NCERT Solutions for Exercise 11.3 Class 12 Maths Chapter 11- Three Dimensional Geometry

NCERT Solutions for Exercise 11.3 Class 12 Maths Chapter 11- Three Dimensional Geometry

Edited By Ramraj Saini | Updated on Dec 04, 2023 09:16 AM IST | #CBSE Class 12th
Upcoming Event
CBSE Class 12th  Exam Date : 15 Feb' 2025 - 15 Feb' 2025

NCERT Solutions For Class 12 Maths Chapter 11 Exercise 11.3

NCERT Solutions for Exercise 11.3 Class 12 Maths Chapter 11 Three Dimensional Geometry are discussed here. These NCERT solutions are created by subject matter expert at Careers360 considering the latest syllabus and pattern of CBSE 2023-24. NCERT solutions for exercise 11.3 Class 12 Maths chapter 11 move around the topic plane. The questions in NCERT solutions for Class 12 Maths chapter 11 exercise 11.3 are related to exercise 11.3 Class 12 Maths equation of a plane in different conditions, the concept of coplanarity of two lines, the angle between two planes and the exercise 11.3 Class 12 Maths also covers the distance between a point and a plane. One should grasp the concepts well before solving Class 12 Maths chapter 11 exercise 11.3. And to get more idea about steps involved in solving the problems under the topic plane, one can go through the solved example given in the NCERT and then crack the Class 12th Maths chapter 11 exercise 11.3.

12th class Maths exercise 11.3 answers are designed as per the students demand covering comprehensive, step by step solutions of every problem. Practice these questions and answers to command the concepts, boost confidence and in depth understanding of concepts. Students can find all exercise enumerated in NCERT Book together using the link provided below.

Pearson | PTE

Register now for PTE & Unlock 20% OFF : Use promo code: 'C360SPL20'. Valid till 31st DEC'24! Trusted by 3,500+ universities globally

Access NCERT Solutions for Class 12 Maths Chapter 11 Exercise 11.3

Download PDF

Three Dimensional Geometry Class 12th Chapter 11-Exercise: 11.3

Question:1(a) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2

Answer:

Equation of plane Z=2, i.e. 0x+0y+z=2

The direction ratio of normal is 0,0,1

\therefore \, \, \, \sqrt{0^2+0^2+1^2}=1

Divide equation 0x+0y+z=2 by 1 from both side

We get, 0x+0y+z=2

Hence, direction cosins are 0,0,1.

The distance of the plane from the origin is 2.

Question:1(b) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1

Answer:

Given the equation of the plane is x+y+z=1 or we can write 1x+1y+1z=1

So, the direction ratios of normal from the above equation are, 1,\1,\ and\ 1 .

Therefore \sqrt{1^2+1^2+1^2} =\sqrt{3}

Then dividing both sides of the plane equation by \sqrt{3} , we get

\frac{x}{\sqrt3}+\frac{y}{\sqrt3}+\frac{z}{\sqrt3}=\frac{1}{\sqrt3}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are \frac{1}{\sqrt3},\ \frac{1}{\sqrt3},\ \frac{1}{\sqrt3} and the distance of the plane from the origin is \frac{1}{\sqrt3} units.

Question:1(c) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y - z = 5

Answer:

Given the equation of plane is 2x+3y-z=5

So, the direction ratios of normal from the above equation are, 2,\3,\ and\ -1 .

Therefore \sqrt{2^2+3^2+(-1)^2} =\sqrt{14}

Then dividing both sides of the plane equation by \sqrt{14} , we get

\frac{2x}{\sqrt{14}}+\frac{3y}{\sqrt{14}}-\frac{z}{\sqrt{14}}=\frac{5}{\sqrt{14}}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are \frac{2}{\sqrt{14}},\ \frac{3}{\sqrt{14}},\ \frac{-1}{\sqrt{14}} and the distance of the plane from the origin is \frac{5}{\sqrt{14}} units.

Question:1(d) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0

Answer:

Given the equation of plane is 5y+8=0 or we can write 0x-5y+0z=8

So, the direction ratios of normal from the above equation are, 0,\ -5,\ and\ 0 .

Therefore \sqrt{0^2+(-5)^2+0^2} =5

Then dividing both sides of the plane equation by 5 , we get

-y = \frac{8}{5}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are 0,\ -1,\ and\ 0 and the distance of the plane from the origin is \frac{8}{5} units.

