Have you ever wondered how engineers design huge buildings, how sailors and pilots navigate through their journey, or how shadows change their length throughout the day? All of these answers can be found in Trigonometry, a fascinating branch of mathematics. As per the latest syllabus, this chapter contains the basic concepts of trigonometry, like trigonometric ratios, trigonometric identities, trigonometric ratios of some specific angles, and trigonometric ratios of complementary angles. NCERT Solutions for Class 10 can help the students understand these concepts and will make them more efficient in solving problems involving height, distance, and angles.
This Story also Contains
These NCERT Solutions for class 10 Maths are designed by our experienced subject experts at Careers360 to offer clear and step-by-step solutions for the exercise problems and help students to prepare well for exams and to gain knowledge about all the natural processes happening around them through a series of solved questions. It covers questions from all the topics and will help you improve your speed and accuracy. Many teachers recommend NCERT Solutions because they closely match the exam pattern. For full syllabus coverage and solved exercises as well as a downloadable PDF, please visit the NCERT article.
Students who wish to access the NCERT solutions for class 10 chapter 8 can click on the link below to download the entire solution in PDF.
NCERT Introduction to Trigonometry Class 10 Questions and Answers Exercise: 8.1 Page number: 121 Total questions: 11 |
Q1. In $\Delta \: ABC$ , right-angled at $B, AB = 24 \: cm$ , $BC = 7 \: cm$.
Determine : $(i)\; \sin A, \cos A$ $(ii)\; \sin C, \cos C$
Answer:
We have,
In $\Delta \: ABC$ , $\angle$B = 90, and the length of the base (AB) = 24 cm and length of perpendicular (BC) = 7 cm
So, by using Pythagoras' theorem,
$AC^2 = AB^2 + BC^2$
⇒ $AC = \sqrt{AB^2+BC^2}$
⇒ $AC = \sqrt{576+49}$
⇒ $AC = \sqrt{625}$
⇒ $AC = 25$ cm
Now,
(i) $\sin A = \frac{P}{H} = \frac{BC}{AC} = \frac{7}{25}$
$\cos A = \frac{B}{H} = \frac{BA}{AC} = \frac{24}{25}$
(ii) For angle C, AB is perpendicular to the base (BC).
Here, B indicates Base and P means perpendicular wrt angle $\angle$C
So, $\sin C = \frac{P}{H} = \frac{BA}{AC} = \frac{24}{25}$
and $\cos C = \frac{B}{H} = \frac{BC}{AC} = \frac{7}{25}$
Q2. In Fig. 8.13, find $\tan P - \cot R$ .
Answer:
We have $\Delta$PQR
According to Pythagoras, in a right-angled triangle, the lengths of PQ and PR are 12 cm and 13 cm, respectively.
So, by using Pythagoras' theorem,
$QR = \sqrt{13^2-12^2}$
$QR = \sqrt{169-144}$
$QR = \sqrt{25} = 5\ cm$
Now, according to the question,
$\tan P -\cot R$ = $\frac{RQ}{QP}-\frac{QR}{PQ} = \frac{5}{12} - \frac{5}{12} = 0$
Q3. If $\sin A=\frac{3}{4},$ calculate $\cos A$ and $\tan A$ .
Answer:
Suppose $\Delta$ ABC is a right-angled triangle in which $\angle B = 90°$ and we have $\sin A=\frac{3}{4},$
So,
Let the length of AB be 4 units and the length of BC = 3 units. So, by using Pythagoras' theorem,
$AB = \sqrt{16-9} = \sqrt{7}$ units
Therefore,
$\cos A = \frac{AB}{AC} = \frac{\sqrt{7}}{4}$ and $\tan A = \frac{BC}{AB} = \frac{3}{\sqrt{7}}$
Q4. Given $15 \cot A=8,$ find $\sin A$ and $\sec A$ .
Answer:
We have,
$15 \cot A=8$ $\Rightarrow \cot A =\frac{8}{15}$
It implies that in the triangle ABC, in which $\angle B =90°$. The length of AB is 8 units, and the length of BC = 15 units
Now, by using Pythagoras' theorem,
$AC = \sqrt{64 +225} = \sqrt{289}$
$\Rightarrow AC =17$ units
So, $\sin A = \frac{BC}{AC} = \frac{15}{17}$
and $\sec A = \frac{AC}{AB} = \frac{17}{8}$
Q5. Given $\sec \theta =\frac{13}{12},$ calculate all other trigonometric ratios.
Answer:
We have,
$\sec \theta =\frac{13}{12},$
This means that the hypotenuse of the triangle is 13 units, and the base is 12 units.
Let ABC be a right-angled triangle in which $\angle$ B is 90 and AB is the base, BC is the perpendicular height, and AC is the hypotenuse.
By using Pythagoras' theorem,
$BC = \sqrt{169-144}=\sqrt{25}$
$\Rightarrow BC = 5$ units
Therefore,
$\sin \theta = \frac{BC}{AC}=\frac{5}{13}$
$\cos \theta = \frac{BA}{AC}=\frac{12}{13}$
$\tan \theta = \frac{BC}{AB}=\frac{5}{12}$
$\cot \theta = \frac{BA}{BC}=\frac{12}{5}$
$\sec \theta = \frac{AC}{AB}=\frac{13}{12}$
$\csc \theta = \frac{AC}{BC}=\frac{13}{5}$
Answer:
We have, A and B are two acute angles of triangle ABC and $\cos A =\cos B$.
According to the question, in triangle ABC,
$\cos A =\cos B$
$\frac{AC}{AB}=\frac{BC}{AB}$
$\Rightarrow AC = AB$
Therefore, $\angle$ A = $\angle$ B [angles opposite to equal sides are equal]
Q7. If $\cot \theta =\frac{7}{8},$ evaluate: $(i)\; \frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$ $(ii)\; \cot ^{2}\theta$
Answer:
Given that,
$\cot \theta =\frac{7}{8}$
$\therefore$ perpendicular (AB) = 8 units and Base (BC) = 7 units
Draw a right-angled triangle ABC in which $\angle B =90°$
Now, by using Pythagoras' theorem,
$AC^2 = AB^2+BC^2$
$AC = \sqrt{64 +49} =\sqrt{113}$
So, $\sin \theta = \frac{AB}{AC} = \frac{8}{\sqrt{113}}$
and $\cos \theta = \frac{BC}{AC} = \frac{7}{\sqrt{113}}$
$\Rightarrow \cot \theta =\frac{\cos \theta}{\sin \theta} = \frac{7}{8}$
$(i)\; \frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
$\Rightarrow \frac{(1-\sin^2\theta)}{(1-\cos^2\theta)} = \frac{\cos^2\theta}{\sin^2\theta} = \cot ^2\theta=(\frac{7}{8})^2 = \frac{49}{64}$
$(ii)\; \cot ^{2}\theta$
$=(\frac{7}{8})^2 = \frac{49}{64}$
Q8. If $3\cot A=4,$ check wether $\frac{1-\tan ^{2}A}{1+\tan ^{2}A}=\cos ^{2}A-\sin ^{2}A$ or not.
Answer:
Given that,
$3\cot A=4,$
$\Rightarrow \cot = \frac{4}{3} = \frac{base}{perp.}$
ABC is a right-angled triangle in which $\angle B =90°$ and the length of the base AB is 4 units and the length of the perpendicular is 3 units
By using Pythagoras' theorem, in triangle ABC,
$\\AC^2=AB^2+BC^2\Rightarrow AC = \sqrt{16+9}\Rightarrow AC = \sqrt{25}$
$\Rightarrow AC = 5$ units
So,
$\tan A = \frac{BC}{AB} = \frac{3}{4}$
$\cos A = \frac{AB}{AC} = \frac{4}{5}$
$\sin A = \frac{BC}{AC} = \frac{3}{5}$
$\frac{1-\tan ^{2}A}{1+\tan ^{2}A}=\cos ^{2}A-\sin ^{2}A$
Putting the values of the above trigonometric ratios, we get;
$\Rightarrow \frac{1-\frac{9}{16}}{1+\frac{9}{16}} = \frac{16}{25}-\frac{9}{25}$
$\Rightarrow \frac{7}{25} = \frac{7}{25}$
LHS $=$ RHS
Q9. In triangle $ABC$ , right-angled at $B$ , if $\tan A =\frac{1}{\sqrt{3}},$ find the value of:
$(i) \sin A\: \cos C + \cos A\: \sin C$
$(ii) \cos A\: \cos C + \sin A\: \sin C$
Answer:
Given a triangle ABC, right-angled at B and $\tan A =\frac{1}{\sqrt{3}}$ $\Rightarrow A=30°$
According to question, $\tan A =\frac{1}{\sqrt{3}} = \frac{BC}{AB}$
By using Pythagoras' theorem,
$\\AC^2 = AB^2+BC^2\Rightarrow AC = \sqrt{1+3} =\sqrt{4}$
$\Rightarrow AC = 2$
Now,
$\\\sin A = \frac{BC}{AC} = \frac{1}{2}, \sin C =\frac{AB}{AC} = \frac{\sqrt{3}}{2}, \cos A = \frac{AB}{AC} = \frac{\sqrt{3}}{2}, \cos C = \frac{BC}{AC} = \frac{1}{2}$
Therefore,
$(i) \sin A\: \cos C + \cos A\: \sin C$
$= \frac{1}{2}\times\frac{1}{2}+\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}=\frac{1}{4} +\frac{3}{4} = 1$
$(ii) \cos A\: \cos C + \sin A\: \sin C$
$= \frac{\sqrt{3}}{2}\times \frac{1}{2}+\frac{1}{2}\times\frac{\sqrt{3}}{2}= \frac{\sqrt{3}}{4}+\frac{\sqrt{3}}{4}= \frac{\sqrt{3}}{2}$
Answer:
We have, PR + QR = 25 cm.............(i)
PQ = 5 cm and $\angle Q =90°$
According to the question,
In triangle $\Delta$ PQR,
By using Pythagoras' theorem,
$PR^2 = PQ^2+QR^2$
$\Rightarrow PQ^2 =PR^2-QR^2$
$\Rightarrow 5^2= (PR-QR)(PR+QR)$
$\Rightarrow 25 = 25(PR-QR)$
$\Rightarrow PR - QR = 1$........(ii)
From equation(i) and equation(ii), we get;
PR = 13 cm and QR = 12 cm.
Therefore,
$\sin P= \frac{QR}{PR}= \frac{12}{13}$
$\cos P = \frac{PQ}{RP} = \frac{5}{13}$
$\tan P = \frac{\sin P}{\cos P} = \frac{12}{5}$
Q11. State whether the following are true or false. Justify your answer.
(i) The value of $\tan A$ is always less than 1.
(ii) $\sec A=\frac{12}{5}$ for some value of angle A.
(iii) $\cos A$ is the abbreviation used for the cosecant of angle A.
(iv) $\cot A$ is the product of cot and A.
(v) $\sin \theta =\frac{4}{3}$ for some angle $\theta .$
Answer:
(i) False,
because $\tan 60 = \sqrt{3}$ , which is greater than 1
(ii) True,
because $\sec A \geq 1$
(iii) False,
Because the $\cos A$ abbreviation is used for cosine A.
(iv) False,
because the term $\cot A$ is a single term, not a product.
(v) False,
because $\sin \theta$ lies between (-1 to +1) [ $-1\leq \sin \theta\leq 1$]
NCERT Introduction to Trigonometry Class 10 Questions and Answers Exercise: 8.2 Page number: 127 Total questions: 4 |
$(i) \sin 60°\cos 30°+\sin30° \cos 60°$
Answer:
As we know,
the value of $\sin 60° = \frac{\sqrt{3}}{2} = \cos 30°$ , $\sin 30° = \frac{1}{2}=\cos 60°$
$\sin 60°\cos 30°+\sin30° \cos 60°$
$= \frac{\sqrt{3}}{2}.\frac{\sqrt{3}}{2}+ \frac{1}{2}.\frac{1}{2}\\$
$=\frac{3}{4}+\frac{1}{4}$
$=1$
$(ii)\: 2\tan ^{2}45°+ 2\cos ^{2}30°- 2\sin ^{2}60°$
Answer:
We know the value of
$\tan 45°= 1$ and
$\cos 30° = \sin 60° = \frac{\sqrt{3}}{2}$
According to the question,
$=2\tan ^{2}45°+ 2\cos ^{2}30°- 2\sin ^{2}60°$
$\\=2(1)^2+ 2(\frac{\sqrt{3}}{2})^2-2(\frac{\sqrt{3}}{2})^2\\=2$
$(iii)\: \frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
Answer:
$\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
We know the value of
$\cos 45^{\circ} = \frac{1}{\sqrt{2}}$ , $\sec 30^{\circ}= \frac{2}{\sqrt {3}}$ and $\operatorname{cosec}30^{\circ} =2$ ,
After putting these values
$=\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}$
$=\frac{\frac{1}{\sqrt{2}}}{\frac{(2+2\sqrt{3})}{ \sqrt{3}}}$
$\\=\frac{\sqrt{3}}{2\sqrt{2}+2\sqrt{6}}\times\frac{2\sqrt{2}-2\sqrt{6}}{2\sqrt{2}-2\sqrt{6}}$
$\\=\frac{2\sqrt{6}-2\sqrt{18}}{-16}\\ =2(\frac{\sqrt{6}-3\sqrt{3}}{-16}) = \frac{3\sqrt{3}-\sqrt{6}}{8}$
$(iv)\: \frac{\sin 30°+\tan 45°-\operatorname{cosec} 60°}{\sec 30°+\cos 60°+\cot 45°}$
Answer:
$\frac{\sin 30°+\tan 45°-\operatorname{cosec} 60°}{\sec 30°+\cos 60°+\cot 45°}$ ..................(i)
It is known that the values of the given trigonometric functions,
$\\\sin 30° = \frac{1}{2}=cos 60°, \tan 45° = 1=\cot 45°, \sec 30° = \frac{2}{\sqrt{3}}=\operatorname{cosec} 60°$
Putting all these values in equation (i), we get;
$\\\Rightarrow \frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{3}{2}-\frac{2}{\sqrt{3}}}{\frac{3}{2}+\frac{2}{\sqrt{3}}}= \frac{3\sqrt{3}-4}{3\sqrt{3}+4}\times\frac{4-3\sqrt{3}}{4-3\sqrt{3}}= \frac{12\sqrt{3}-27-16+12\sqrt{3}}{-11}= \frac{43-24\sqrt{3}}{11}$
$(v)\frac{5\cos^{2}60°+ 4\sec^{2}30°-\tan^{2}45°}{\sin^{2}30°+\cos^{2}30°}$
Answer:
$\frac{5\cos^{2}60°+ 4\sec^{2}30°-\tan^{2}45°}{\sin^{2}30°+\cos^{2}30°}$ .....................(i)
We know the values of,
$\\\cos 60° = \frac{1}{2}= \sin 30°, \sec 30° = \frac{2}{\sqrt{3}}, \tan 45° = 1, \cos 30° = \frac{\sqrt{3}}{2}$
By substituting all these values in equation(i), we get;
$\\\Rightarrow \frac{5.(\frac{1}{2})^2+4.(\frac{2}{\sqrt{3}}) ^2-1}{(\frac{1}{2})^2+(\frac{\sqrt{3}}{2})^2}= \frac{\frac{5}{4}-1+\frac{16}{3}}{1}= \frac{\frac{1}{4}+\frac{16}{3}}{1}=\frac{67}{12}$
Q2. Choose the correct option and justify your choice :
$(i)\, \frac{2\: \tan 30°}{1+\tan ^{2}30°}=$
$(A)\: \sin 60°$ $(B)\: \cos 60°$ $(C)\: \tan 60°$ $(D)\: \sin 30°$
Answer:
Put the value of $\tan 30°$ in the given question-
$\frac{2\: \tan 30°}{1+\tan ^{2}30°}=\frac{2\times\frac{1}{\sqrt{3}}}{1+(\frac{1}{\sqrt{3}})^2}=\frac{2}{\sqrt{3}}\times \frac{3}{4}=\frac{\sqrt{3}}{2} = \sin 60°$
The correct option is (A).
Q2. Choose the correct option and justify your choice :
$(ii)\: \frac{1-\tan^{2}45°}{1+ \tan^{2}45°}=$
$(A)\: \tan \: 90°$ $(B)\: 1$ $(C) \: \sin 45°$ $(D) \: 0$
Answer:
$\frac{1-\tan^{2}45°}{1+ \tan^{2}45°}=$
We know that $\tan 45° = 1$
So, $\frac{1-1}{1+1}=0$
The correct option is (D).
Q2. Choose the correct option and justify your choice :
$(iii)\sin \: 2A=2\: \sin A$ is true when $A$ =
$(A)0°$ $(B)\: 30°$ $(C)\: 45°$ $(D)\: 60°$
Answer:
The correct option is (A).
$\sin \: 2A=2\: \sin A$
We know that $\sin 2A = 2\sin A \cos A$
So, $2\sin A \cos A = 2\sin A$
$\\\cos A = 1, A = 0°$
Q2. Choose the correct option and justify your choice :
$(iv)\frac{2\: \tan 30°}{1-tan^{2}\: 30°}=$
$(A)\: \cos 60°$ $(B)\: \sin 60°$ $(C)\: \tan 60°$ $(D)\: \sin 30°$
Answer:
Put the value of $tan 30°={\frac{1}{\sqrt{3}}}$
$\\=\frac{2\: \tan 30°}{1-tan^{2}\: 30°}=\frac{2\times \frac{1}{\sqrt{3}}}{1-(\frac{1}{\sqrt{3}})^2}\\ =\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}\\ =\frac{2}{\sqrt{3}}\times \frac{3}{2}\\ =\sqrt{3}= \tan 60°$
The correct option is (C).
Answer:
Given that,
$\tan (A+B) = \sqrt{3} =\tan 60°$
So, $A + B = 60^o$ ..........(i)
$\tan (A-B) = \frac{1}{\sqrt{3}} =\tan 30°$
therefore, $A - B = 30^o$ .......(ii)
By solving equations (i) and (ii), we get;
$A = 45^o$ and $B = 15^o$
Q4. State whether the following are true or false. Justify your answer.
$(i) \sin (A + B) = \sin A + \sin B$
$(ii)$ The value of $\sin \theta$ increases as $\theta$ increases.
$(iii)$ The value of $\cos \theta$ increases as $\theta$ increases.
$(iv)\sin \theta =\cos \theta$ for all values of $\theta$ .
$(v) \cot A$ is not defined for $A=0°$
Answer:
(i) False,
Let A = B = $45°$
Then, $\\\sin(45°+45°) = \sin 45°+\sin 45°$
$\sin 90° = \frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}} \neq 1$
(ii) True,
Take $\theta = 0°,\ 30°,\ 45°$
when
$\theta$ = 0 then zero(0),
$\theta$ = 30 then value of $\sin \theta$ is $\frac{1}{2}$ = 0.5
$\theta$ = 45 then value of $\sin \theta$ is $\frac{1}{\sqrt2}$ = 0.707
(iii) False,
$\cos 0° = 1,\ \cos 30° = \frac{\sqrt{3}}{2}= 0.87,\ \cos 45° = \frac{1}{\sqrt2}= 0.707$
(iv) False,
Let $\theta = 0°$
$\\\sin 0° = 0$ and $\cos 0°=1$
(v) True,
$\cot 0° = \frac{\cos 0°}{\sin 0°}=\frac{1}{0}$ (not defined).
NCERT Introduction to Trigonometry Class 10 Questions and Answers |
Q1. Express the trigonometric ratios $\sin A,\sec, and \tan A$ in terms of $\cot A$.
Answer:
We know that $\csc^2A -\cot^2A = 1$
(i)
$\\\Rightarrow \frac{1}{\sin^2A}= 1+\cot^2A\\ \Rightarrow\sin^2A = \frac{1}{1+\cot^2A}\\ \Rightarrow \sin A = \frac{1}{\sqrt{1+\cot^2A}}$
(ii) We know the identity of
$\sec ^2 A-\tan ^2 A=1$
$\Rightarrow \sec^2 A=1+\frac{1}{\cot^2\theta}$
$\Rightarrow \sec A=\frac{\sqrt{\cot^2\theta+1}}{\cot\theta}$
(iii) $\tan A = \frac{1}{\cot A}$
Q2. Write all the other trigonometric ratios of $\angle A$ in terms of $\sec A$.
Answer:
We know that the identity $\sin^2 A + \cos^2 =1$
$\\\sin^2 A =1- \cos^2 A$
$\sin^2A = 1-\frac{1}{\sec^2A}=\frac{\sec^2A -1}{\sec^2A}$
$\sin A =\sqrt{\frac{\sec^2A -1}{\sec^2A}}=\frac{{}\sqrt{\sec^2A -1}}{\sec A}$
$cosec A =\frac{\sec A}{\sqrt{\sec^2A -1}}$
$\tan A = \frac{\sin A}{\cos A} = \sqrt{\sec^2A -1}$
$\cot A =\frac{1}{ \sqrt{\sec^2A -1}}$
$\cos A=\frac{1}{\sec A}$
Q3. Choose the correct option. Justify your choice.
$(i) 9\sec^{2}A-9\tan^{2}A=$
(A) 1 (B) 9 (C) 8 (D) 0
Answer:
The correct option is (B) = 9
$9\sec^2A-9 \tan ^2A = 9(\sec^2A- \tan ^2A)$ .............(i)
And it is known that sec2A - tan2A = 1
Therefore, equation (i) becomes, $9\times 1 = 9$
Q3. Choose the correct option. Justify your choice.
$(ii)(1+\tan \theta +\sec \theta )(1+\cot \theta -cosec\: \theta )=$
(A) 0 (B) 1 (C) 2 (D) –1
Answer:
The correct option is (C)
$(1+\tan \theta +\sec \theta )(1+\cot \theta -cosec\: \theta )$ .......................(i)
We can write his above equation as;
$=(1+\frac{\sin \theta}{\cos \theta} +\frac{1}{\cos \theta})(1+\frac{\cos\theta}{\sin \theta} -\frac{1}{sin\theta})$
$= \frac{(1+\sin\theta+\cos\theta)}{\cos\theta.\sin\theta}\times (\frac{(\sin\theta+\cos\theta-1}{\sin\theta.\cos\theta})$
$= \frac{(\sin\theta+\cos\theta)^2-1^2}{\sin\theta.\cos\theta}$
$= \frac{\sin^2\theta+\cos^2\theta+2\sin\theta.\\cos\theta-1}{\sin\theta.\cos\theta}$
$= 2\times\frac{\sin\theta.\cos\theta}{\sin\theta.\cos\theta}$
$= 2$
Q3. Choose the correct option. Justify your choice.
$(iii) (\sec A+\tan A)(1-\sin A)=$
$(A)\sec A$ $(B)\sin A$ $(C)cosec A$ $(D) \cos A$
Answer:
The correct option is (D)
$(\sec A+\tan A)(1-\sin A)$
$= ( \frac{1}{\cos A}+\frac{\sin A}{\cos A})(1-\sin A)= \frac{1+\sin A}{\cos A}(1-\sin A)= \frac{1-\sin^2 A}{\cos A}= \cos A$
Q3. Choose the correct option. Justify your choice.
$(iv) \frac{1+\tan ^{2}A}{1+\cot ^{2}A}=$
$(A) \sec ^{2}A$ $(B) -1$ $(C) \cot ^{2}A$ $(D) \tan ^{2}A$
Answer:
The correct option is (D)
$\frac{1+\tan ^{2}A}{1+\cot ^{2}A}$
We know that $\cot A = \frac{1}{\tan A}$
therefore,
$\\\Rightarrow \frac{1+\tan ^{2}A}{1+\frac{1}{\tan ^{2}A}}= \tan^2A\times(\frac{1+\tan^2 A}{1+\tan^2A})= \tan^2A$
$(i) (\csc \theta -\cot \theta )^{2}= \frac{1-\cos \theta }{1+\cos \theta }$
Answer:
We need to prove-
$(\csc \theta -\cot \theta )^{2}= \frac{1-\cos \theta }{1+\cos \theta }$
Now, taking LHS,
$(\csc\theta-\cot\theta)^2 = (\frac{1}{\sin\theta}-\frac{\cos\theta}{\sin\theta})^2$
$\\= (\frac{1-\cos\theta}{\sin\theta})^2\\ =\frac{(1-\cos\theta)(1-\cos\theta)}{\sin^2\theta}\\$
$\\=\frac{(1-\cos\theta)(1-\cos\theta)}{1-\cos^2\theta}\\\\ =\frac{(1-\cos\theta)(1-\cos\theta)}{(1-\cos\theta)(1+\cos\theta)}\\\\ =\frac{1-\cos\theta}{1+\cos\theta}$
LHS = RHS
Hence proved.
$(ii) \frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}= 2\sec A$
Answer:
We need to prove-
$\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}= 2\sec A$
Taking LHS;
$\\=\frac{\cos^2A+1+\sin^2A+2\sin A}{\cos A(1+\sin A)}\\\\ =\frac{2(1+\sin A)}{\cos A(1+\sin A)}\\\\ =\frac{2}{\cos A} = 2\sec A$
= RHS
Hence proved.
