CBSE Class 10th Exam Date:17 Feb' 26 - 17 Feb' 26
Trigonometric identities provide a foundation that enables quick solutions to multiple mathematical expressions. This exercise demonstrates applying basic trigonometric ratios of sine, cosine and tangent when performing standard identity simplifications and verifications. The linkage among different trigonometric functions becomes possible through these identities, which enable us to show complex expressions in separate steps. Learning trigonometric connections helps students develop their logical reasoning skills, leading to advanced trigonometric abilities needed for engineering, architecture and physical science fields.
This Story also Contains
Exercise 8.3 in the NCERT Solutions for Class 10 presents three important identities which state \(\sin^2 \theta + \cos^2 \theta = 1\) alongside \(1 + \tan^2 \theta = \sec^2 \theta\) and \(1 + \cot^2 \theta = \csc^2 \theta\). The relationships teach students methods to simplify problems through systematic verification of given expressions. The exercise functions as an essential tool for solidifying the knowledge described in NCERT Books. This exercise represents a fundamental requirement for solving trigonometric problems, which progress into height and distance calculations and advanced mathematical concepts.
Q 1: Express the trigonometric ratios
Answer:
We know that
(i)
(ii) We know the identity of
(iii)
Q 3: Choose the correct option. Justify your choice
(A) 1 (B) 9 (C) 8 (D) 0
Answer:
The correct option is (B) = 9
And it is known that
Therefore, equation (i) becomes,
Q 3: Choose the correct option. Justify your choice
(A) 0 (B) 1 (C) 2 (D) –1
Answer:
The correct option is (C)
we can write his above equation as;
Q 3: Choose the correct option. Justify your choice
Answer:
The correct option is (D)
The above equation can be written as;
We know that
therefore,
Answer:
We need to prove-
Now, taking LHS,
LHS = RHS
Hence proved.
Answer:
We need to prove-
Taking LHS;
= RHS
Hence proved.
[ Hint: Write the expression in terms of
Answer:
We need to prove-
Taking LHS;
By using the identity a 3 - b 3 =(a - b) (a 2 + b 2 +ab)
= RHS
Hence proved.
[ Hint : Simplify LHS and RHS separately]
Answer:
We need to prove-
Taking LHS;
Taking RHS;
We know that identity
LHS = RHS
Hence proved.
Answer:
We need to prove -
Dividing the numerator and denominator by
Hence Proved.
Answer:
We need to prove -
Taking LHS;
By rationalising the denominator, we get;
Hence proved.
Q 4: Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
Answer:
We need to prove -
Taking LHS;
[we know the identity
Hence proved.
Answer:
Given the equation,
Taking LHS;
[since
Hence proved
[ Hint : Simplify LHS and RHS separately]
Answer:
We need to prove-
Taking LHS;
Taking RHS;
LHS = RHS
Hence proved.
Answer:
We need to prove,
Taking LHS;
Taking RHS;
LHS = RHS
Hence proved.
Also read-
1. Understanding basic trigonometric identities: You must learn the essential three trigonometric identities and understand their value for problem simplification and solution.
2. Verifying trigonometric identities: Perform proofs which establish two sides of an equation to be equal by using proper transformations in combination with trigonometric relations.
3. Developing logical and proof-solving skills: Step-by-step logical verification belongs to the set of skills that students need to develop for checking identities and producing mathematical proofs.
4. Preparing for advanced applications: Construct a strong foundation to solve problems utilising height-distance relationships alongside trigonometric equation methods, as well as actual angle measurement scenarios.
Check Out-
Students must check the NCERT solutions for class 10 of the Mathematics and Science Subjects.
Students must check the NCERT Exemplar solutions for class 10 of the Mathematics and Science Subjects.
Frequently Asked Questions (FAQs)
No, calculators are not allowed in Class 10 board exams, so you must rely on your memorised values and identities.
Yes, Exercise 8.3 is very important as identity-based questions frequently appear in CBSE Class 10 board exams
You should at least remember the fundamental identities and standard angle values to solve Exercise 8.3 effectively.
On Question asked by student community
Hello,
You can find the Class 10 Half-Yearly Exam Question Papers for all subjects on the Careers360 website. It provides PDFs of all subject-wise question papers along with answer keys. It also gives you a detailed idea of the exam overview and is very useful for your preparation.
Follow the Link:
Hello,
The CBSE exam fee for Class 10 students is as follows:
For up to 5 subjects: Rs. 1,600 per student
For each additional subject: Rs. 320
Late fee (after the due date): Rs. 2,000
These fees are applicable for students studying in India as per the latest CBSE notification.
The school fee depends upon the particular school.
Hope it helps !
Hello aspirant,
The Sample Question Paper (SQP) and marking guidelines have been made available by the Central Board of Secondary Education (CBSE). Although the board does not formally provide distinct half-yearly sample papers, many of the final CBSE sample papers' questions address subjects that are covered in the exams.
To get the sample papers, you can visit our site through following link:
https://school.careers360.com/boards/cbse/cbse-class-12-half-yearly-sample-papers-2025-26
Thank you
You can get CBSE half yearly english question papers on the Careers360 website by searching for your class and subject. You can view or download the papers in PDF format and use them to prepare well for your exams.
Hello! If you are looking for the CM Shri School admission result, here is the link provided by Careers360. You can check your result directly and stay updated about the admission status. I’ll be attaching it for your reference.
https://school.careers360.com/articles/cm-shri-school-admission-test-2025
https://school.careers360.com/articles/cm-shri-school-admission-test-result-2025
This ebook serves as a valuable study guide for NEET 2025 exam.
This e-book offers NEET PYQ and serves as an indispensable NEET study material.
As per latest syllabus. Physics formulas, equations, & laws of class 11 & 12th chapters
As per latest syllabus. Chemistry formulas, equations, & laws of class 11 & 12th chapters
As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE
As per latest syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters