Careers360 Logo
NCERT Exemplar Class 10 Maths Solutions Chapter 10 Constructions

NCERT Exemplar Class 10 Maths Solutions Chapter 10 Constructions

Edited By Komal Miglani | Updated on Apr 09, 2025 04:21 PM IST | #CBSE Class 10th

Have you ever thought about how accurate measurements are made in engineering projects or how architects design buildings? Construction is the answer! This chapter teaches students a clear understanding of geometric constructions. Major topics such as the division of a line segment, the construction of tangents to a circle, and the creation of geometric shapes under given conditions are covered in this chapter. NCERT exemplar Class 10 Maths chapter 10 solutions are prepared by experts considering the practical nature of this chapter so that students can learn the topics of NCERT Class 10 Maths related to constructions.

This Story also Contains
  1. NCERT Exemplar Class 10 Maths Solutions Chapter 10
  2. NCERT Class 10 Maths Exemplar Solutions for Other Chapters:
  3. Importance of Solving NCERT Exemplar Class 10 Maths Solutions Chapter 10

These NCERT Exemplar Class 10 Maths chapter 10 solutions provide step-by-step solutions to the construction problems to make it easier for students to understand the chapter and its concepts. Notes for Class 10 Mathematics are provided here, the NCERT Notes for Class 10 Maths.

NCERT Exemplar Class 10 Maths Solutions Chapter 10

Class 10 Maths Chapter 10 Exemplar Solutions Exercise: 10.1
Page number: 114
Total questions: 6

Question:1

To divide a line segment AB in the ratio 5:7, first, a ray AX is drawn so thatBAX is an acute angle, and then at equal distances, points are marked on the ray AX such that the minimum number of these points is
(A) 8 (B) 10 (C) 11 (D) 12

Answer(D) 12
Solution
Given: BAX is an acute angle.
The required ratio is 5:7
Let m = 5, n = 7
57598
Steps of construction
1. Draw any ray AX making an acute angle with AB.
2. Locate 12 points on AX at equal distances. (Because here m+n=12)
3. Join A12B
4. Through the point A5 draw a line parallel to A12B intersecting AB at the point P.
Then AP:PB=5:7
A5PA12B
AA5A5A12=APPB (By Basic Proportionality theorem)
By construction AA5A5A12=57
APPB=57
Hence, the number of points is 12.

Question:2

To divide a line segment AB in the ratio 4:7, a ray AX is drawn first such that BAX is an acute angle and then points A1,A2,A3 are located at equal distances on the ray AX and the point B is joined to:
(A) A12 (B) A11 (C) A10 (D) A9

Answer(B) A11
Solution

Given: BAX is an acute angle
The required ratio is 4:7
Let m = 4, n = 7
m+n=4+7=11
57610
Steps of construction
1. Draw any ray AX making an acute angle with AB.
2. Locate 11 points on AX at equal distances (because m + n = 11)
3. Join A11B
4. Through the point A4 draw a line parallel to A11B intersecting AB at the point P.
Then AP:PB=4:7
Hence, point B is joined to A11.

Question:3

To divide a line segment AB in the ratio 5:6, draw a ray AX such that BAX is an acute angle, then draw a ray BY parallel to AX and the points A1,A2,A3and B1,B2,B3are located at equal distances on ray AX and BY, respectively. Then the points joined are
(A) A5 and B6 (B) A­ and B5 (C) A4 and B5 (D) A5 and B4

Answer(A) A5 and B6

Solution
Given: BAX and ABY both are acute angles and AX parallel to BY
The required ratio is 5:6
Let m = 5 , n = 6
57617
Steps of construction
1. Draw any ray AX making an acute angle with AB.
2. Draw a ray BYAX.
3. Locate the points A1,A2,A3,A4,A5 on AX at equal distances
4. Locate the points B1,B2,B3,B4,B5 on BY at a distance equal to the distance between points on the AX line.
5. Join A5B6.
Let it intersect AB at a point C in the figure.
Then AC:CB=5:6
Here AA5C is similar to BB6C
Then AA5BB6=56=ACBC
by construction AA5BB6=56
ACBC=56
Points joined one A5 and B6.

Question:4

To construct a triangle similar to a given ABC with its sides of 37 the corresponding sides of ABC, first, draw a ray BX such that CBX is an acute angle and X lies on the opposite side of A Aconcerningo BC. Then locate points B1, B2, B3, ... on BX at equal distances, and the next step is to join
(A) B10 to C (B) B3 to C (C) B7 to C (D) B4 to C

Answer(C) B7 to C
Solution Given: CBX is an acute angle.
ccdd
Steps of construction
1. Draw any ray BX making an angle with BC on the side opposite vertex A.
2. Locate 7 points on BX in equidistant
3. Now join B7 to C
4. Draw a line through B3C parallel to B7C .

Question:5

To construct a triangle similar to a given ABC with its sides 85 of the corresponding sides of ABC draw a ray BX such that CBX is an acute angle and X is on the opposite side of A concerning BC. The minimum number of points to be located at equal distances on ray BX is
(A) 5 (B) 8 (C) 13 (D) 3

Answer (B) 8
Solution
To construct a triangle similar to a triangle, with its sides 85 of the corresponding sides of a given triangle, the minimum number of points to be located at an equal distance is equal to the greater of 8 and 5 in .85 Here 8>5
So, the minimum number of points to be located at equal distances on ray BX is 8.

Question:6

To draw a pair of tangents to a circle which are inclined to each other at an Angle of 60, it is required to draw tangents at the endpoints of those two radii of the circle, and the angle between them should be
(A) 135 (B) 90 (C) 60 (D) 120

Answer(D) 120°
Solution
According to question:-
57641
Given :QPR=60
Let QOR=x
As we know, the angle between the agent and the radius of a circle is 90 degrees
PQO=PRO=90
We know that PQO+PRO+QPR+QOR=360
[ sum of interior angles of quadrilateral is 360 ]
90+90+x+60=360|
240+x=360
x=120

Class 10 Maths Chapter 10 exemplar solutions Exercise: 10.2
Page number: 115
Total questions: 4

Question:1

Write True or False and give reasons for your answer in each of the following:
By geometrical construction, it is possible to divide a line segment in the ratio 3:13

Answer [True]
Solution
We need both positive integers to divide a line segment in the ratio.
So, we can simplify it by multiplying both the terms by .3
We obtain 3×3:3×13
3:1
So, the required ratio is 3:1
In geometrical construction is possible to divide a line segment in the ratio 3:1

Question:2

Write True or False and give reasons for your answer in each of the following:
To construct a triangle similar to a given ABC with its sides 73 of the corresponding sides of ABC, draw a ray BX making an acute angle with BCand X lies on the opposite side of A concerning BC. The points B1, B2,..., B7 are located at equal distances on BX, B3 is joined to C and then a line segment B6C is drawn parallel to B3C where C lies on BC produced. Finally, line segment AC is drawn parallel to AC.

Answer: False
Solution
According to the question:-
To construct a triangle similar to a given ABC with its sides 73 of the corresponding sides of ABC
1. Draw a line segment BC
2. Taking B and C as centres, draw two arcs of suitable radii intersecting each other at A.
3. Join BA and CA?ABC is the required triangle.
4. From B draw any ray BX downwards making an acute angle CBX.
5. Locate seven points B1, B2, b3, …. B7 on BX such that BB1 = B1B2 = B1B3 = B3B4 = B4B5 = B5B6 = B6B7.
6. Join B3C and from B7 draw a line B7C’ ? B3C intersecting the extended line segment BC at C’.
7. From point C’ draw C’A’? CAintersectsg the extended line segment BA at A
57650
But as given, if we join B3C and from B6 draw a line B6C’? B3C intersecting the extended line segment BC at C’.
BB3/BB6=BC/BC=3/6
BC/BC=1/2
BC:BC=1:2
Hence, the sides are not in the ratio of 7:3
So, the required triangle can not be constructed in this way.
Hence, the given statement is false.