Question:2 Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k} .

Answer:

We have given the distance between the plane and origin equal to 7 units and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k} .

So, it is known that the equation of the plane with position vector \vec{r} is given by, the relation,

\vec{r}.\widehat{n} =d , where d is the distance of the plane from the origin.

Calculating \widehat{n} ;

\widehat{n} = \frac{\vec{n}}{|\vec{n}|} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{(3)^2+(5)^2+(6)^2}} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}}

\vec{r}.\left ( \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}} \right ) = 7 is the vector equation of the required plane.

Question:3(a) Find the Cartesian equation of the following planes:

\overrightarrow{r}.(\widehat{i}+\widehat{j}-\widehat{k})=2

Answer:

Given the equation of the plane \overrightarrow{r}.(\widehat{i}+\widehat{j}-\widehat{k})=2

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by,

\vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(\widehat{i}+\widehat{j}-\widehat{k}) =2

Or, x+y-z=2

Therefore this is the required Cartesian equation of the plane.

Question:3(b) Find the Cartesian equation of the following planes:

\overrightarrow{r}.(2\widehat{i}+3\widehat{i}-4\widehat{k})=1

Answer:

Given the equation of plane \overrightarrow{r}.(2\widehat{i}+3\widehat{i}-4\widehat{k})=1

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by,

\vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(2\widehat{i}+3\widehat{j}-4\widehat{k}) =1

Or, 2x+3y-4z=1

Therefore this is the required Cartesian equation of the plane.

Question:3(c) Find the Cartesian equation of the following planes:

\overrightarrow{r}.\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right ]=15

Answer:

Given the equation of plane \overrightarrow{r}.\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right ]=15

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by, \vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right] =15

Or, (s-2t)x+(3-t)y+(2s+t)z=15

Therefore this is the required Cartesian equation of the plane.

Question:4(a) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2 x + 3y + 4 z - 12 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given a plane equation 2x+3y+4z-12=0 ,

Or, 2x+3y+4z=12

The direction ratios of the normal of the plane are 2, 3 and 4 .

Therefore \sqrt{(2)^2+(3)^2+(4)^2} = \sqrt{29}

So, now dividing both sides of the equation by \sqrt{29} we will obtain,

\frac{2}{\sqrt{29}}x+\frac{3}{\sqrt{29}}y+\frac{4}{\sqrt{29}}z = \frac{12}{\sqrt{29}}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left [ \frac{2}{\sqrt{29}}.\frac{12}{\sqrt{29}},\frac{3}{\sqrt{29}}.\frac{12}{\sqrt{29}},\frac{4}{\sqrt{29}}.\frac{12}{\sqrt{29}} \right ] or \left [ \frac{24}{29}, \frac{36}{49}, \frac{48}{29} \right ]

Question:4(b) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z - 6 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given a plane equation 3y+4z-6=0 ,

Or, 0x+3y+4z=6

The direction ratios of the normal of the plane are 0,3 and 4 .

Therefore \sqrt{(0)^2+(3)^2+(4)^2} = 5

So, now dividing both sides of the equation by 5 we will obtain,

0x+\frac{3}{5}y+\frac{4}{5}z = \frac{6}{5}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left (0,\frac{3}{5}.\frac{6}{5},\frac{4}{5}.\frac{6}{5} \right ) or \left ( 0, \frac{18}{25}, \frac{24}{25} \right )

Question:4(c) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given plane equation x+y+z=1 .

The direction ratios of the normal of the plane are 1,1 and 1 .

Therefore \sqrt{(1)^2+(1)^2+(1)^2} = \sqrt3

So, now dividing both sides of the equation by \sqrt3 we will obtain,

\frac{x}{\sqrt3}+\frac{y}{\sqrt3}+\frac{z}{\sqrt3} = \frac{1}{\sqrt3}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left ( \frac{1}{\sqrt3}.\frac{1}{\sqrt3},\frac{1}{\sqrt3}.\frac{1}{\sqrt3},\frac{1}{\sqrt3}.\frac{1}{\sqrt3} \right ) or \left ( \frac{1}{3},\frac{1}{3},\frac{1}{3} \right ) ..

Question: 4(d) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given plane equation 5y+8=0 .

or written as 0x-5y+0z=8

The direction ratios of the normal of the plane are 0, -5 and 0 .

Therefore \sqrt{(0)^2+(-5)^2+(0)^2} = 5

So, now dividing both sides of the equation by 5 we will obtain,

-y=\frac{8}{5}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left ( 0,-1(\frac{8}{5}),0 \right ) or \left ( 0,\frac{-8}{5},0 \right ) .

Question:5(a) Find the vector and cartesian equations of the planes (a) that passes through the point (1, 0, – 2) and the normal to the plane is \widehat{i}+\widehat{j}-\widehat{k}.

Answer:

Given the point A (1,0,-2) and the normal vector \widehat{n} which is perpendicular to the plane is \widehat{n} = \widehat{i}+\widehat{j}-\widehat{k}

The position vector of point A is \vec {a} = \widehat{i}-2\widehat{k}

So, the vector equation of the plane would be given by,

(\vec{r}-\vec{a}).\widehat{n} = 0

Or \left [ \vec{r}-(\widehat{i}-2\widehat{k}) \right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

where \vec{r} is the position vector of any arbitrary point A(x,y,z) in the plane.

\therefore \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}

Therefore, the equation we get,

\left [(x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}-2\widehat{k}) \right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

\Rightarrow \left [(x-1)\widehat{i}+y\widehat{j}+(z+2)\widehat{k}\right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

\Rightarrow(x-1)+y-(z+2) = 0

\Rightarrow x+y-z-3=0 or x+y-z=3

So, this is the required Cartesian equation of the plane.

Question:5(b) Find the vector and cartesian equations of the planes

that passes through the point (1,4, 6) and the normal vector to the plane is \widehat{i}-2\widehat{j}+\widehat{k} .

Answer:

Given the point A (1,4,6) and the normal vector \widehat{n} which is perpendicular to the plane is \widehat{n} = \widehat{i}-2\widehat{j}+\widehat{k}

The position vector of point A is \vec {a} = \widehat{i}+4\widehat{j}+6\widehat{k}

So, the vector equation of the plane would be given by,

(\vec{r}-\vec{a}).\widehat{n} = 0

Or \left [ \vec{r}-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

where \vec{r} is the position vector of any arbitrary point A(x,y,z) in the plane.

\therefore \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}

Therefore, the equation we get,

\left [ (x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

\Rightarrow \left [(x-1)\widehat{i}+(y-4)\widehat{j}+(z-6)\widehat{k}\right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

(x-1)-2(y-4)+(z-6)=0

\Rightarrow x-2y+z+1=0

So, this is the required Cartesian equation of the plane.

Question:6(a) Find the equations of the planes that passes through three points.

(1, 1, – 1), (6, 4, – 5), (– 4, – 2, 3)

Answer:

The equation of the plane which passes through the three points A(1,1,-1),\ B(6,4,-5),\ and\ C(-4,-2,3) is given by;

Determinant method,

\begin{vmatrix} 1 &1 &-1 \\ 6& 4 & -5\\ -4& -2 &3 \end{vmatrix} = (12-10)-(18-20)-(-12+16)

Or, = 2+2-4 = 0

Here, these three points A, B, C are collinear points.

Hence there will be an infinite number of planes possible which passing through the given points.

Question:6(b) Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (– 2, 2, – 1)

Answer:

The equation of the plane which passes through the three points A(1,1,0),\ B(1,2,1),\ and\ C(-2,2,-1) is given by;

Determinant method,

\begin{vmatrix} 1 &1 &0 \\ 1& 2 & 1\\ -2& 2 &-1 \end{vmatrix} = (-2-2)-(2+2)= -8 \neq 0

As determinant value is not equal to zero hence there must be a plane that passes through the points A, B, and C.

Finding the equation of the plane through the points, (x_{1},y_{1},z_{1}), (x_{2},y_{2},z_{2})\ and\ (x_{3},y_{3},z_{3})

\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix} = 0

After substituting the values in the determinant we get,

\begin{vmatrix} x-1 &y-1 &z \\ 0& 1 &1 \\ -3& 1&-1 \end{vmatrix} = 0

\Rightarrow(x-1)(-1-1)-(y-1)(0+3)+z(0+3) = 0

\Rightarrow-2x+2-3y+3+3z = 0

2x+3y-3z = 5

So, this is the required Cartesian equation of the plane.

Question:7 Find the intercepts cut off by the plane 2x + y – z = 5.

Answer:

Given plane 2x + y-z = 5

We have to find the intercepts that this plane would make so,

Making it look like intercept form first:

By dividing both sides of the equation by 5 (as we have to make the R.H.S =1) , we get then,

\frac{2}{5}x+\frac{y}{5}-\frac{z}{5} =1

\Rightarrow \frac{x}{\frac{5}{2}}+\frac{y}{5}+\frac{z}{-5} =1

So, as we know that from the equation of a plane in intercept form, \frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1 where a,b,c are the intercepts cut off by the plane at x,y, and z-axes respectively.

Therefore after comparison, we get the values of a,b, and c.

a = \frac{5}{2},\ b=5,\ and\ c=-5 .

Hence the intercepts are \frac{5}{2},\ 5,\ and\ -5 .

Question:8 Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Answer:

Given that the plane is parallel to the ZOX plane.

So, we have the equation of plane ZOX as y = 0 .

And an intercept of 3 on the y-axis \Rightarrow b =3

Intercept form of a plane given by;

\frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1

So, here the plane would be parallel to the x and z-axes both.

we have any plane parallel to it is of the form, y=a .

Equation of the plane required is y=3 .

Question:9 Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).

Answer:

The equation of any plane through the intersection of the planes,

3x-y+2z-4=0\ and\ x+y+z-2=0

Can be written in the form of; (3x-y+2z-4)\ +\alpha( x+y+z-2)= 0 , where \alpha \epsilon R

So, the plane passes through the point (2,2,1) , will satisfy the above equation.

(3\times2-2+2\times1-4)+\alpha(2+2+1-2) = 0

That implies 2+3\alpha= 0

\alpha = \frac{-2}{3}

Now, substituting the value of \alpha in the equation above we get the final equation of the plane;

(3x-y+2z-4)\ +\alpha( x+y+z-2)= 0

(3x-y+2z-4)\ +\frac{-2}{3}( x+y+z-2)= 0

\Rightarrow 9x-3y+6z-12\ -2 x-2y-2z+4= 0

\Rightarrow 7x-5y+4z-8= 0 is the required equation of the plane.

Question:10 Find the vector equation of the plane passing through the intersection of the planes \overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})=7 , \overrightarrow{r}(2\widehat{i}+5\widehat{j}+3\widehat{k})=9 and through the point (2, 1, 3).

Answer:

Here \vec{n_{1}} =2 \widehat{i}+2\widehat{j}-3\widehat{k} and \vec{n_{2}} = 2\widehat{i}+5\widehat{j}+3\widehat{k}

and d_{1} = 7 and d_{2} = 9

Hence, using the relation \vec{r}.(\vec{n_{1}}+\lambda\vec{n_{2}}) = d_{1}+\lambda d_{2} , we get

\vec{r}.[2\widehat{i}+2\widehat{j}-3\widehat{k}+\lambda(2\widehat{i}+5\widehat{j}+3\widehat{k})] = 7+9\lambda

or \vec{r}.[(2+2\lambda)\widehat{i}+(2+5\lambda)\widehat{j}+(3\lambda-3)\widehat{k}] = 7+9\lambda ..............(1)

where, \lambda is some real number.

Taking \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k} , we get

(\vec{x\widehat{i}+y\widehat{j}+z\widehat{k}}).[(2+2\lambda)\widehat{i}+(2+5\lambda)\widehat{j}+(3\lambda-3)\widehat{k}] = 7+9\lambda

or x(2+2\lambda) + y(2+5\lambda) +z(3\lambda-3) = 7+9\lambda

or 2x+2y-3z-7 + \lambda(2x+5y+3z-9) = 0 .............(2)

Given that the plane passes through the point (2,1,3) , it must satisfy (2), i.e.,

(4+2-9-7) + \lambda(4+5+9-9) = 0

or \lambda = \frac{10}{9}

Putting the values of \lambda in (1), we get

\vec{r}\left [\left ( 2+\frac{20}{9} \right )\widehat{i}+\left ( 2+\frac{50}{9} \right )\widehat{j}+\left ( \frac{10}{3}-3 \right )\widehat{k} \right ] = 7+10

or \vec{r}\left ( \frac{38}{9}\widehat{i}+\frac{68}{9}\widehat{j}+\frac{1}{3}\widehat{k} \right ) = 17

or \vec{r}.\left ( 38\widehat{i}+68\widehat{j}+3\widehat{k} \right ) = 153

which is the required vector equation of the plane.

