NCERT Solutions for Class 10 Maths Chapter 6 Triangles
NCERT Solutions for Class 10 Maths Chapter 6 Triangles - Our expert teachers have prepared Class 10 Maths chapter 6 NCERT solutions in simple language. In NCERT solutions for class 10 maths chapter 6, triangles and their properties are defined. Along with this, NCERT Class 10 maths solutions chapter 6 contains detailed explanation to each question available in exercises of NCERT class 10 maths book. In NCERT solutions for class 10 maths chapter 6, students will access the solutions to the problems based on the similarity of triangles. Read below to access exercise-wise NCERT solutions for class 10 maths chapter 6 pdf download.
Latest : Trouble with homework? Post your queries of Maths and Science with step-by-step solutions instantly. Ask Mr AL
NCERT Solutions Class 10 Maths Chapter 6 - Sample Question
This following type of questions can be solved using the concept of similarity of triangles.
Question: A girl of height 90 cm is walking away from the base of a lamp-post at a speed of 1.2 m/s. If the lamp is 3.6 m above the ground, find the length of her shadow after 4 seconds.
Answer:
Given:- length of lamp post (AB) = 3.6m
Height of the girl = 90cm or 0.9m
Speed of the girl = 1.2m/sec
To find:- the length of the shadow DE.
Solution:- the girl walked BD distance in 4 seconds.
The distance traveled girl = length of BD = 4 x 1.2 => 4.8m
In Triangle ABE and Triangle CDE
Thus Triangle ABE and Triangle CDE are similar triangles.
From the theorem:- If two triangles are similar then the ratio of their sides is equal.
Hence the length of the shadow is 1.6m.
These types of examples are mentioned in these NCERT solutions for class 10 maths chapter 6. Here you will get NCERT solutions from class 6 to 12 for science and maths by clicking on the above-given link. Here you will get NCERT solutions for class 10 also.
NCERT Class 10 maths solutions chapter 6 - Topics
Similarity of triangles
Theorems based on similar triangles
Areas of similar triangles
Theorems related to Trapezium
Pythagoras theorem
NCERT solutions of class 10 subject wise
CBSE NCERT solutions for class 10 maths chapter 6 Triangles Excercise: 6.1
Answer:
All circles are similar.
Since all the circles have a similar shape. They may have different radius but the shape of all circles is the same.
Therefore, all circles are similar.
Answer:
All squares are similar.
Since all the squares have a similar shape. They may have a different side but the shape of all square is the same.
Therefore, all squares are similar.
Answer:
All equilateral triangles are similar.
Since all the equilateral triangles have a similar shape. They may have different sides but the shape of all equilateral triangles is the same.
Therefore, all equilateral triangles are similar.
Answer:
Two polygons of the same number of sides are similar if their corresponding angles are equal and their corresponding sides are proportional.
Thus, (a) equal
(b) proportional
Q2 (1) Give two different examples of a pair of similar figures.
Answer:
The two different examples of a pair of similar figures are :
1. Two circles with different radii.
2. Two rectangles with different breadth and length.
Q2 (2) Give two different examples of a pair of non-similar figures.
Answer:
The two different examples of a pair of non-similar figures are :
1.Rectangle and circle
2. A circle and a triangle.
Q3 State whether the following quadrilaterals are similar or not:
Answer:
Quadrilateral PQRS and ABCD are not similar as their corresponding sides are proportional i.e. but their corresponding angles are not equal.
NCERT solutions for class 10 maths chapter 6 Triangles Excercise: 6.2
Q1 In Fig. 6.17, (i) and (ii), DE || BC. Find EC in (i) and AD in (ii).
Answer:
(i)
Let EC be x
Given: DE || BC
By using the proportionality theorem, we get
(ii)
Let AD be x
Given: DE || BC
By using the proportionality theorem, we get
Answer:
(i)
Given :
PE = 3.9 cm, EQ = 3 cm, PF = 3.6 cm and FR = 2.4 cm
and
We have
Hence, EF is not parallel to QR.
Answer:
(ii)
Given :
PE = 4 cm, QE = 4.5 cm, PF = 8 cm and RF = 9 cm
and
We have
Hence, EF is parallel to QR.
Q2 (3) E and F are points on the sides PQ and PR respectively of a triangle PQR. For each of the following cases, state whether EF || QR : PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm
Answer:
(iii)
Given :
PQ = 1.28 cm, PR = 2.56 cm, PE = 0.18 cm and PF = 0.36 cm
and
We have
Hence, EF is parallel to QR.
Q3 In Fig. 6.18, if LM || CB and LN || CD, prove that
Answer:
Given : LM || CB and LN || CD
To prove :
Since , LM || CB so we have
Also, LN || CD
From equation 1 and 2, we have
Hence proved.
Q4 In Fig. 6.19, DE || AC and DF || AE. Prove that BF / FE = BE / EC
Answer:
Given : DE || AC and DF || AE.
To prove :
Since , DE || AC so we have
Also,DF || AE
From equation 1 and 2, we have
Hence proved.
Q5 In Fig. 6.20, DE || OQ and DF || OR. Show that EF || QR.
Answer:
Given : DE || OQ and DF || OR.
To prove EF || QR.
Since DE || OQ so we have
Also, DF || OR
From equation 1 and 2, we have
Thus, EF || QR. (converse of basic proportionality theorem)
Hence proved.
Answer:
Given : AB || PQ and AC || PR
To prove: BC || QR
Since, AB || PQ so we have
Also, AC || PR
From equation 1 and 2, we have
Therefore, BC || QR. (converse basic proportionality theorem)
Hence proved.
Answer:
Let PQ is a line passing through the midpoint of line AB and parallel to line BC intersecting line AC at point Q.
i.e. and .
Using basic proportionality theorem, we have
Since
Q is the midpoint of AC.
Answer:
Let P is the midpoint of line AB and Q is the midpoint of line AC.
PQ is the line joining midpoints P and Q of line AB and AC, respectively.
i.e. and .
we have,
From equation 1 and 2, we get
By basic proportionality theorem, we have
Answer:
Draw a line EF passing through point O such that
To prove :
In , we have
So, by using basic proportionality theorem,
In , we have
So, by using basic proportionality theorem,
Using equation 1 and 2, we get
Hence proved.
Answer:
Draw a line EF passing through point O such that
Given :
In , we have
So, by using basic proportionality theorem,
However, its is given that
Using equation 1 and 2 , we get
(By basic proportionality theorem)
Therefore, ABCD is a trapezium.
NCERT solutions for class 10 maths chapter 6 Triangles Excercise: 6.3
Answer:
(i)
(By AAA)
So ,
(ii) As corresponding sides of both triangles are proportional.
(By SSS)
(iii) Given triangles are not similar because corresponding sides are not proportional.
(iv) by SAS similarity criteria.
(v) Given triangles are not similar because the corresponding angle is not contained by two corresponding sides
(vi) In , we know that
In , we know that
( By AAA)
Answer:
Given : , and
(DOB is a straight line)
In
Since , , so
( Corresponding angles are equal in similar triangles).
Answer:
In , we have
( Alternate interior angles as )
( Alternate interior angles as )
( Vertically opposite angles are equal)
( By AAA)
( corresponding sides are equal)
Hence proved.
Q5 S and T are points on sides PR and QR of PQR such that P = RTS. Show that RPQ ~ RTS.
Answer:
Given : P = RTS
To prove RPQ ~ RTS.
In RPQ and RTS,
P = RTS (Given )
R = R (common)
RPQ ~ RTS. ( By AA)
Q6 In Fig. 6.37, if ABE ACD, show that ADE ~ ABC.
Answer:
Given :
To prove ADE ~ ABC.