$(iii)\frac{\tan \theta }{1-\cot \theta }+\frac{\cot \theta }{1-\tan \theta }=1+\sec \theta \csc \theta$
[ Hint: Write the expression in terms of $\sin \theta$ and $\cos\theta$ ]
Answer:
We need to prove-
$\frac{\tan \theta }{1-\cot \theta }+\frac{\cot \theta }{1-\tan \theta }=1+\sec \theta \:cosec \theta$
Taking LHS;
$\\\Rightarrow \frac{\tan^2 \theta }{\tan \theta-1 }+\frac{1}{\tan\theta(1-\tan \theta)}=\frac{\tan^3\theta-\tan^4\theta+\tan\theta-1}{(\tan\theta-1).\tan\theta.(1-\tan\theta)}= \frac{(\tan^3\theta-1)(1-\tan\theta)}{\tan\theta.(\tan\theta-1)(1-\tan\theta)}\\$
By using the identity $a^3-b^3=(a-b)(a^2+ab+b^2)$
$\\\Rightarrow \frac{(\tan\theta -1)(\tan^2\theta+1+\tan\theta)}{\tan\theta(\tan\theta -1)}= \tan\theta+1+\frac{1}{\tan\theta}= 1+\frac{1+\tan^2\theta}{\tan\theta}= 1+\sec^2\theta \times \frac{1}{\tan\theta}= 1+\sec\theta.\csc\theta\\\\ =RHS$
Hence proved.
$(iv)\frac{1+\sec A}{\sec A}=\frac{\sin ^{2}A}{1-\cos A}$
[ Hint: Simplify LHS and RHS separately.]
Answer:
We need to prove-
$\frac{1+\sec A}{\sec A}=\frac{\sin ^{2}A}{1-\cos A}$
Taking LHS;
$\\\Rightarrow \frac{1+\sec A}{\sec A}= \frac{(1+\frac{1}{\cos A})}{\sec A}= 1+\cos A$
Taking RHS;
We know that identity $1-\cos^2\theta = \sin^2\theta$
$\\\Rightarrow \frac{\sin ^{2}A}{1-\cos A}= \frac{1-\cos^2 A}{1-\cos A}= \frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}= 1+\cos A$
LHS = RHS
Hence proved.
Q4. Prove the following identities, where the angles involved are acute angles for which the expressions are defined. $(v) \frac{\cos A-\sin A+1}{\cos A+\sin A-1}= \csc A+\cot A$ , using the identity $\csc ^{2}A= 1+\cot ^{2}A$
Answer:
We need to prove -
$\frac{\cos A-\sin A+1}{\cos A+\sin A-1}= cosec A+\cot A$
Dividing the numerator and denominator by $\sin A$ , we get;
$\\=\frac{\cot A-1+\csc A}{\cot A +1-\csc A}\\\\= \frac{(\cot A+\csc A)-(\csc^2 A-\cot^2A)}{\cot A +1-\csc A}\\\\= \frac{(\csc A+\cot A)(1-\csc A+\cot A)}{\cot A +1-\csc A}\\\\= \csc A+\cot A\\\\ =RHS$
Hence Proved.
$(vi)\sqrt{\frac{1+\sin A}{1-\sin A}}= \sec A+\tan A$
Answer:
We need to prove -
$\sqrt{\frac{1+\sin A}{1-\sin A}}= \sec A+\tan A$
Taking LHS;
By rationalising the denominator, we get;
$\\= \sqrt{\frac{1+\sin A}{1-\sin A}\times \frac{1+\sin A}{1+\sin A}}\\\\ = \sqrt{\frac{(1+\sin A)^2}{1-\sin^2A}}\\\\ =\frac{1+\sin A}{\cos A}\\\\ = \sec A + \tan A\\\\ = RHS$
Hence proved.
Q4. Prove the following identities, where the angles involved are acute angles for which the expressions are defined. $(vii)\frac{\sin \theta -2\sin ^{3}\theta }{2\cos ^{3}\theta -\cos \theta }= \tan \theta$
Answer:
We need to prove -
$\frac{\sin \theta -2\sin ^{3}\theta }{2\cos ^{3}\theta -\cos \theta }= \tan \theta$
Taking LHS;
[we know the identity $\cos2\theta = 2\cos^2\theta-1=\cos^2\theta-\sin^2\theta$ ]
$\\\Rightarrow \frac{\sin \theta(1 -2\sin ^{2}\theta) }{\cos\theta(2\cos ^{2}\theta -1) }= \frac{\sin\theta(\sin^2\theta+\cos^2\theta-2\sin^2\theta)}{\cos\theta.\cos2\theta}= \frac{\sin\theta.\cos2\theta}{\cos\theta.\cos2\theta}= \tan\theta =RHS$
Hence proved.
$(viii)(\sin A+\csc A)^{2}+(\cos A+\sec A)^{2}= 7+\tan ^{2}A+\cot ^{2}A$
Answer:
Given the equation,
$(\sin A+\csc A)^{2}+(\cos A+\sec A)^{2}= 7+\tan ^{2}A+\cot ^{2}A$ ..................(i)
Taking LHS;
$(\sin A+\csc A)^{2}+(\cos A+\sec A)^{2}$
$\\\Rightarrow \sin^2 A+\csc^2A +2+\cos^2A+\sec^2A+2= 1+2+2+(1+\cot^2A)+(1+\tan^2A)$
[since $\sin^2\theta +\cos^2\theta = 1, \csc^2\theta-\cot^2\theta =1, \sec^2\theta-\tan^2\theta=1$ ]
$=7+\csc^2A+\tan^2A\\ =RHS$
Hence proved
$(ix)\:(cosec A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
[ Hint: Simplify LHS and RHS separately.]
Answer:
We need to prove-
$(coesc A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$
Taking LHS;
$\\\Rightarrow (cosec A-\frac{1}{\csc A})(\sec A-\frac{1}{\sec A})=\frac{(cosec^2-1)}{cosec A}\times\frac{\sec^2A-1}{\sec A}=\frac{\cot^2A}{cosec A}.\frac{\tan^2A}{\sec A}=\sin A .\cos A$
Taking RHS;
$\\\Rightarrow\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}=\frac{\sin A .\cos A}{\sin^2A+\cos^2A}=\sin A.\cos A$
LHS = RHS
Hence proved.
$(x) (\frac{1+\tan ^{2}A}{1+\cot ^{2}A})= (\frac{1-\tan A}{1-\cot A})^{2}= \tan ^{2}A$
Answer:
We need to prove,
$(\frac{1+\tan ^{2}A}{1+\cot ^{2}A})= (\frac{1-\tan A}{1-\cot A})^{2}= \tan ^{2}A$
Taking LHS;
$\\\Rightarrow \frac{1+\tan ^{2}A}{1+\cot ^{2}A} = \frac{\sec^2A}{\csc^2A}=\tan^2A$
Taking RHS;
$\\=(\frac{1-\tan A}{1-\cot A})^2\\\\= (\frac{1-\frac{\sin A}{\cos A} }{1-\frac{\cos A}{\sin A}})^2\\\\ = \frac{(\cos A -\sin A)^2(\sin^2A)}{(\sin A-\cos A)^2(\cos^2A)}\\\\ =\tan^2A$
LHS = RHS
Hence proved.
Exercise-wise NCERT Solutions of Introduction to Trigonometry Class 10 Maths Chapter 8 are provided in the links below.
Question:
$(\sin \theta+\operatorname{cosec} \theta)^2+(\cos \theta+\sec \theta)^2=$?
Answer:
$(\sin \theta+\operatorname{cosec} \theta)^2+(\cos \theta+\sec \theta)^2$
= $(\sin^2 \theta+\operatorname{cosec}^2 \theta+2\sin \theta\operatorname{cosec} \theta)+(\cos^2 \theta+\sec^2 \theta+2\cos \theta\sec \theta)$
= $\sin^2 \theta+\cos^2 \theta+\operatorname{cosec}^2 \theta+2\sin \theta\operatorname{cosec} \theta+\sec^2 \theta+2\cos \theta\sec \theta$
= $1+1+\cot^2 \theta+2+1+\tan^2 \theta+2$
= $7+\cot^2 \theta+\tan^2 \theta$
Hence, the correct answer is $7+\tan^2 \theta+\cot^2 \theta$.
Students will explore the following topics in NCERT Class 10 Maths Chapter 8 Introduction to Trigonometry:
If an arc of length $l$ in a circle with radius $r$ subtends an angle of $\theta$ radians.
$l = r\theta$ and $θ = \frac{l}{r}$
Conversion Between Radian and Degree Measures:
The trigonometric ratios of the angle A in right triangle ABC are defined as follows-
$\begin{aligned} & \text { sine of } \angle A=\frac{\text { side oppositeto angle } A}{\text { hypotenuse }}=\frac{B C}{A C} \\ & \text { cosine of } \angle A=\frac{\text { side adjacent to angle } A}{\text { hypotenuse }}=\frac{A B}{A C} \\ & \text { tangent of } \angle A=\frac{\text { side opposite to angle } A}{\text { side adjacentto angle } A}=\frac{B C}{A B} \\ & \text { cosecant of } \angle A=\frac{\text { hypotenuse }}{\text { side opposite to angle } A}=\frac{A C}{B C} \\ & \text { secant of } \angle A=\frac{\text { hypotenuse }}{\text { side adjacent to angle } A}=\frac{A C}{A B} \\ & \text { cotangent of } \angle A=\frac{\text { side adjacent to angle } A}{\text { side opposite to angle } A}=\frac{A B}{B C}\end{aligned}$
$\angle A$ | 0° | 30° | 45° | 60° | 90° |
Sin A |
0 | $\frac{1}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{\sqrt{3}}{2}$ |
1 |
Cos A |
1 | $\frac{\sqrt{3}}{2}$ | $\frac{1}{\sqrt{2}}$ | $\frac{1}{2}$ |
0 |
Tan A |
0 | $\frac{1}{\sqrt{3}}$ |
1 | $\sqrt{3}$ |
Not Defined |
Cosec A |
Not Defined |
2 | $\sqrt{2}$ | $\frac{2}{\sqrt{3}}$ |
1 |
Sec A |
1 | $\frac{2}{\sqrt{3}}$ | $\sqrt{2}$ |
2 |
Not Defined |
Cot A |
Not Defined | $\sqrt{3}$ |
1 | $\frac{1}{\sqrt{3}}$ |
0 |
Also, in a right triangle with an angle $\theta$
sin θ = Opposite/Hypotenuse
cos θ = Adjacent/Hypotenuse
tan θ = Opposite/Adjacent
cosec θ = Hypotenuse/Opposite
sec θ = Hypotenuse/Adjacent
cot θ = Adjacent/Opposite
sin θ = 1/(cosec θ)
cosec θ = 1/(sin θ)
cos θ = 1/(sec θ)
sec θ = 1/(cos θ)
tan θ = 1/(cot θ)
cot θ = 1/(tan θ)
For an angle 'θ', the trigonometric ratios of its complementary angle (90° – θ) are:
sin (90° – θ) = cos θ
cos (90° – θ) = sin θ
tan (90° – θ) = cot θ
cot (90° – θ) = tan θ
sec (90° – θ) = cosec θ
cosec (90° – θ) = sec θ
sin2 θ + cos2 θ = 1
sin2 θ = 1 – cos2 θ
cos2 θ = 1 – sin2 θ
cosec2 θ – cot2 θ = 1
cot2 θ = cosec2 θ – 1
sec2 θ – tan2 θ = 1
tan2 θ = sec2 θ – 1
We at Careers360 compiled all the NCERT class 10 Maths solutions in one place for easy student reference. The following links will allow you to access them.