Question:11 Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0.

Answer:

The equation of the plane through the intersection of the given two planes, x+y+z =1 and 2x+3y+4z =5 is given in Cartesian form as;

(x+y+z-1) +\lambda(2x+3y+4z -5) = 0

or (1+2\lambda)x(1+3\lambda)y+(1+4\lambda)z-(1+5\lambda) = 0 ..................(1)

So, the direction ratios of (1) plane are a_{1},b_{1},c_{1} which are (1+2\lambda),(1+3\lambda),\ and\ (1+4\lambda) .

Then, the plane in equation (1) is perpendicular to x-y+z= 0 whose direction ratios a_{2},b_{2},c_{2} are 1,-1,\ and\ 1 .

As planes are perpendicular then,

a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

we get,

(1+2\lambda) -(1+3\lambda)+(1+4\lambda) = 0

or 1+3\lambda = 0

or \lambda = -\frac{1}{3}

Then we will substitute the values of \lambda in the equation (1), we get

\frac{1}{3}x-\frac{1}{3}z+\frac{2}{3} = 0

or x-z+2=0

This is the required equation of the plane.

Question:12 Find the angle between the planes whose vector equations are \overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})= 5 and \overrightarrow{r}.(3\widehat{i}-3\widehat{j}+5\widehat{k})= 3 .

Answer:

Given two vector equations of plane

\overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})= 5 and \overrightarrow{r}.(3\widehat{i}-3\widehat{j}+5\widehat{k})= 3 .

Here, \vec{n_{1}} = 2\widehat{i}+2\widehat{j}-3\widehat{k} and \vec{n_{2}} = 3\widehat{i}-3\widehat{j}+5\widehat{k}

The formula for finding the angle between two planes,

\cos A = \left | \frac{\vec{n_{1}}.\vec{n_{2}}}{|\vec{n_{1}}||\vec{n_{2}}|} \right | .............................(1)

\vec{n_{1}}.\vec{n_{2}} = (2\widehat{i}+2\widehat{j}-3\widehat{k})(3\widehat{i}-3\widehat{j}+5\widehat{k}) = 2(3)+2(-3)-3(5) = -15

|\vec{n_{1}}| =\sqrt{(2)^2+(2)^2+(-3)^2} =\sqrt{17}

and |\vec{n_{2}}| =\sqrt{(3)^2+(-3)^2+(5)^2} =\sqrt{43}

Now, we can substitute the values in the angle formula (1) to get,

\cos A = \left | \frac{-15}{\sqrt{17}\sqrt{43}} \right |

or \cos A =\frac{15}{\sqrt{731}}

or A = \cos^{-1}\left ( \frac{15}{\sqrt{731}} \right )

Question:13(a) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 7x + 5y + 6z + 30 = 0\ and\ 3x -y - 10z + 4 = 0

Here,

a_{1} = 7,b_{1} = 5, c_{1} = 6 and a_{2} = 3,b_{2} = -1, c_{2} = -10

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{7}{3}, \frac{b_{1}}{b_{2}}=\frac{5}{-1},\frac{c_{1}}{c_{2}} = \frac{6}{-10}

Clearly, the given planes are NOT parallel. \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 7(3)+5(-1)+6(-10) = 21-5-60 = -44 \neq 0 .

Clearly, the given planes are NOT perpendicular.

Then find the angle between them,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |

= \cos^{-1}\left | \frac{-44}{\sqrt{7^2+5^2+6^2}.\sqrt{3^2+(-1)^2+(-10)^2}} \right |

= \cos^{-1}\left | \frac{-44}{\sqrt{110}.\sqrt{110}} \right |

= \cos^{-1}\left ( \frac{44}{110} \right )

= \cos^{-1}\left ( \frac{2}{5} \right )

Question:13(b) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x + y + 3z -2 = 0\ and\ x -2y + 5 = 0

Here,

a_{1} = 2,b_{1} = 1, c_{1} = 3 and a_{2} = 1,b_{2} = -2, c_{2} = 0

So, applying each condition to check:

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 2(1)+1(-2)+3(0) = 2-2+0 = 0 .

Thus, the given planes are perpendicular to each other.