Since
( By CPCT)
(By CPCT)
In ADE and ABC,
( Common)
and
( and )
Therefore, ADE ~ ABC. ( By SAS criteria)
Q7 (1) In Fig. 6.38, altitudes AD and CE of intersect each other at the point P. Show that:
Answer:
To prove :
In ,
( Both angles are right angle)
(Vertically opposite angles )
( By AA criterion)
Q7 (2) In Fig. 6.38, altitudes AD and CE of intersect each other at the point P. Show that:
Answer:
To prove :
In ,
( Both angles are right angle)
(Common )
( By AA criterion)
Q7 (3) In Fig. 6.38, altitudes AD and CE of intersect each other at the point P. Show that:
Answer:
To prove :
In ,
( Both angles are right angle)
(Common )
( By AA criterion)
Q7 (4) In Fig. 6.38, altitudes AD and CE of intersect each other at the point P. Show that:
Answer:
To prove :
In ,
( Both angles are right angle)
(Common )
( By AA criterion)
Q8 E is a point on the side AD produced of a parallelogram ABCD and BE intersects CD at F. Show that
Answer:
To prove :
In ,
( Opposite angles of a parallelogram are equal)
( Alternate angles of AE||BC)
( By AA criterion )
Q9 (1) In Fig. 6.39, ABC and AMP are two right triangles, right angled at B and M respectively. Prove that:
Answer:
To prove :
In ,
( Each )
( common)
( By AA criterion )
Q9 In Fig. 6.39, ABC and AMP are two right triangles, right angled at B and M respectively. Prove that
Answer:
To prove :
In ,
( Each )
( common)
( By AA criterion )
( corresponding parts of similar triangles )
Hence proved.
Q10 (1) CD and GH are respectively the bisectors of and such that D and H lie on sides AB and FE of respectively. If , show that:
Answer:
To prove :
Given :
( CD and GH are bisectors of equal angles)
( CD and GH are bisectors of equal angles)
In
( proved above)
( proved above)
( By AA criterion)
Hence proved.
Q 10 (2) CD and GH are respectively the bisectors of such that D and H lie on sides AB and FE of respectively. If , show that:
Answer:
To prove :
Given :
In ,
( CD and GH are bisectors of equal angles)
( )
( By AA criterion )
Q10 (3) CD and GH are respectively the bisectors of such that D and H lie on sides AB and FE of respectively. If , show that:
Answer:
To prove :
Given :
In ,
( CD and GH are bisectors of equal angles)
( )
( By AA criterion )
Answer:
To prove :
Given: ABC is an isosceles triangle.
In ,
( )
( Each )
( By AA criterion)
Answer:
AD and PM are medians of triangles. So,
Given :
In
(SSS similarity)
( Corresponding angles of similar triangles )
In
(proved above)
Therefore, . ( SAS similarity)
Q13 D is a point on the side BC of a triangle ABC such that . Show that
Answer:
In,
( given )
(common )
( By AA rule)
( corresponding sides of similar triangles )
Answer:
(given)
Produce AD and PM to E and L such that AD=DE and PM=DE. Now,
join B to E,C to E,Q to L and R to L.
AD and PM are medians of a triangle, therefore
QM=MR and BD=DC
AD = DE (By construction)
PM=ML (By construction)
So, diagonals of ABEC bisecting each other at D,so ABEC is a parallelogram.
Similarly, PQLR is also a parallelogram.
Therefore, AC=BE ,AB=EC and PR=QL,PQ=LR
(Given )
(SSS similarity)
...................1 (Corresponding angles of similar triangles)
Similarity,
........................2
Adding equation 1 and 2,
............................3
In
( Given )
( From above equation 3)
( SAS similarity)
Answer:
CD = pole
AB = tower
Shadow of pole = DF
Shadow of tower = BE
In
( Each )
(Angle of sun at same place )
(AA similarity)
cm
Hence, the height of the tower is 42 cm.
Q16 If AD and PM are medians of triangles ABC and PQR, respectively where , prove that
Answer:
( Given )
............... ....1( corresponding sides of similar triangles )
....................................2
AD and PM are medians of triangle.So,
..........................................3
From equation 1 and 3, we have
...................................................................4
In
(From equation 2)
(From equation 4)
(SAS similarity)
NCERT solutions for class 10 maths chapter 6 Triangles Excercise: 6.4
Q1 Let and their areas be, respectively, 64 and 121 . If EF = 15.4 cm, find BC.
Answer:
( Given )
ar(ABC) = 64 and ar(DEF)=121 .
EF = 15.4 cm (Given )
Answer:
Given: Diagonals of a trapezium ABCD with AB || DC intersect each other at the point O.
AB = 2 CD ( Given )
In
(vertically opposite angles )
(Alternate angles)
(Alternate angles)
(AAA similarity)
Q3 In Fig. 6.44, ABC and DBC are two triangles on the same base BC. If AD intersects BC at O, show that
Answer:
Let DM and AP be perpendicular on BC.
In
(Each )
(Vertically opposite angles)
(AA similarity)
Since
Q4 If the areas of two similar triangles are equal, prove that they are congruent.
Answer:
Let , therefore,
(Given )
(SSS )
Answer:
D, E, and F are respectively the mid-points of sides AB, BC and CA of . ( Given )
and DE||AC
In ,
(corresponding angles )
(corresponding angles )
(By AA)
Let be x.
Similarly,
and
Answer:
Let AD and PS be medians of both similar triangles.
Purring these value in 1,
In
(proved above)
(proved above)
(SAS )
Therefore,
From 1 and 4, we get
Answer:
Let ABCD be a square of side units.
Therefore, diagonal =
Triangles form on the side and diagonal are ABE and DEF, respectively.
Length of each side of triangle ABE = a units
Length of each side of triangle DEF = units
Both the triangles are equilateral triangles with each angle of .
( By AAA)
Using area theorem,
(A) 2: 1 (B) 1: 2 (C) 4 : 1 (D) 1: 4
Answer:
Given: ABC and BDE are two equilateral triangles such that D is the mid-point of BC.
All angles of the triangle are .
ABC BDE (By AAA)
Let AB=BC=CA = x
then EB=BD=ED=
Option C is correct.
Q9 Sides of two similar triangles are in the ratio 4: 9. Areas of these triangles are in the ratio
(A) 2 : 3 (B) 4: 9 (C) 81: 16 (D) 16: 81
Answer:
Sides of two similar triangles are in the ratio 4: 9.
Let triangles be ABC and DEF.
We know that
Option D is correct.
NCERT solutions for class 10 maths chapter 6 Triangles Excercise: 6.5
Answer:
In the case of a right triangle, the length of its hypotenuse is highest.
hypotenuse be h.
Taking, 7 cm, 24 cm
By Pythagoras theorem,
= given third side.
Hence, it is the right triangle with h=25 cm.
Answer:
In the case of a right triangle, the length of its hypotenuse is highest.
hypotenuse be h.
Taking, 3 cm, 6 cm
By Pythagoras theorem,
Hence, it is not the right triangle.
Answer:
In the case of a right triangle, the length of its hypotenuse is highest.
hypotenuse be h.
Taking, 50 cm, 80 cm
By Pythagoras theorem,
Hence, it is not a right triangle.
Answer:
In the case of a right triangle, the length of its hypotenuse is highest.
hypotenuse be h.
Taking, 5cm, 12 cm
By Pythagoras theorem,
= given third side.
Hence, it is a right triangle with h=13 cm.
Q2 PQR is a triangle right angled at P and M is a point on QR such that . Show that
Answer:
Let be x
In ,
Similarly,
In ,
In
(By AAA)
Hence proved.
Q3 (1) In Fig. 6.53, ABD is a triangle right angled at A and AC BD. Show that
Answer:
In
(common )
(By AA)
, hence prooved .
Q3 (2) In Fig. 6.53, ABD is a triangle right angled at A and AC BD. Show that
Answer:
Let be x
In ,
Similarly,
In ,
In
( Each right angle)
(By AAA)
Hence proved
Q3 (3) In Fig. 6.53, ABD is a triangle right angled at A and AC BD. Show that
Answer:
In
(common )
(By AA)
Hence proved.
Q4 ABC is an isosceles triangle right angled at C. Prove that
Answer:
Given: ABC is an isosceles triangle right angled at C.
Let AC=BC
In ABC,
By Pythagoras theorem
(AC=BC)
Hence proved.
Q5 ABC is an isosceles triangle with AC = BC. If , prove that ABC is a right triangle.
Answer:
Given: ABC is an isosceles triangle with AC=BC.
In ABC,
(Given )
(AC=BC)
These sides satisfy Pythagoras theorem so ABC is a right-angled triangle.
Hence proved.
Q6 ABC is an equilateral triangle of side 2a. Find each of its altitudes.
Answer:
Given: ABC is an equilateral triangle of side 2a.
AB=BC=AC=2a
AD is perpendicular to BC.
We know that the altitude of an equilateral triangle bisects the opposite side.
So, BD=CD=a
In ADB,
By Pythagoras theorem,
The length of each altitude is .
Answer:
In AOB, by Pythagoras theorem,
In BOC, by Pythagoras theorem,
In COD, by Pythagoras theorem,
In AOD, by Pythagoras theorem,
Adding equation 1,2,3,4,we get
(AO=CO and BO=DO)
Hence proved .
Q8 (1) In Fig. 6.54, O is a point in the interior of a triangle ABC, OD BC, OE AC and OF AB. Show that
Answer:
Join AO, BO, CO
In AOF, by Pythagoras theorem,
In BOD, by Pythagoras theorem,
In COE, by Pythagoras theorem,
Adding equation 1,2,3,we get
Hence proved
Q8 (2) In Fig. 6.54, O is a point in the interior of a triangle ABC, OD BC, OE AC and OF AB.
Answer:
Join AO, BO, CO
In AOF, by Pythagoras theorem,
In BOD, by Pythagoras theorem,
In COE, by Pythagoras theorem,
Adding equation 1,2,3,we get
Answer:
OA is a wall and AB is a ladder.
In AOB, by Pythagoras theorem
Hence, the distance of the foot of the ladder from the base of the wall is 6 m.
Answer:
OB is a pole.
In AOB, by Pythagoras theorem
Hence, the distance of the stack from the base of the pole is m.
Answer:
Distance travelled by the first aeroplane due north in hours.
Distance travelled by second aeroplane due west in hours.
OA and OB are the distance travelled.
By Pythagoras theorem,
Thus, the distance between the two planes is .
Answer:
Let AB and CD be poles of heights 6 m and 11 m respectively.
CP=11-6=5 m and AP= 12 m
In APC,
By Pythagoras theorem,
Hence, the distance between the tops of two poles is 13 m.
Answer:
In ACE, by Pythagoras theorem,
In BCD, by Pythagoras theorem,
From 1 and 2, we get
In CDE, by Pythagoras theorem,
In ABC, by Pythagoras theorem,
From 3,4,5 we get
Answer:
In ACD, by Pythagoras theorem,
In ABD, by Pythagoras theorem,
From 1 and 2, we get
Given : 3DC=DB, so
From 3 and 4, we get
Hence proved.
Q15 In an equilateral triangle ABC, D is a point on side BC such that BD = 1/3 BC. Prove that
Answer:
Given: An equilateral triangle ABC, D is a point on side BC such that BD = 1/3 BC.
To prove :
Let AB=BC=CA=a
Draw an altitude AE on BC.
So,
In AEB, by Pythagoras theorem
Given : BD = 1/3 BC.
In ADE, by Pythagoras theorem,
Answer:
Given: An equilateral triangle ABC.
Let AB=BC=CA=a
Draw an altitude AE on BC.
So,
In AEB, by Pythagoras theorem
Q17 Tick the correct answer and justify : In AB = cm, AC = 12 cm and BC = 6 cm.
The angle B is :
(A) 120°
(B) 60°
(C) 90°
(D) 45°
Answer:
In AB = cm, AC = 12 cm and BC = 6 cm.
It satisfies the Pythagoras theorem.
Hence, ABC is a right-angled triangle and right-angled at B.
Option C is correct.
NCERT solutions for class 10 maths chapter 6 Triangles Excercise: 6.6
Q1 In Fig. 6.56, PS is the bisector of . Prove that
Answer:
A line RT is drawn parallel to SP which intersect QP produced at T.
Given: PS is the bisector of .
By construction,
(as PS||TR)
(as PS||TR)
From the above equations, we get
By construction, PS||TR
In QTR, by Thales theorem,
Hence proved.
Answer:
Join BD
Given : D is a point on hypotenuse AC of D ABC, such that BD AC, DM BC and DN AB.Also DN || BC, DM||NB
In CDM,
In DMB,
From equation 1 and 2, we get
From equation 1 and 3, we get
In
(By AA)
(BM=DN)
Hence proved
Q2 (2) In Fig. 6.57, D is a point on hypotenuse AC of D ABC, such that BD AC, DM BC and DN AB. Prove that:
Answer:
In DBN,
In DAN,
BD AC,
From equation 1 and 3, we get
From equation 2 and 3, we get
In
(By AA)
(NB=DM)
Hence proved.
Q3 In Fig. 6.58, ABC is a triangle in which ABC > 90° and AD CB produced. Prove that
Answer:
In ADB, by Pythagoras theorem
In ACD, by Pythagoras theorem
(From 1)
Q4 In Fig. 6.59, ABC is a triangle in which ABC < 90° and AD BC. Prove that
Answer:
In ADB, by Pythagoras theorem
In ACD, by Pythagoras theorem
(From 1)
Q5 (1) In Fig. 6.60, AD is a median of a triangle ABC and AM BC. Prove that :
Answer:
Given: AD is a median of a triangle ABC and AM BC.
In AMD, by Pythagoras theorem
In AMC, by Pythagoras theorem
(From 1)
(BC=2 DC)
Q5 (2) In Fig. 6.60, AD is a median of a triangle ABC and AM BC. Prove that :
Answer:
In ABM, by Pythagoras theorem
(BC=2 BD)
Q5 (3) In Fig. 6.60, AD is a median of a triangle ABC and AM BC. Prove that:
Answer:
In ABM, by Pythagoras theorem
In AMC, by Pythagoras theorem
..................................2
Adding equation 1 and 2,
Answer:
In parallelogram ABCD, AF and DE are altitudes drawn on DC and produced BA.
In DEA, by Pythagoras theorem
In DEB, by Pythagoras theorem
....................................2
In ADF, by Pythagoras theorem
In AFC, by Pythagoras theorem
Since ABCD is a parallelogram.
SO, AB=CD and BC=AD
In
(AE||DF)
AD=AD (common)
(ASA rule)
Adding 2 and, we get
(From 4 and 6)
\
Q7 (1) In Fig. 6.61, two chords AB and CD intersect each other at point P. Prove that :
Answer:
Join BC
In
( vertically opposite angle)
(Angles in the same segment)
(By AA)
Q7 (2) In Fig. 6.61, two chords AB and CD intersect each other at point P. Prove that :
Answer:
Join BC
In
( vertically opposite angle)
(Angles in the same segment)
(By AA)
(Corresponding sides of similar triangles are proportional)
Answer:
In
(Common)
(Exterior angle of a cyclic quadrilateral is equal to opposite interior angle)
So, ( By AA rule)
Answer:
In
(Common)
(Exterior angle of a cyclic quadrilateral is equal to opposite interior angle)
So, ( By AA rule)
24440 (Corresponding sides of similar triangles are proportional)
Q9 In Fig. 6.63, D is a point on side BC of D ABC such that Prove that AD is the bisector of BAC.
Answer:
Produce BA to P, such that AP=AC and join P to C.
(Given )
Using converse of Thales theorem,
AD||PC (Corresponding angles)
(Alternate angles)
By construction,
AP=AC
From equation 1,2,3, we get
Thus, AD bisects angle BAC.
Answer:
Let AB = 1.8 m
BC is a horizontal distance between fly to the tip of the rod.
Then, the length of the string is AC.
In ABC, using Pythagoras theorem
Hence, the length of the string which is out is 3m.
If she pulls in the string at the rate of 5cm/s, then the distance travelled by fly in 12 seconds.
=
Let D be the position of fly after 12 seconds.
Hence, AD is the length of the string that is out after 12 seconds.
Length of string pulled in by nazim=AD=AC-12
=3-0.6=2.4 m
In ADB,
Horizontal distance travelled by fly = BD+1.2 m
=1.587+1.2=2.787 m
= 2.79 m
NCERT solutions for class 10 maths chapter wise
Chapter No. | Chapter Name |
Chapter 1 | |
Chapter 2 | |
Chapter 3 | NCERT solutions for class 10 maths chapter 3 Pair of Linear Equations in Two Variables |
Chapter 4 | NCERT solutions for class 10 maths chapter 4 Quadratic Equations |
Chapter 5 | NCERT solutions for class 10 chapter 5 Arithmetic Progressions |
Chapter 6 | NCERT solutions for class 10 maths chapter 6 Triangles |
Chapter 7 | NCERT solutions for class 10 maths chapter 7 Coordinate Geometry |
Chapter 8 | NCERT solutions for class 10 maths chapter 8 Introduction to Trigonometry |
Chapter 9 | NCERT solutions for class 10 maths chapter 9 Some Applications of Trigonometry |
Chapter 10 | |
Chapter 11 | |
Chapter 12 | NCERT solutions for class 10 chapter maths chapter 12 Areas Related to Circles |
Chapter 13 | NCERT solutions class 10 maths chapter 13 Surface Areas and Volumes |
Chapter 14 | |
Chapter 15 |
NCERT Solutions for Class 10 Maths Chapter 6 - Important Points
This chapter starts by introducing the difference between similar and congruent figures.
If two figures are the same in shape and size, the figures are said to be congruent.
NCERT Class 10 maths Chapter 6 solutions states that the two figures that have a same shape but not necessarily the same size are called similar figures.
For example, all circles are similar but only those circles with the same radii are congruent which means all congruent figures are similar but converse may not be true.
As per Class 10 Maths chapter 6 NCERT solutions, the concept of similarity of triangles can be used to measure the height of objects.
How to use NCERT Solutions for Class 10 Maths Chapter 6 Triangles?
First of all, go through all the concepts, theorems and examples given in the chapter.
This chapter needs so much use of theorems. So you have to memorize these conditions and theorems to solve the problems.
After this, you can directly jump to practice exercises.
While solving the practising the exercises, if you face any problem in a question then you take the help of NCERT solutions for class 10 maths chapter 6.
Once you have done the practise exercises you can move to previous year questions.
Keep working hard & happy learning!
Frequently Asked Question (FAQs) - NCERT Solutions for Class 10 Maths Chapter 6 Triangles
Question: What are the important topics of NCERT class 10 maths chapter 6?
Answer:
The similarity of triangles, theorems for similar triangles, areas of similar triangles, theorems related to trapezium, and Pythagoras theorem are the important topics in Class 10 Maths Chapter 6 NCERT solutions.
Question: Does CBSE provide NCERT solutions for class 10 maths Chapter 6?
Answer:
No, CBSE doesn't provide the NCERT solutions for any class or subject.
Question: Where can I find the complete solutions of NCERT class 10 maths?
Answer:
On this page, you will get Chapter 6 NCERT solutions for class 10 maths along with direct links of other chapters.
Question: Which book is best for CBSE class 10 maths?
Answer:
NCERT textbook is the only book which you should know very well, there is no need of supplementary book as CBSE board class 10 paper is entirely based on the NCERT.
Question: Which book is best for CBSE class 10 maths ?
Answer:
NCERT textbook is only book which you should know very well, there is no need of supplementary book as CBSE board class 10 paper is entirely based on the NCERT.
Latest Articles
CBSE 10th Result 2021 Date Released - Check CBSE Class 10 Resu...
CBSE 10th Result 2021 - Central Board of Secondary Education i...
CBSE 10th Compartment Result 2021 Date - Check Compartment Res...
CBSE 10th Compartment Result 2021 - CBSE board will release th...
CBSE Result 2021 for Class 10, 12 Date & Time - Check CBSE Res...
CBSE Result 2021 - CBSE Board will release Class 10th and 12th...
CBSE Class 10 Sample Papers 2021 for All Subjects - Download P...
CBSE Class 10 Sample Papers 2021- Download CBSE sample papers ...
CBSE 10th Admit Card 2021 - Download CBSE Class 10 Hall Ticket...
CBSE 10th Admit Card 2021 - CBSE Board will issue the CBSE Cla...
Latest Articles
UK Board 10th Result 2021 Date & Time - Check Uttarakhand Boar...
UK Board 10th Result 2021 : UK Board will release Class 10 res...
NBSE HSLC Result 2021 Date & Time - Check Nagaland Board 10th ...
NBSE HSLC Result 2021 - Nagaland Board of School Education wil...
TBSE Madhyamik Question Papers 2021 - Download Pdf Here
TBSE Madhyamik Question Papers 2021 - Practise the sample ques...
TBSE Madhyamik Syllabus 2021 for All Subjects
TBSE Madhyamik Syllabus 2021 - Tripura Board (TBSE) releases t...
TBSE Madhyamik Routine 2021 Released- Check Tripura Board 10th...
TBSE Madhyamik Routine 2021 - Tripura Board has postponed the ...
JKBOSE 10th Result 2021 Date & Time - JK Board Summer Zone Ann...
JKBOSE 10th Result 2021 -Jammu and Kashmir State Board of Scho...
Assam HSLC Routine 2021 Postponed!- Check SEBA Class 12th Time...
Assam HSLC Routine 2021- Board of Secondary Education, Assam h...
NTSE Previous Year Question Paper - Download Stage 1 & 2 Paper...
NTSE Previous Year Question Paper - Download NTSE QUestion pap...
NIOS On-Demand Result 2021 Declared for Class 10th & 12th Marc...
NIOS On-Demand Result 2021 has declared for class 10 and 12 on...
MP Board 10th Admit Card 2021 Released- Download Madhya Prades...
MP Board 10th Admit Card 2021 - Madhya Pradesh board has relea...
Explore Popular Degree, Branches and Courses
Browse by Degrees
Browse by Branches/Majors
Questions related to CBSE Class 10th
Board cbse class 10 Is cancelled and promote all student please sir because of corona do not study
Hello aspirant,
No CBSE and ICSE board didn't not cancelled the 10th and 12th exam.
As they had declared that 10th and 12th class exam will not be cancelled and students will have to give it in offline mode in this pandemic also.
Hope this helps you
All the best for your future
CBSE class 10th malayalam can someone please tell me a good one
Hello Dear,
Malayalam is the mother tongue of those who have their roots in Kerala. It is one of the Dravidian languages that has similarities in words with its other contemporary languages such as Tamil and Telugu. People who speak Malayalam are referred to as Mallus. You can download the previous year papers from the link below:
https://school.careers360.com/download/sample-papers/cbse-10th-class-malayalam-solved-sample-paper-2021
Good Luck
When will the Karnataka NTSE Stage 1 Merit list(i.e people who have cleared stage-1) and the cut off come out?
DSERT, Karnataka has released the NTSE Karnataka 2021 Result stage 1 on March 9, 2021 on their official website ( dsert.kar.nic.in ). It is available in the form of district-wise marks lists , consisting of registration numbers and marks of all students.
Along with the NTSE stage 1 result, cutoff and merit list of selected candidates is also released.
The students those who have cleared the stage 1 exam are eligible to seat for the stage 2 exam which is going to be held on June 13, 2021 . The scholarship will be given to the students who will pass the stage 2 examination.
To know more about NTSE Karnataka Important Dates, Cut-off, Scholarship visit :
https://www.google.com/amp/s/school.careers360.com/articles/ntse-karnataka-result/amp
Hope it helps
Thank You !!!
Age criteria to appear in class 10 CBSE exam
Hello Bishal
According to guidelines of CBSE, minimum age to appear for class x must be 14 years. There is no upper limit to appear for class x cbse board.
A candidate can appear for maximum three attempts.
Some candidates give private exams or sometimes students fail in standard ix then they privately appear for class x then their age must be more than 14 years. Sometimes students appear for x class after one year gap of passing class ix then also their age would be 15 or 16 as there is no upper limit age.
My child is supposed to make another attempt at compartment exam of 10th cbse Missed last date for applying. since the boards are postponed to May 4th can I pay her fees and apply now.
Hello sir I'm sorry to inform you but now you're not eligible to fill the registration form as last date to fill the registration Form was 9th December 2020. Yes examination gets postponed to May but portal to fill the registration form is not open , in case if the registration form portal will open again you can fill the registration form and make the payment.
Feel free to comment if you've any doubt
Good luck