Also read,
NCERT Notes Class 10 Maths Chapter 8 Introduction to Trigonometry
NCERT Exemplar Class 10 Maths Solutions Chapter 8 - Introduction To Trigonometry And Its Equations
Given below are the subject-wise exemplar solutions of class 10 NCERT:
Here are some useful links for NCERT books and the NCERT syllabus for class 10:
Frequently Asked Questions (FAQs)
These NCERT Solutions for Class 10 Maths Chapter 8 contain the basic concepts of trigonometry, like trigonometric ratios, trigonometric identities, and their applications in the real world.
The easiest way to understand trigonometric ratios is by taking a right-angle triangle, where sine, cosine, and tangent represent ratios of different sides as
sin θ = Opposite / Hypotenuse
cos θ = Adjacent / Hypotenuse
tan θ = Opposite / Adjacent
To solve trigonometric identities in Class 10 Maths Chapter 8, use the basic trigonometric identities as sin2 θ + cos2 θ = 1 and try to express terms in sine and cosine. Also, use simplification and factorisation to solve these types of problems.
To score full marks in Class 10 Trigonometry, memorise all the important trigonometric ratios, identities, and formulas. Practice NCERT examples, exercises, and questions from the previous years. Also, regularly revise and give mock tests to improve scores.
Trigonometry is used in various fields of real life. It is mainly used for calculating the height and distance of real-life objects, and for building bridges and roads. Also, it is used in navigation systems like GPS.
On Question asked by student community
You must be at least 14 years old by December 31st of the year 2027
Since your date of birth is 29 January 2013, you will turn 14 in January 2027, which is before the December 31st deadline for the 2027 exam.
Hence you are eligible..
Good luck!!
Hello,
If you want to get your 10th marksheet online, you just need to visit an official website like https://www.cbse.gov.in/ or https://results.cbse.nic.in/ for the CBSE board, and for the state board, you can check their website and provide your roll number, security PIN provided by the school, and school code to download the result.
I hope it will clear your query!!
Hello, if you are searching for Class 10 books for exam preparation, the right study material can make a big difference. Standard textbooks recommended by the board should be your first priority as they cover the syllabus completely. Along with that, reference books and guides can help in practicing extra questions and understanding concepts in detail. You can check the recommended books for exam preparation from the link I am sharing here.
https://school.careers360.com/ncert/ncert-books-for-class-10
https://school.careers360.com/boards/cbse/cbse-best-reference-books-for-cbse-class-10-exam
Hello Dinesh !
As per CBSE board guidelines for internal assessment for class 10th you will have to give a 80 marks board exam and 20 marks internal assessment. The internal assessment will be at the end of your year.
For knowing the definite structure of the internal assessment you will have to ask your teachers or your seniors in the school as CBSE has provided flexibility in choosing the methods of internal assessment to schools. For more details related to assessment scheme for class 10 given by CBSE you can visit: Assessment scheme (http://cbseacademic.nic.in/web_material/CurriculumMain2Sec/Curriculum_Sec_2021- 22.pdf)
I Hope you have understood it!
Hello
You asked about Class 10 sample paper board exam and most important questions. Practicing sample papers and previous year questions is one of the best ways to prepare for the board exam because it gives a clear idea of the exam pattern and types of questions asked. Schools and teachers usually recommend students to solve at least the last five years question papers along with model papers released by the board.
For Class 10 board exams, the most important areas are Mathematics, Science, Social Science, English, and Hindi or regional language. In Mathematics, questions from Algebra, Linear Equations, Geometry, Trigonometry, Statistics, and Probability are repeatedly seen. For Science, the key chapters are Chemical Reactions, Acids Bases and Salts, Metals and Non metals, Life Processes, Heredity, Light and Electricity. In Social Science, priority should be given to Nationalism, Resources and Development, Agriculture, Power Sharing, Democratic Politics, and Economics related topics. In English, focus on unseen passages, grammar exercises, and important writing tasks like letter writing and essays.
Follow these steps to access the SQPs and marking schemes:
Step 1: Visit https://cbseacademic.nic.in/
Step 2: Click on the link titled “CBSE Sample Papers 2026”
Step 3: A PDF will open with links to Class 10 and 12 sample papers
Step 4: Select your class (Class 10 or Class 12)
Step 5: Choose your subject
Step 6: Download both the sample paper and its marking scheme
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters