

This Story also Contains
  1. NCERT Exemplar Class 10 Maths Solutions Chapter 8
  2. NCERT Exemplar Solutions Class 10 Maths Chapter 8 Important Topics:
  3. NCERT Class 10 Maths Exemplar Solutions for Other Chapters:
  4. Importance of Solving NCERT Exemplar Class 10 Maths Solutions Chapter 8
  5. NCERT solutions of class 10 - Subject Wise
  6. NCERT Notes of class 10 - Subject Wise
  7. NCERT Books and NCERT Syllabus
  8. NCERT Class 10 Exemplar Solutions - Subject Wise


Regular practice of exercises and following the CBSE Syllabus for Class 10 improve students' problem-solving skills and comprehension of the different kinds of exam questions. An in-depth understanding of the subject offers a solid basis for advanced mathematics and practical applications in the fields of engineering, architecture, and navigation. For students preparing for both academic advancement and competitive exams, this chapter is crucial.

NCERT Exemplar Class 10 Maths Solutions Chapter 8

Class 10 Maths Chapter 8 Exemplar Solutions Exercise: 8.1
Page number: 89-91
Total questions: 15

Question:1

If cos A =4/5 , then the value of tan A is

1.35 (b) 34 (c) 43 (d) 53

Answer:

Answer. [B]
Solution. It is given that cos A = 4/5
We know that cosθ=BaseHypotenuse
value of base = 4
Hypotenuse = 5

Use Pythagoras theorem in ABC
(Hypotenuse)2 = (Base)2 + (perpendicular)
(AC)2=(BC)2+(AB)2
(5)2=(4)2+(AB)2
2516=(AB)2
9=(AB)2
9=AB
3=AB
The value of perpendicular is 3
Also we know that tanθ=perpendicularbase
tanA=34
Hence, option (B) is correct.

Question:2

If sin A =1/2, then the value of cot A is
a) 3 (b) 13 (c) 32 (d) 1

Answer:

sinA=12 for angle 300cosA=32cotA=cosAsinA=3212=3
Hence, option (a) is correct.

Question:3

The value of the expression [cosec (75° + θ) – sec (15° – θ) – tan (55° + θ) + cot (35° – θ)] is
(A) – 1 (B) 0 (C) 1 (D)32

Answer:

Answer. [B]
Solution. Given expression is :

[cosec(75+θ)sec(15θ)tan(55+θ)+cot(35θ)][cosec(90(15θ))sec(15θ)tan(90(35θ))+cot(35θ)]{ we can write (75+θ)=(90(15θ)) and (55+θ)=(90(35θ))}{cosec(90q)=secq and tan (90q)=cotq}[sec(15θ)sec(15θ)cot(35θ)+cot(35θ)]=0
Hence, option (B) is correct

Question:4

Given that sinθ =a/b, then cosθ is equal to
(A) bb2a2 (B) ba (C) b2a2b (D)ab2a2

Answer:

Answer. [C]
Solution. It is given that sinθ = a/b
cosθ=1sin2θ=1a2b2

cosθ=b2a2b
Hence option (C) is correct.

Question:5

If cos (α + β) = 0, then sin (α – β) can be reduced to
(A) cos β (B) cos 2β (C) sin α (D) sin 2α

Answer:

Given that cos(α+β)=0(α+β)=900...........(1)

wehave to find sin(αβ)

from(1) we can write α=90β

 sin(αβ)=sin(90ββ)

=sin(902β)=cos2β

since sin(90-x)=cosx)


Hence, option B is correct.

Question:6

The value of (tan1° tan2° tan3° ... tan89°) is
(A) 0 (B) 1 (C) 2 (D)1/2

Answer:

Answer. [B]
Solution. Given :-tan1° tan2° tan3° ... tan89°
tan1° tan2° tan3° ... tan89°tan87° tan 88° tan89° …(1)
We can also write equation (1) in the form of
[tan (900 – 890). tan (900 – 880). tan (900 – 870) …… tan 87°. tan 88° tan 89°]
[ we can write tan 1° in the form of tan (900 – 890) similarly, we can write other values]
[cot 890. cot 880. cot 870 …. tan 870. tan 880. tan 890]
[tan (902θ) = cotθ ]
Also
[1tan891tan881tan87tan87.tan88tan89]
Throughout all terms are cancelled by each other and remaining will be tan45
Hence, the value is 1
option B is correct.

Question:7

If cos 9α = sinα and 9α < 90° , then the value of tan5α is

(A) 13

(B) 3

(C) 1

(D) 0

Answer:

Answer. [C]
Solution. Given :- cos 9α = sinα
cos9 α = cos(90 – α)
(cos (90 – α) = sinα)
9α = 90 – α
9α+ α = 90
10 α= 90
α=9010
Now tan 5α is
Put α = 9 we get
tan 5× (9)
tan 450
= 1
{ from the table of trigonometric ratios of angles we know that tan 450 = 1}
Hence, option C is correct.

Question:8

If ΔABC is right-angled at C, then the value of cos (A+B) is
(A)0     (B)1     (C)1/2     (D)32

Answer:

Answer. [A]
Solution. It is given that C = 90°

In ABC
A +B +C = 180 [ sum of interior angles of triangle is 180°]
A + B + 90o = 180 [ C = 90° (given)]
A + B = 1800 – 900
A + B = 90° …(1)
cos(A +B) = cos (90°)
cos(90°) = 0
[ from the table of trigonometric ratios of angles we know that cos 90° = 0]
Hence option A is correct.

Question:9

If sinA + sin2A = 1, then the value of the expression (cos2A+ cos4A) is
(A) 1 (B)1/2 (C) 2 (D) 3

Answer:

Answer. [A]
Solution. It is given that sinA + sin2A = 1 …(*)
sinA = 1 – sin2AsinA = cos2A …(1) ( 1 – sin2A = cos2A)
Squaring both sides we get
sin2 A = cos4A …(2)
Hence cos2A + cos4A =
= sinA + sin2A {using (1) and (2)}
= sinA + sin2A = 1 (given)
Hence option (A) is correct.

Question:10

Given that sinα =1/2 and cosβ =1/2 , then the value of (α + β) is
(A) 0° (B) 30° (C) 60° (D) 90°

Answer:

Answer. [D]
Solution.
sinα=1/2α=300cosβ=1/2β=600α+β=900
Hence option (D) is correct.

Question:11

The value of the expression
[sin222+sin268cos222+cos268+sin263+cos263sin27] is

(A) 3 (B) 2 (C) 1 (D) 0

Answer:

Answer. [B]
Solution.

[sin222+sin268cos222+cos268+sin263+cos263sin27]
sin222+sin268cos222+cos268+sin263+cos263sin(9063)
[sin(90θ)=cosθ]
sin222+sin268cos222+cos268+sin263+cos63×cos63
=sin222+sin2(9022)cos2(9068)+cos268+sin263+cos263
{68=(9022)22=(9068)}
=sin222+cos222sin268+cos268+sin263+cos263
{sin(90θ)=cosθcos(90θ)=sinθ}
=11+1[sin2θ+cos2θ=1]
= 1+ 1 =2
Hence option (B) is correct.

Question:12

If 4tanθ=3 then (4sinθcosθ4sinθ+cosθ) is equal to
(A)23 (B)13 (C)12 (D)34

Answer:
Hence option (C) is correct.
(4sinθcosθ4sinθ+cosθ) Divide numerator and denominator by and rewriting the given expression(4sinθcosθ4sinθ+cosθ)=4sinθcosθcosθcosθ4sinθcosθ+cosθcosθ=4tanθ14tanθ+1=313+1=24=12 (Given 4tanθ=3)

Question:13

If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is
(A) 1 (B)3/4 (C) 1/2 (D) 1/4

Answer:

sinθcosθ=0
squaring both sides we get
(sinθcosθ)2=0
sin2θ+cos2θ2sinθcosθ=0
( (a – b)2 = a2 + b2 – 2ab)
sin2θ+cos2θ=2sinθcosθ.......(1)
1=2sinθcosθ(sin2θ+cos2θ=1)
12=sinθcosθ
Squaring both sides we get
14=sin2θcos2θ …(2)
Now squaring both side of equation (1) we get
(sin2θ+cos2θ)2=(2sinθcosθ)2
(sin2θ)2+(cos2θ)2+2sin2θcos2θ=4sin2θcos2θ
[(a+b)2=a2+b2+2ab]
(sin4θ)+(cos4θ)=4sin2θcos2θ2sin2θcos2θ
sin4θ+cos4θ=2sin2θcos2θ
(Use equation (2))
sin4θ+cos4θ=2(14)
sin4θ+cos4θ=12
Hence option (C) is correct.

Question:14

sin (45° + θ) – cos (45° – θ) is equal to
(A) 2cosθ (B) 0 (C) 2sinθ (D) 1

Answer:

Answer. [B]
Solution. Here
:sin(45+θ)cos(45θ)
Sin[90° - (45°- θ)] – cos(45°- θ)
[(45+θ)=(90(45θ))]
Cos(45°- θ) – cos(45°- θ) [ sin (90 – θ) = cosθ]
= 0
Hence option (B) is correct

Question:15

A pole 6 m high casts a shadow 23 m long on the ground, then the Sun’s elevation is
(A) 60° (B) 45° (C) 30° (D) 90°

Answer:

Answer. [A]
Solution. Given :
height pole = 6 m
Shadow of pole = 23m
Now make figure according to given condition

Let angle of elevation is α
tanα=Perpendicularbase
tanα=623
tanα=33=3
tanα=tan60 [tan60=3]
a = 60°
Hence the Sun's elevation is 60°.

Class 10 Maths Chapter 8 exemplar solutions Exercise: 8.2
Page number: 93
Total questions: 12
NEET/JEE Coaching Scholarship

Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

Question:1

Write ‘True’ or ‘False’ and justify your answer in each of the following:
tan47cot43=1

Answer:

tan47cot43=1
Taking L.H.S.
tan47cot43
tan(9043)cot43 (47=(9043))
cot43cot43=1 (tan(90θ)=cotθ)
Hence L.H.S. = R.H.S.
So, the given expression is true.

Question:2

The value of the expression (cos2 23° – sin2 67°) is positive.

Answer:

Answer. [False]
Solution. (cos2 23° – sin2 67°)
= (cos2(9067)sin267) (23=9067)
= Sin267° - sin267° (cos(90-θ) = sin θ)
= 0
Hence the value of the expression is neutral
So, the given statement is false.

Question:3

The value of the expression (sin 80° – cos80°) is negative.

Answer:

Answer. [False]
Solution. (sin 80° – cos 80°)
We know that from 0 to 90° sinθ and cosθ both are positive i.e.
0<sinθ90 (always positive)
0<cosθ90 (always positive)
At 45° both the values of sinθ and cosθ are the same but after 45° to 90° value of sin is greater than the value of cosθ Hence sin 80° > cos 80°.
If we subtract a smaller term from bigger than the result is positive.
Hence (sin 80° – cos80°) > 0
So, the given statement is false

Question:4

Prove that (1cos2θ)sec2θ=tanθ

Answer:
L.H.S
(1cos2θ)sec2θ(1)
We know that
1cos2θ=sin2θ in (1)
sin2θsec2θ
=sin2θ×1cos2θ (secθ=1cosθ)
=sin2θcos2θ
=tan2θ=tanθ (sinθcosθ=tanθ)
L.H.S. = R.H.S.
Hence the given expression is true.

Question:5

If cosA + cos2A = 1, then sin2A + sin4A = 1.

Answer:

Given
cosA + cos2A = 1 …(1) cos A = 1 – cos2A
cosA = sin2A …(2) ( sin2θ = 1 – cos2θ)
sin2A+sin4A=1
L.H.S.
sin2A+sin4A
sin2A+(sin2A)2
cosA+(cosA)2 (from (2))
cosA + cos2A
= 1 (R.H.S.) (from (1))
Hence sin2A + sin4A = 1
So, the given statement is true.

Question:6

(tanθ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ.

Answer:

(tanθ + 2) (2 tan θ + 1) = 5 tan θ + sec2θ
Taking L.H.S.
(tanθ + 2) (2 tan θ + 1)
tanθ.(2tan θ+1) + 2(2tan θ +1)
2tan2θ+tanθ+4tanθ+2
2tan2θ+5tanθ+2
2(tan2θ+1)+5tanθ(1)
We know that
sec2θtan2θ=1
(1+tan2θ=sec2θ)
Put the above value in (1)we get
2sec2θ+5tanθ5tanθ+sec2θ
L.H.S. R.H.S.
Hence the given expression is false.

Question:7

If the length of the shadow of a tower is increasing, then the angle of elevation of the sun is also increasing.

Answer:

Answer. [False]
Solution. Let us take 2 cases.
Case 1:

Case 2 :

θ1 is the angle when length is small and θ2 is the angle when shadow length is increased.
for finding θ1, θ2 find tan θ
tanθ1=PerpendicularBase=heightoftowerlengthofshadow
tanθ2=heightoftowerlengthofshadow
In both the case height of the tower is the same but in case 2 length of the shadow is increased and if the length of shadow increased value of θ2 decreased.
Hence the given statement is false.

Question:8

If a man standing on a platform 3 metres above the surface of a lake observes a cloud and its reflection in the lake, then the angle of elevation of the cloud is equal to the angle of depression of its reflection.

Answer:

Answer. [False]
Solution. According to question.

In the figure θ1 is the angle of elevation and θ2 is the angle of depression of the cloud.
For finding θ1find tanq in ECD
tanθ1=perpendicularBase=DCEC=Hι
Find tanθ in ECB for θ2
tanθ2=BCEC=3ι
Here we found that θ1 and θ2 both are different.
Hence the given statement is false.

Question:9

The value of 2sinθ can be a+1/a , where a is a positive number, and a ≠ 1.

Answer:

Answer. [False]
Solution. We know that
-1≤ sin θ ≤ 1
Multiply by 2.
-2≤ 2 sin θ ≤ 2
Here we found that value of 2 sin θ is lies from – 2 to 2.
But if we take a > 0 and a 1 then
a+1a>2
For example a = 3
3 + 1/3 = 3.33
Hence a+1a is always greater than 2 in case of positive number except 1
But value of 2 sin θ is not greater than 2
Hence the given statement is false

Question:10

cosθ=a2+b22ab where a and b are two distinct numbers such that ab> 0.

Answer:

We know that
1cosθ1
We also know that
(ab)2=a2+b22ab
Since  (ab)2 is a square term hence it is always positive 
(ab)2>0
a2 + b2 – 2ab > 0
a2+b2>2ab
We observe that a2+b2 is always greater than 2ab.
Hence,
a2+b22ab>1
Because if we divide a big term by small then the result is always greater than 1.
cosθ is always less than or equal to 1
Hence the given statement is false.

Question:11

The angle of elevation of the top of a tower is 30°. If the height of the tower is doubled, then the angle of elevation of its top will also be doubled.

Answer:

Answer. [False]
Solution. According to question

Case: 1
Here BC is the tower.
Let the height of the tower is H and distance AB = a
In ABC
tanθ=PerpendicularBase
tan30=Ha (θ=30)
13=Ha(1) (tan30=13)
Case :2 When height is doubled

Here ED = a
In DEF
tanθ=2Ha
tanθ=23 (from (1))
But tan60=3 (If the angle is double)
323
hence the given statement is false.

Question:12

If the height of a tower and the distance of the point of observation from its foot,both, are increased by 10%, then the angle of elevation of its top remains unchanged.

Answer:

Answer. [True]
Solution. According to question


In case-1. Height is H and observation distance is a.
In case-2, both height and observation distance is increased by 10%.
In case -1
tanθ1=Ha (tanθ=perpendicularBase) .....(1)
In case -2
tanθ2=H+H10a+a10
=11H1011a10=11H10×1011a=Ha
tanθ2=Ha(2)
from equation (1) and (2) we observe that θ1=θ2
Hence the given statement is true.

Class 10 Maths Chapter 8 exemplar solutions Exercise: 8.3
Page number: 95
Total questions: 15
NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

Question:1

Prove the following
:sinθ1+cosθ+1+cosθsinθ=2cosecθ

Answer:

sinθ1+cosθ+1+cosθsinθ=2cosecθ
Taking L.H.S.
=sinθ1+cosθ+1+cosθsinθ
Taking LCM
=sin2θ+(1+cosθ)2(1+cosθ)sinθ
=sin2θ+cos2θ+2cosθ(1+cosθ)sinθ ((a+b)2=a2+b2+2ab)
=1+1+2cosθ(1+cosθ)sinθ (sin2θ+cos2θ=1)
=2(1+cosθ)(1+cosθ)sinθ
=2sinθ
=2cosecθ (1sinθ=cosecθ)

L.H.S. = R.H.S.
Hence proved.

Question:2

Prove the following :
tanA1+secAtanA1secA=2cosecA

Answer:

Solution.
tanA1+secAtanA1secA=2cosecA
Taking L.H.S.
=tanA1+secAtanA1secA
Taking L.C.M.
=tanA(1secA)tanA(1+secA)(1+secA)(1secA)
=tanAtanAsecAtanAtanAsecA1sec2A ((ab)(a+b)=a2b2)
=2tanAsecAtan2A (sec2Atan2A=1)
=2secAtanA
=2cosA×cosAsinA (secθ=1cosθtanθ=sinθcosθ)
=2sinA=2cosecA (1sinθ=cosecθ)
L.H.S. = R.H.S.
Hence proved

Question:3

If tan A = 3/4 , then show that sinAcos A = 12/25 .

Answer:

Given:-
tanA=34
To prove:-
sinAcosA=1225...........(1)
we know that
tanθ=PB
PB=34
P=3, B = 4
Using Pythagoras theorem
H2=B2+P2
H2=(42)+(32)
H2=9+16
H2=25
H=25=5
H = 5
we know that
sinθ=PH,cosθ=BH
Hence
sinA=35,cosA=45
Put the value of sinA and cosA in equation (1)
35×45=1225
L.H.S. = R.H.S.
Hence proved.

Question:4

Prove the following : (sin α + cos α) (tan α + cot α) = sec α + cosec α

Answer:

Solution.
(sin α + cos α) (tan α + cot α) = sec α + cosec α
Taking L.H.S.
(sinα+cosα)(tanα+cotα)
=(sinα+cosα)(sinαcosα+cosαsinα)(tanθ=sinθcosθ,cotθ=cosθsinθ)
Taking L.C.M.
=(sinα+cosα)(sin2α+cos2α)sinα+cosα
=sinαsinαcosα+cosαsinα+cosα (sin2θ+cos2θ=1)
by separately divide
=sinαsinαcosα+cosαsinα+cosα
=1cosα+1sinα
=secα+cosecα (1cosθ=secθ,1sinθ=cosecθ)
L.H.S. = R.H.S.
Hence proved.

Question:5

Prove the following :
(3+1)(3cot30)=tan3602sin60

Answer:

(3+1)(3cot30)=tan3602sin60
Taking L.H.S
(3+1)(3cot30)
=3(3cot30)+1(3cot30)
=333cot30+3cot30
We know that
cot30=3
=333(3)+33
=333+33
=333
=23
R.H.S.
tan3602sin60
We know that
tan60o=3
tan3602sin60=(3)32(32)
=333=23
Hence proved

Question:6

Prove the following :
1+cot2α1+cosecα=cosecα

Answer:

1+cot2α1+cosecα=cosecα
Taking L.H.S.
=1+cot2α1+cosecα

=1+cosecα+cot2α1+cosecα
=cosec2αcot2α+cosecα+cot2α1+cosecα (cosec2θcot2θ=1)
=cosec2α+cosecα1+cosecα
=cosecα(cosecα+1)(1+cosecα)
=cosecα
L.H.S. = R.H.S.
Hence proved.

Question:7

Prove the following: tan θ + tan (90° – θ) = sec θ sec (90° – θ)

Answer:

Solution.
tan θ + tan (90° – θ) = sec θ sec (90° – θ)
Taking L.H.S.
= tan θ + tan (90° – θ)
= tanθ + cotθ ( tan (90 – θ) = cot θ)
=sinθcosθ+cosθsinθ (tanθ=sinθcosθ,cotθ=cosθsinθ)
Taking L.C.M.
sin2θ+cos2θsinθcosθ
=1cosθsinθ (sin2θ+cos2θ=1)
=1cosθ×1sinθ
=secθ×cosecθ (1cosθ=secθ,1sinθ=cosecθ)
=secθ×sec(90θ) (sec(90θ)=cosecθ)
L.H.S. = R.H.S.
Hence proved.

Question:8

Find the angle of elevation of the sun when the shadow of a pole h metres high is 3 h metres long.

Answer:

Answer. [30°]
Solution. According to question

Here BC is the height of the pole i.e. h meters and AB is the length of shadow i.e. 3h .
For finding angle q we have to find tanq in ABC
tanθ=PerpendicularBase
=tanθ=h3h
θ=30 (tan30=13)
Hence angle of elevation is 30°.

Question:9

If 3 tan θ = 1, then find the value of sin2θ – cos2θ.

Answer:

Given :
3tanθ=1
tanθ=13
θ=30 (tan30=13)
sin2θcos2θ=sin230cos230
(Because θ = 300)
=(12)2(32)2 [sin30=12cos30=32]
=1434
Taking L.C.M.
=134=24
sin2θcos2θ=12

Question:10

A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.

Answer:

Length of ladder = 15 m
The angle between wall and ladder = 60°
Let the height of wall = H

In ABC C = 60°, B = 90°
We know that
A + B + C = 180° (Sum of interior angles of a triangle is 180)
A + 90 + 60 = 180°
A = 30°
In ABC
sin30=H15
H=sin30×15
H=12×15 (sin30=12)
H=75m
Hence the height of the wall is 7.5 m

Question:11

Simplify(1+tan2θ)(1sinθ)(1+sinθ)

Answer:

(1+tan2θ)(1sinθ)(1+sinθ)
=(sec2θ)((1)2(sinθ)2) ((ab)(a+b)=a2b2)
=(sec2θ)(1sin2θ)
=(sec2θ)(cos2θ) (sin2θ+cos2θ=1)
=1cos2θ×cos2θ (sec2θ=1cosθ)
= 1

Question:12

If 2sin2θ – cos2θ = 2, then find the value of θ.

Answer:

2sin2θ – cos2θ = 2
2(1cos2θ)cos2θ=2 (sin2θ+cos2θ=1)
22cos2θcos2θ=2
23cos2θ2=0
3cos2θ=0
cos2θ=0
cosθ=0
θ=90 (cos90=0)
Hence value of θ is 90°

Question:13

Show that
cos2(45+θ)+cos2(45θ)tan(60+θ)tan(30+θ)=1

Answer:

L.H.S
=cos2(90(45θ))+cos2(45θ)tan(60+θ)tan(30θ) (sin(90θ)=cosθ)
=sin2(45θ)+cos2(45θ)tan(90(30θ))tan(30θ) (tan(90θ)=cotθ)
=sin2(45θ)+cos2(45θ)cot(30θ)tan(30θ) (sin2θ+cos2θ=1)
=11tan(30θ)×tan(30θ) (cotθ=1tanθ)
=11=1
L.H.S. = R.H.S.
Hence proved.

Question:14

An observer 1.5 metres tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from the eye of the observer.

Answer:

Answer. [45°]
Solution. According to the question.

In EDC EC = 20.5 m
DC = 20.5 m
To find angle θ in EDC we need to find tanθ.
tanθ=PB
tanθ=ECDC
tanθ=205205
tanθ=1
θ=45 (tan45=1)
Hence the angle of elevation is 45°.

Question:15

Show that tan4θ + tan2θ = sec4θ – sec2θ.

Answer:

Taking L.H.S.
tan4θ + tan2θ
(tan2θ) + tan2θ…(1)
We know that sec2θ – tan2θ = 1
Put

tan2θ=sec2θ1 in (1)
=(sec2θ1)2+sec2θ1
=(sec2θ)2+(1)22(sec2θ)(1)+sec2θ1
((ab)2=a2+b22ab)
=sec4θ+12sec2θ+sec2θ1
=sec4θsec2θ
LHS = RHS
Hence proved

Class 10 Maths Chapter 13 exemplar solutions Exercise: 8.4
Page number: 99-100
Total questions: 18

Question:1

If cosecθ + cotθ = p, then prove that
cosθ=p21p2+1 .

Answer:

Given: cosecθ + cotθ = p …(1)

Taking right hand side.
p21p2+1
Put value of p from equation (1) we get
=(cosecθ+cotθ)21(cosecθ+cotθ)2+1
=cosec2θ+cot2θ+2cosecθcotθ1cosec2θ+cot2θ+2cosecθcotθ+1
[(a+b)2=a2+b2+2ab]
=1sin2θ+cos2θsin2θ+2cosθsin2θ11sin2θ+cos2θsin2θ+2cosθsin2θ+1
[cosecθ=1sinθ,cotθ=cosθsinθ]
=1+cos2θ+2cosθsin2θsin2θ1+cos2θ+2cosθ+sin2θsin2θ [by taking LCM]
=1+cos2θ+2cosθsin2θ1+cos2θ+2cosθ+sin2θ
=1sin2θ+cosθ+2cosθ1+sin2θ+cosθ+2cosθ
=cos2θ+cos2θ+2cosθ1+1+2cosθ [1sin2θ=cos2θsin2+cos2θ=1]
=2cos2θ+2cosθ2+2cosθ
=2cosθ(cosθ+1)2(cosθ+1)
=2cosθ2
=cosθ
which is equal to the eft-hand side
Hence proved.

Question:2

Prove that sec2θ+cosec2θ=tanθ+cotθ

Answer:

Taking left-hand side
sec2θ+cosec2θ
=1cos2θ+1sin2θ [secθ=1cosθ,cosec=1sinθ]
=sin2θ+cos2θcos2θsin2θ
=1cos2θsin2θ [sin2θ+cos2θ=1]
1cosθsinθ=sin2θ+cos2θcosθsinθ=sin2θcosθsinθ+cos2θcosθsinθ=sinθcosθ+cosθsinθ=tanθ+cotθ=RHSHence proved

Question:3

The angle of elevation of the top of a tower from certain point is 30°. If the observer moves 20 metres towards the tower, the angle of elevation of the top increases by 15°. Find the height of the tower.

Answer:

Answer. [27.322 m]
Solution.

The angle of elevation of the top of a tower AB from certain point C is 30°
Let observer moves from C to D that is CD = 20m
Now angle of elevation increased by 15° that is 45° on point D
In ABD
tan45=ABBD [tanθ=PerpendicularBase]
1=ABBD
BD = AB …(1)
In ABC
tan30=ABBC [tanθ=PerpendicularBase]
13=ABBD+DC [tan30=13BC=BD+DC]
13=ABBD+20 (DC=20)
By cross multiplication we get
BD+20=3AB
Now put the value of BD from equation (1) we have
AB+20=3AB
20=3ABAB
20=AB(31)
AB=2031
AB=2017321=200732
AB = 27.322
Hence the height of the tower is 27.322 m

Question:4

If 1 + sin2θ = 3sinθ cosθ, then prove that tanθ = 1 or1/2

Answer:

Solution. Given : 1 + sin2θ = 3sinθ cosθ
To Prove - tanθ = 1 or 1/2
Dividing both side by sinθ we get
1+sin2θsin2θ=3cosθsinθ
1sin2θ+sin2θsin2θ=3cotθ (cosθsinθ=cotθ)
cosec2θ+1=3cotθ (1sin2θ=cosec2θ)
1+cot2θ+1=3cotθ (cosec2θ=1+cot2θ)
2+cot2θ+3cotθ=0
cot2θ+3cotθ+2=0
cot2θ2cotθcotθ+2=0
cotθ(cotθ2)1(cotθ2)=0
(cotθ2)(cotθ1)=0
cotθ=1,2
We know that
tanθ=1cotθ
tanθ=1,12
Hence proved.

Question:5

Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.

Answer:

Solution. Given:- sinθ + 2cosθ = 1
squaring both sides we have
(sinθ+2cosθ)2=12
sin2θ+4cos2θ+4sinθcosθ=1
((a+b)2=a2+b2+2ab)
sin2θ+4cos2θ=14sinθcosθ(1)

To prove :
2sinθcosθ=2
Taking the left-hand side
2sinθcosθ(2)
On squaring equation (2) we get
(2sinθcosθ)2
=4sin2θ+cos2θ4sinθcosθ

((ab)2=a2+b22ab)

=3sin2θ+sin2θ+cos2θ4sinθcosθ
=3sin2θ+14sinθcosθ [sin2θ+cos2θ=1]
=3sin2θ+sin2θ+4cos2θ
[use equation (1)]
=4sin2θ+4cos2θ
=4(sin2θ+cos2θ)
= 4
[sin2θ+cos2θ=1]
So here we get the value of (2sinθ – cosθ)2 is 4
(2sinθcosθ)2=4
2sinθcosθ=4
2sinθcosθ=2
Hence proved

Question:6

The angle of elevation of the top of a tower from two points distant s and t from its foot are complementary. Prove that the height of the tower isst

Answer:

Solution. According to question

Let the height of tower = h
the distance of the first point from its foot = s
the distance of the second point from its foot = t
tanθ=hs(1) (tanθ=PerpendicularBase)
tan(90θ)=ht
cotθ=ht(2)
Multiply equation (1) and (2) we get
tanθ×cotθ=ht×hs
tanθ1tanθ=h2st (cotθ=1tanθ)
1=h2st
st=h2
h=st
Hence proved.

Question:7

The shadow of a tower standing on a level plane is found to be 50 m longer when Sun’s elevation is 30° than when it is 60°. Find the height of the tower.

Answer:

Solution. According to question

Let the height of tower = h
tan60=hBD [tanθ=PerpendicularBase]
3=hBD [tan60=3]
BD=h3(1)
tan30=hBC=hBD+DC [BC=BD+DC]
13=hBD+50
BD+50=3h
[by cross multiplication]
h3+50=3h
[from equation (1)]
h3=3h50
h=3h503
h=5032
h=253m

Question:8

A vertical tower stands on a horizontal plane and is surmounted by a vertical flagstaff of height h. At a point on the plane, the angles of elevation of the bottom and the top of the flagstaff are α and β, respectively. Prove that the height of the tower is
(htanαtanβtanα)

Answer:

According to question

Here h is the height of Flagstaff AD.
Let l is the height of the tower
α and β be the angle of elevation of the bottom and the top of the flagstaff.
In BDC

tanα=lBC[tanθ= Perpendicular  Base ]


BC=ltanα


In ABC

tanβ=ABBC


tanβ=h+lBC


BC=h+ltanβ
Equate equation (1) and (2) we get

ltanα=h+ltanβltanβ=htanα+ltanα[ by cross multiplication] ltanβltanα=htanαl(ltanβtanα)=htanαl=htanαtanβtanα
Hence Proved

Question:9

If tanθ + secθ =l, then prove that
secθ=l2+12l

Answer:

Solution. Given : tanθ+secθ=1
There fore

l2+12l=(tanθ+secθ)2+12(tanθ+secθ)tan2θ+sec2θ+2tanθsecθ+12(tanθ)+2secθsec2θ+sec2θ+2tanθsecθ2(tanθ+secθ)[1+tan2θ=sec2θ]2sec2θ+2tanθsecθ2(tanθ+2secθ)2secθ(secθ+tanθ)2(tanθ+secθ)=secθ( R.H.S) 

Hence proved

Question:10

If sinθ + cosθ = p and secθ + cosecθ = q, then prove that q (p2 – 1) = 2p.

Answer:

Solution. Given :-sinθ + cosθ = p
and secθ + cosecθ = q
To prove :-q (p2 – 1) = 2p
Taking left hand side
q.(p2– 1) =
Put value of q and p we get
(secθ+cosecθ)[(sinθ+cosθ)21]
((a+b)2=a2+b2+2ab)
= (1cosθ+1sinθ)[(sin2θ+cos2θ+2sinθcosθ)1]
(secθ=1cosθ,cosecθ=1sinθ)
=1cosθ[sin2θ+cos2θ+2sinθcosθ1]
+1sinθ[sin2θ+cos2θ+2sinθcosθ1]
=sin2cosθ+cosθ+2sinθ1cosθ+sinθ+cos2θsinθ+2cosθ1sinθ
=3cosθ+3sinθ1cosθ+(1+cos2θ)cosθ+(1+sin2θ)sinθ1sinθ
(sin2θ=1cos2θ)
(cos2θ=1sin2θ)
=3cosθ+3sinθ+1cosθ×(1+1cos2θ)+1sinθ×(1sin2θ1)
(sin2θ+cos2θ=1)
=3cosθcosθ+3sinθsinθ
=2cosθ+2sinθ
=2(cosθ+sinθ)
2p (R.H.S)
Hence proved.

Question:11

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ =a2+b2c2

Answer:

Solution. Given:- asinθ + b cosθ = c
squaring both side we get
(asinθ+bcosθ)2=c2
a2sin2θ+b2cos2θ+2absinθcosθ=c2
((a+b)2=a2+b2+2ab)
2absinθcosθ=c2a2sin2θb2cos2θ(1)
To prove : acosθ – b sinθ =a2+b2c2
Taking left hand side : a cosθ – b sinθ and square it we get
(acosθbsinθ)2
=a2cos2θ+b2sin2θ2abcosθsinθ
[(ab)2=a2+b22ab]
=a2cos2θ+b2sin2θ(c2a2sin2θb2cos2θ) [Using (1)]
=a2cos2θ+b2sin2θc2+a2sin2θ+b2cos2θ
=a2(cos2θ+sin2θ)+b2(sin2θ+cos2)c2
=a2+b2c2 (sin2θ+cos2θ=1)
Hence (acosθbsinθ)2=a2+b2c2
(acosθbsinθ)=a2+b2c2
Hence proved.

Question:12

Prove that
1+secθtanθ1+secθ+tanθ=1sinθcosθ

Answer:

Solution To prove :- 1+secθtanθ1+secθ+tanθ=1sinθcosθ

Taking left hand side
1+secθtanθ1+secθ+tanθ
=1+1cosθsinθcosθ1+1cosθ+sinθcosθ [∵∵secθ=1cosθtanθ=sinθcosθ]
=cosθ+1sinθcosθcos+1+sinθcosθ
cosθ+1sinθcosθ+1+sinθ
Multiply nominator and denominator by (1 – sin θ)
=(cosθ+1sinθ)(1sinθ)(cosθ+1+sinθ)(1sinθ)
=cosθcosθsinθ+1sinθsinθ+sin2θcosθsinθcosθ+1sinθ+sinθsin2θ
=cosec(1sinθ)+(1sinθ)sin(1sinθ)cosθsinθcosθ+1sin2θ
=(1sinθ)(cosθ+1sinθ)cosθsinθcosθ+cos2θ (1sin2θ=cos2θ)
=(1sinθ)(cosθ+1sinθ)cosθ(cosθ+1sinθ)
=1sinθcosθ
Hence proved

Question:13

The angle of elevation of the top of a tower 30 m high from the foot of another tower in the same plane is 60° and the angle of elevation of the top of the second tower from the foot of the first tower is 30°. Find the distance between the two towers and also the height of the other tower.

Answer:

Solution. According to the question

Here 30 m is the length of tower AB.
Let h is the height of tower DC
Let the distance between them is x
In ABC
tan60=30x [tanθ=PerpendicularBase]
3=30x
x=303(1)
In BDC
tan30=hx
13=h30×3 (using (1))
303=h3
303×3=h
303=h
h = 10m
Hence the height of the second tower is 10
Distance between them
=303m .

Question:14

From the top of a tower h m high, the angles of depression of two objects, which are in line with the foot of the tower are α and β (β > α). Find the distance between the two objects

Answer:

According to question


Let x and y are two objects and β and α use the angles of depression of two objects.
In AOX
tanβ=hOx tanθ=PerpendicularBase
Ox=htanβ
Ox=hcotβ(1)
In AOY
tanα=hOy=hOx+xy(Oy=Ox+xy)
Ox+xy=htanα
Ox+xy=hcotα
xy=hcotαOx
xy=hcotαhcotβ (from equation (1))
xy=h(cotαcotβ)
Hence the distance between two objects is
h(cotαcotβ) .

Question:15

A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show thatpq=cosβcosαsinαsinβ

Answer:

Solution. According to the question:-

Here a and b be the angles of indication when the ladder at rest and when it pulled away from the wall
In AOB
cosα=OBAB cosθ=BaseHypotenuse
OB=ABcosα(1)
sinα=AOAB sinθ=Perpendicularhypotenuse

AO=ABsinα(2)
Similarly In DOC
cosβ=OCDC
OC=DCcosβ(3)
sinβ=ODDC
OD=DCsinβ(4)
Now subtract equation (1) from (3) we get
OC – OB = DC cosβ – AB cosα
Here OC – OB = P
and DC = AB because length of ladder remains P = AB cos
β – AB cosα
P = AB (cosβ – cosα) …(5)
Subtract equation (4) from (2) we get
AO – OD = AB sina – DC sin β
Here AO – OD = q
and AB = DC because length of ladder remains same
q = AB sin α – AB sinβ
q = AB (sin α – sin β) …(6)
on dividing equation (5) and (6) we get
pq=AB(cosβcosα)AB(sinαsinβ)
pq=cosβcosαsinαsinβ
Hence proved

Question:16

The angle of elevation of the top of a vertical tower from a point on the ground is 60°. From another point, 10 m vertically above the first, its angle of elevation is 45°. Find the height of the tower.

Answer:

Solution. According to question

Let h is the height of the tower
In ABE
tanθ=PB
tan60=hAB (θ=60)
3=hAB (tan60=3)
AB=h3(1)
In EDC
tanθ=PB
tan45=h10DC
1=h10AB (ABDC,tan45=1)
AB=h10(2)
from equation (1) and (2)
h10=h3
3h310=h
3hh=3×10
h(31)=103
h=10331
Hence the height of the tower
h=10331m

Question:17

A window of a house is h metres above the ground. From the window, the angles of elevation and depression of the top and the bottom of another house situated on the opposite side of the lane are found to be α and β, respectively. Prove that the height of the other house is h (1 + tan α cot β) metres.

Answer:

Solution. According to the question :


Let the height of the other house is X.
In DCF.
tanα=PB=ECDC
tanα=xhDC
DC=xhtanα(1)
In DAB
tanβ=PB=DAAB
tanβ=hAB=hDC (AB=DC)
tanβ=hDC
DC=htanβ(2)
from equation (1) and (2)
Xhtanα=htanβ
Xh=tanαhtanβ
X=tanαh+tanβhtanβ
X=h(tanα+tanβ)tanβ
separately divide
X=h(tanαtanβ+1)
X=h(1+tanαcotβ) (1tanθ=cotθ)
X=h(1+tanαcotβ)
Hence proved

Question:18

The lower window of a house is at a height of 2 m above the ground and its upper window is 4 m vertically above the lower window. At certain instant the angles of elevation of a balloon from these windows are observed to be 60° and 30°, respectively. Find the height of the balloon above the ground.

Answer:

Solution

Let y be the height of the balloon from the second window
In AOB
tan30=yd(tanθ=PerpendicularBase)
d=y3(1) (tan30=13)
In OCD
tan60=4+yd
3d=4+y
d=4+y3(2)
Equating equation (1) & (2) we get
y3=4+y3
y3×3=4+y
3yy=4
2y=4
y=42
y = 2
Height of balloon = 2 + 4 + y
= 2 + 4 + 2
= 8m

NCERT Exemplar Solutions Class 10 Maths Chapter 8 Important Topics:

  • Trigonometric ratios
  • Trigonometric identities
  • Proof of some theorems based on these trigonometric identities.
  • Trigonometric ratios of complementary angles.
  • Class 10 Maths NCERT exemplar chapter 8 solutions discuss the values of trigonometric ratios for some angles as 30° 45° 60° et cetera.

NCERT Class 10 Maths Exemplar Solutions for Other Chapters:

Importance of Solving NCERT Exemplar Class 10 Maths Solutions Chapter 8

NCERT Exemplar Class 10 Maths Solutions Chapter 8 pdf downloads are available through online tools for the students to access this content in an offline version, so that no breaks in continuity are faced while practising NCERT Exemplar Class 10 Maths Chapter 8.

  • These Class 10 Maths NCERT exemplar chapter 8 solutions provide a basic knowledge of Trigonometric ratios, which has great importance in higher classes.

  • The questions based on Trigonometric ratios can be practised in a better way, along with these solutions.

  • The NCERT exemplar Class 10 Maths chapter 8 solution Introductions to Trigonometry and Its Equations has a good amount of problems for practice and is sufficient for a student to easily sail through other books such as NCERT Class 10 Maths, RD Sharma Class 10 Maths, and RS Aggarwal Class 10 Maths.

NCERT solutions of class 10 - Subject Wise

Here are the subject-wise links for the NCERT solutions of class 10:

NCERT Notes of class 10 - Subject Wise

Given below are the subject-wise NCERT Notes of class 10 :

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and NCERT syllabus for class 10:

NCERT Class 10 Exemplar Solutions - Subject Wise

Given below are the subject-wise exemplar solutions of class 10 NCERT:

Frequently Asked Questions (FAQs)

1. If we know the value of sine A Then what is the value of cos (90 - A)?

We know that sine is the ratio of perpendicular and hypotenuse. 

We know that cos is the ratio of base and hypotenuse.

Therefore, we can say that for complementary angles sine and cosine will give the same values.

2. What is the maximum value of sine?

We know that sine is the ratio of perpendicular and hypotenuse. Hypotenuses cannot have a smaller length on the perpendicular side; hence, the maximum possible value can be one.

3. Is the chapter Introduction to Trigonometry & Its Equations important for Board examinations?

The chapter Introduction to Trigonometry & Its Equations is quite important for Board exams as it carries around 8-10% weightage of the whole paper.

4. How many types of questions from Introduction to Trigonometry & Its Equations appear in the board examination?

Generally, MCQs, Very short, Short, and Long answers type of questions are asked in the board examinations and NCERT exemplar Class 10 Maths solutions chapter 8 are adequate to score well in this chapter.

Articles

Upcoming School Exams

View All School Exams

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD

Questions related to CBSE Class 10th

Have a question related to CBSE Class 10th ?

Hello

Since you are a domicile of Karnataka and have studied under the Karnataka State Board for 11th and 12th , you are eligible for Karnataka State Quota for admission to various colleges in the state.

1. KCET (Karnataka Common Entrance Test): You must appear for the KCET exam, which is required for admission to undergraduate professional courses like engineering, medical, and other streams. Your exam score and rank will determine your eligibility for counseling.

2. Minority Income under 5 Lakh : If you are from a minority community and your family's income is below 5 lakh, you may be eligible for fee concessions or other benefits depending on the specific institution. Some colleges offer reservations or other advantages for students in this category.

3. Counseling and Seat Allocation:

After the KCET exam, you will need to participate in online counseling.

You need to select your preferred colleges and courses.

Seat allocation will be based on your rank , the availability of seats in your chosen colleges and your preferences.

4. Required Documents :

Domicile Certificate (proof that you are a resident of Karnataka).

Income Certificate (for minority category benefits).

Marksheets (11th and 12th from the Karnataka State Board).

KCET Admit Card and Scorecard.

This process will allow you to secure a seat based on your KCET performance and your category .

check link for more details

https://medicine.careers360.com/neet-college-predictor

Hope this helps you .

Hello Aspirant,  Hope your doing great,  your question was incomplete and regarding  what exam your asking.

Yes, scoring above 80% in ICSE Class 10 exams typically meets the requirements to get into the Commerce stream in Class 11th under the CBSE board . Admission criteria can vary between schools, so it is advisable to check the specific requirements of the intended CBSE school. Generally, a good academic record with a score above 80% in ICSE 10th result is considered strong for such transitions.

hello Zaid,

Yes, you can apply for 12th grade as a private candidate .You will need to follow the registration process and fulfill the eligibility criteria set by CBSE for private candidates.If you haven't given the 11th grade exam ,you would be able to appear for the 12th exam directly without having passed 11th grade. you will need to give certain tests in the school you are getting addmission to prove your eligibilty.

best of luck!

According to cbse norms candidates who have completed class 10th, class 11th, have a gap year or have failed class 12th can appear for admission in 12th class.for admission in cbse board you need to clear your 11th class first and you must have studied from CBSE board or any other recognized and equivalent board/school.

You are not eligible for cbse board but you can still do 12th from nios which allow candidates to take admission in 12th class as a private student without completing 11th.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top