Question:3

Write True or False and give reasons for your answer in each of the following:
A pair of tangents can be constructed from a point P to a circle of radius 3.5 cm situated at a distance of 3 cm from the centre

Answer [False]
Solution
Radius, r = 3.5 cm
Point distance from centre = 3 cm
But, r>d3.5cm>3cm
So, the point P lies inside the circle.
So, a pair of tangents cannot be drawn to point P to a circle.

Question:4

Write True or False and give reasons for your answer in each of the following:
A pair of tangents can be constructed to a circle inclined at an
angle of 17070.

Answer [True]
Solution
Tangent: - It is a straight line that touches the curve but does not cross it. A pair of tangents can be constructed to a circle inclined at an angle greater than 0 but less than 180. Here, the inclination angle is 170. Hence, it is possible.


Class 10 Maths Chapter 10 exemplar solutions Exercise: 10.3
Page number: 116
Total questions: 4

Question:1

Draw a line segment of length 7 cm. Find a point P on it which divides it in the ratio 3:5.

Solution
Given: AB = 7cm
The required ratio is 3:5
Let m = 3, n = 5
m+n=3+5=8
57662
Steps of construction
1. Draw a line segment AB = 7cm.
2. Draw a ray AX making an acute angle with AB
3. Locate 8 points A1,A2,A3A8 on AX on equidistant. (because m+n=8 )
4. Join BA8
5. Through the point A3 draw a line parallel to BA8 which intersect line AB at P..
Here triangle AA3P is similar to triangle AA8B
AA3/AA8=AP/AB=3/5 (by construction)
Therefore AP:BP=3:5

Question:2

Draw a right triangle ABC in which BC = 12 cm, AB = 5 cm and B=90.Construct a triangle similar to it and of scale factor 23. Is the new triangle also a right triangle

Solution
Given BC = 12cm, AB = 5 cm, B=90
57667

Steps of construction
1. Draw a line BC=12 cm
2. From B draw AB=5 cm which makes an angle of 90 at B.
3. Join AC
4. Make an acute angle at B as <CBX
5. On BX mark 3 points at equal distance X1,X2,X3.
6. Join X3C
7. From X2 draw X2CX3C intersect AB at C
8. From point C draw CACA intersect ABA

Now ABC is the required triangle and ABC is also a right triangle.

Question:3

Draw a triangle ABC in which BC = 6 cm, CA = 5 cm, and AB = 4cm. Construct a triangle similar to it and of scale factor53

Solution
Given : BC = 6cm, CA = 5cm, AB = 4cm
Scale factor = 5/3
Let m = 5 and n = 3
57670
Steps of construction

1. Draw a line BC = 6c cm

2. Taking B and C as centre mark arcs of length 4cm and 5cm respectively,y intersects each other at point A.

3. Join BA and CA

4 . Draw a ray BX making a g acute angle with BC.

5.Locate 5 Points on BX in equidistant as B1, B2, B3, B4, B5.

6.Join B3 to C and draw a line through B5 parallel to B3C to intersect at BC extended at C.

7. Draw a line through C parallel to AC intersect AB extended at A .
Now ABC is required triangle.

Question:4

Construct a tangent to a circle of radius 4 cm from a point which is at a distance of 6 cm from its centre.

Solution
Given : Radius = 4cm
57673
Steps of construction
1. Draw a circle at radius r = 4 cm at point O.
2. Take a point P at a distance of 6cm from point O and join PO
3. Draw a perpendicular bisector of line PO. M is the midpoint of PO.
4. Taking M as the centre, we draw another circle of radius equal to MO, and it intersects the given circle at points Q and R
5. Now, join PQ and PR.
Then PQ and PR one the required two tangents.


Class 10 Maths Chapter 10 exemplar solutions Exercise: 10.4
Page number: 117-118
Total questions: 7
Background wave

Question:1

Two line segments AB and AC include an angle of 60 where AB = 5 cm and AC = 7 cm. Locate points P and Q on AB and AC, respectively,y such that AP=34AB and AQ=14AB. Join P and Q and measure the length of PQ.

Solution
Given :
AB = 5 cm and AC = 7 cm
AP=34AB1
AQ=14AC2

From equation 1
AP=34AB
AP=34×5=154[AB=5cm]
P is any point on B
PB=ABAP=5154=20154=54cm
APAB=154×45=13
AP:AB=1:3
scale of a line segment AB is 13
57674

Steps of construction
1. Draw a line segment AB = 5 cm
2. Now draw ray AO which makes an angle,
3. Which A as centre and radius equal to 7 cm, draw an arc cutting line AO at C
4. Draw ray AP with acute angle BAP
5. Along AP make 4 points A1,A2,A3,A4 with equal distance.
6. Join A4B
7. From A3 draw A3P which is parallel to A4B which meet AB at point P.
Then P is a point which divides AB in a ratio 3: 1
AP : PB = 3 : 1
8. Now draw ray AQ, with an acute angle CAQ.
9. Along AQ mark 4 points B1,B2,B3,B4 with equal distance.
10. Join B4C
11. From B1 draw B1Q which is parallel to B4C which meet AC at point Q.
Then Q is a point which divides AC in a ratio 1 : 3
AQ : QC = 1 : 3
12. Finally, you join PQ, and its measurement is 3.25 cm.

Question:2

Draw a parallelogram ABCD in which BC = 5 cm, AB = 3 cm, and ABC=60^ 60^{\circ},anddivideitintotrianglesBCDandABDbythediagonalBD.ConstructthetriangleBDCsimilartoDBDCwithscalefactor\frac{4}{3}$. Draw the line segment D'A' parallel to DA where A' lies on the extended side BA. Is A'BC'D' a parallelogram?

Solution
57677
Steps of construction
1. Draw, A-line AB = 3 cm
2 Draw a ray by making ABP=60
3. Taking B as the centre and radius equal to 5 cm. Draw an arc which cuts BP at point C
4. Again draw ray AX making QAX=60
5. With A as the centre and radius equal to 5 cm, draw an arc which cuts AX at point D
6. Join C and D Here ABCD is a parallelogram
7. Join BD , BD is a diagonal of parallelogram ABCD
8. From B draw a ray BQ with any acute angle at po, int B, i.e., CBQ is the acute angle
9. Locate 4 points B1,B2,B3,B4 on BQ with equal distance.
10. Join B3C and from B4,C parallel to B3C which intersect at point C
11. From point C draw line CD which is parallel to CD
12. Now draw a line segment DA parallel to DA
Note : Here A,C and D are the extended sides.
13. ABCD is a parallelogram in which AD=65cm and AB=4cm and ABD=60 divide it into triangles BCD and ABD by the diagonal BD

Question:3

Draw two concentric circles of radii 3 cm and 5 cm. Taking a point on the outer circle construct the pair of tangents to the other. Measure the length of a tangent and verify it by actual calculation.

Solution
3

Steps of construction
1. Draw two concentric circles with centre O and radii 3 cm and 5 cm
2. Taking any point P on the outer cijoin, join P and O
3. Draw a perpendicular bisector of OP let M be the midpoint of OP
4. Taking M as the centre and OM as the radius, draw a circle which cuts the inner circle at Q and R
5. Join PQ and PR. Thu, PQ and PR are required tangents
On measuring PQ and PR, we find that PQ = PR = 4 cm
Calculations
OQP,OQP=90
[usiPythagoras' theorem]
(5)2=(3)2+(PQ)2
259=PQ2
16=PQ2
16=PQ
4cm=PQ
H, the length of both tangents is 4 cm.

Question:4

Draw an isosceles triangle ABC in which AB = AC = 6 cm and BC = 5 cm. Construct a triangle PQR similar to ABC in which PQ =8 cm. Also, justify the Construction.

Solution
4
Steps of construction
1. a Draw a line BC = 5 cm
2. Taking B and C as centres, draw two arcs of equal radius 6 cm intersecting each other at point A.
3. Join AB and AC DABC is required isosceles triangle
4 From B draw ray BX with an acute angle CBB
6. draw B1,B2,B3,B4 at BX with equal distance
7. Join B3C and from B4 draw line B4DB3C, , intersect extended segment BC at point D.
8. From point D draw DECA meting BA produced at E.
Then EBD is required triangle. We can name it PQR.
Justification
B4DB3C
BCCD=31CDBC=13
NowBDBC=BC+CDBC=1+CDBC=1+13=43
AlsoDECA
ABCDBE
EBAB=DECA=BDBC=43

Question:5

Draw a triangle ABC in which AB = 5 cm, BC = 6 cm and ABC=60.Construct a triangle similar to ABC with scale factor 57. Justify the construction

Solution
Given : AB = 5 cm, BC = 6 cm
57684
Steps of construction

1. Draw a line segment AB = 5 cm

2.draw <ABO=60 B taking as a centre draw an arc of radius BC=6cm

3. Join AC, DABC is the required triangle

4.From point A draw any ray AA with acute angle BAA

5.Mark 7 points B1,B2,B3,B4,B5,B6,B7 with equal distance.

6.Join B7B and form B5 draw B5XB7BBYmaking the angle equal From point X draw XYBC intersecting AC at Y. Then, DAMN is the required triangle whose sides are equal to 57 of the corresponding sides of the $\bigtriangleup ABC.

Justification: Here, B5XB7B [by construction]
AXXB=52XBAX=25
Now ABAX=AX+XBAX
1+XBAX=1+25=75
Also, XYBC
AXYABC
AXAB=AYAC=YXBC=57

Question:6

Draw a circle of radius 4 cm. Construct a pair of tangents to it, the angle between which is 60. Also, justify the
construction. Measure the distance between the centre of the circle and the point of intersection of tangents

Solution
1662381094959
Steps of construction
1. Draw a circle of radius OA = 4 cm with centre O
2. Produce OA to P such that OA=AP=4cm
3. Draw a perpendicular bisector of OP = 8 =8cm
4. Now, taking A as the centre, we draw the circle of radius AP = OA = 4 cm
5Which intersectsst the circle at x and y
6. Join PX and PY
7. PX and PY are the tangents to the circle
Justification
In OAX we have
OA=OP=4cm (Radius)
AX=4cm (Radius of circle with centre A)
OAX is equilateral triangle
OAX=60
XAP=120
In PAX we have
PA=AX=4cm
XAP=120
APX=30
APY=30
Hence XPY=60

Question:7

Draw a triangle ABC in which AB = 4 cm, BC = 6 cm and AC = 9 cm. Construct a triangle similar to ABC with scale factor 32 . Justify the construction. Are the two triangles congruent? Note that all three angles and two sides of the two triangles are equal.

Solution
57689
Steps of construction

1 . Draw a line segment BC = 6 cm

2 . Taking B and C as centres, draw an arc of radius AB 4cm and AC = 9 cm

3. Join AB and AC

4 . Triangle ABC is a required triangle. From Bd raw ray BM with acute angle XBM

5.Make 3 points B1,B2,B3 on BM with equal distance

6.Join B2C and B3 draw B3XB2C intersecting BC at X From point X draw XY||CA intersecting the extended line segment BA to Y Then BXY is the required triangle whose sides are equal to32 of the ABC
Justification :
Here B3XB2C
BCCX=21
BXBC=BC+CXBC=1+12=32
Also XYCA
ABCYBX
YBAB=YXAC=BXBC=32.

Here are three angles that are the same, but the three sides are not the same.
The two triangles are not congruent because, if two triangles are congruent, then they have the same shape and size.

NCERT Class 10 Maths Exemplar Solutions for Other Chapters:

Importance of Solving NCERT Exemplar Class 10 Maths Solutions Chapter 10

  • These Class 10 Maths NCERT Exemplar Chapter 10 solutions provide a basic knowledge of Construction, which has great importance in higher classes.

  • The questions based on Construction can be practised in a better way, along with these solutions.

  • These Class 10 Maths NCERT exemplar solutions in Chapter 10 Constructions are appropriate to solve other books such as NCERT Class 10 Maths, A Textbook of Mathematics by Monica Kapoor, RD Sharma Class 10 Maths, and RS Aggarwal Class 10 Maths.

NEET/JEE Coaching Scholarship

Get up to 90% Scholarship on Offline NEET/JEE coaching from top Institutes

JEE Main high scoring chapters and topics

As per latest 2024 syllabus. Study 40% syllabus and score upto 100% marks in JEE

NEET/JEE Offline Coaching
Get up to 90% Scholarship on your NEET/JEE preparation from India’s Leading Coaching Institutes like Aakash, ALLEN, Sri Chaitanya & Others.
Apply Now

NCERT solutions of class 10 - Subject-wise

Here are the subject-wise links for the NCERT solutions of class 10:

JEE Main Important Mathematics Formulas

As per latest 2024 syllabus. Maths formulas, equations, & theorems of class 11 & 12th chapters

NCERT Notes of class 10 - Subject Wise

Given below are the subject-wise NCERT Notes of class 10 :

NCERT Books and NCERT Syllabus

Here are some useful links for NCERT books and the NCERT syllabus for class 10:

NCERT Class 10 Exemplar Solutions Subject Wise

Given below are the subject-wise exemplar solutions of class 10 NCERT:

Frequently Asked Questions (FAQs)

1. Can we divide any line segment into equal parts with the help of construction?

Yes, we can divide any line segment into any number of parts with any length ratio.

2. Can we draw a common tangent for two given circles?

Yes, we can draw a common tangent for two given circles with the help of construction.

3. Is the chapter Constructions important for Board examinations?

The chapter Constructions is vital for Board examinations as it holds around 2-3% weightage of the whole paper.

4. What is the pattern of question type in the chapter of Constructions that can be expected in the board examination?

Generally, you can expect to get either a Long answer or a Very Long answer question in the board examination. A thorough study from NCERT exemplar Class 10 Maths solutions chapter 10 can help you ace the questions on Constructions.

Articles

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD

Questions related to CBSE Class 10th

Have a question related to CBSE Class 10th ?

Hello

Since you are a domicile of Karnataka and have studied under the Karnataka State Board for 11th and 12th , you are eligible for Karnataka State Quota for admission to various colleges in the state.

1. KCET (Karnataka Common Entrance Test): You must appear for the KCET exam, which is required for admission to undergraduate professional courses like engineering, medical, and other streams. Your exam score and rank will determine your eligibility for counseling.

2. Minority Income under 5 Lakh : If you are from a minority community and your family's income is below 5 lakh, you may be eligible for fee concessions or other benefits depending on the specific institution. Some colleges offer reservations or other advantages for students in this category.

3. Counseling and Seat Allocation:

After the KCET exam, you will need to participate in online counseling.

You need to select your preferred colleges and courses.

Seat allocation will be based on your rank , the availability of seats in your chosen colleges and your preferences.

4. Required Documents :

Domicile Certificate (proof that you are a resident of Karnataka).

Income Certificate (for minority category benefits).

Marksheets (11th and 12th from the Karnataka State Board).

KCET Admit Card and Scorecard.

This process will allow you to secure a seat based on your KCET performance and your category .

check link for more details

https://medicine.careers360.com/neet-college-predictor

Hope this helps you .

Hello Aspirant,  Hope your doing great,  your question was incomplete and regarding  what exam your asking.

Yes, scoring above 80% in ICSE Class 10 exams typically meets the requirements to get into the Commerce stream in Class 11th under the CBSE board . Admission criteria can vary between schools, so it is advisable to check the specific requirements of the intended CBSE school. Generally, a good academic record with a score above 80% in ICSE 10th result is considered strong for such transitions.

hello Zaid,

Yes, you can apply for 12th grade as a private candidate .You will need to follow the registration process and fulfill the eligibility criteria set by CBSE for private candidates.If you haven't given the 11th grade exam ,you would be able to appear for the 12th exam directly without having passed 11th grade. you will need to give certain tests in the school you are getting addmission to prove your eligibilty.

best of luck!

According to cbse norms candidates who have completed class 10th, class 11th, have a gap year or have failed class 12th can appear for admission in 12th class.for admission in cbse board you need to clear your 11th class first and you must have studied from CBSE board or any other recognized and equivalent board/school.

You are not eligible for cbse board but you can still do 12th from nios which allow candidates to take admission in 12th class as a private student without completing 11th.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top