Question:13(c) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x - 2y + 4z + 5 = 0\ and\ 3x -3y +6z -1 = 0

Here,

a_{1} = 2,b_{1} = -2, c_{1} = 4 and a_{2} = 3,b_{2} = -3, c_{2} = 6

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{-2}{-3}=\frac{2}{3},\ and\ \frac{c_{1}}{c_{2}} = \frac{4}{6}=\frac{2}{3}

Thus, the given planes are parallel as \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Question:13(d) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x - y + 3z -1 = 0\ and\ 2x -y +3z + 3 = 0

Here,

a_{1} = 2,b_{1} = -1, c_{1} = 3 and a_{2} = 2,b_{2} = -1, c_{2} = 3

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{2}{2}=1, \frac{b_{1}}{b_{2}}=\frac{-1}{-1} =1,\frac{c_{1}}{c_{2}} = \frac{3}{3} = 1

Therefore \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Thus, the given planes are parallel to each other.

Question:13(e) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

4x + 8y + z – 8 = 0 and y + z – 4 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 4x + 8y + z -8 = 0\ and\ y + z - 4 = 0

Here,

a_{1} = 4,b_{1} = 8, c_{1} = 1 and a_{2} = 0,b_{2} = 1, c_{2} = 1

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{4}{0}, \frac{b_{1}}{b_{2}}=\frac{8}{1},\frac{c_{1}}{c_{2}} = \frac{1}{1}

Clearly, the given planes are NOT parallel as \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} .

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

NCERT solutions for class 12 maths chapter 11 three dimensional geometry-Exercise: 11.3

Question:1(a) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

z = 2

Answer:

Equation of plane Z=2, i.e. 0x+0y+z=2

The direction ratio of normal is 0,0,1

\therefore \, \, \, \sqrt{0^2+0^2+1^2}=1

Divide equation 0x+0y+z=2 by 1 from both side

We get, 0x+0y+z=2

Hence, direction cosins are 0,0,1.

The distance of the plane from the origin is 2.

Question:1(b) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

x + y + z = 1

Answer:

Given the equation of the plane is x+y+z=1 or we can write 1x+1y+1z=1

So, the direction ratios of normal from the above equation are, 1,\1,\ and\ 1 .

Therefore \sqrt{1^2+1^2+1^2} =\sqrt{3}

Then dividing both sides of the plane equation by \sqrt{3} , we get

\frac{x}{\sqrt3}+\frac{y}{\sqrt3}+\frac{z}{\sqrt3}=\frac{1}{\sqrt3}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are \frac{1}{\sqrt3},\ \frac{1}{\sqrt3},\ \frac{1}{\sqrt3} and the distance of the plane from the origin is \frac{1}{\sqrt3} units.

Question:1(c) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

2x + 3y - z = 5

Answer:

Given the equation of plane is 2x+3y-z=5

So, the direction ratios of normal from the above equation are, 2,\3,\ and\ -1 .

Therefore \sqrt{2^2+3^2+(-1)^2} =\sqrt{14}

Then dividing both sides of the plane equation by \sqrt{14} , we get

\frac{2x}{\sqrt{14}}+\frac{3y}{\sqrt{14}}-\frac{z}{\sqrt{14}}=\frac{5}{\sqrt{14}}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are \frac{2}{\sqrt{14}},\ \frac{3}{\sqrt{14}},\ \frac{-1}{\sqrt{14}} and the distance of the plane from the origin is \frac{5}{\sqrt{14}} units.

Question:1(d) In each of the following cases, determine the direction cosines of the normal to the plane and the distance from the origin.

5y + 8 = 0

Answer:

Given the equation of plane is 5y+8=0 or we can write 0x-5y+0z=8

So, the direction ratios of normal from the above equation are, 0,\ -5,\ and\ 0 .

Therefore \sqrt{0^2+(-5)^2+0^2} =5

Then dividing both sides of the plane equation by 5 , we get

-y = \frac{8}{5}

So, this is the form of lx+my+nz = d the plane, where l,\ m,\ n are the direction cosines of normal to the plane and d is the distance of the perpendicular drawn from the origin.

\therefore The direction cosines of the given line are 0,\ -1,\ and\ 0 and the distance of the plane from the origin is \frac{8}{5} units.

Question:2 Find the vector equation of a plane which is at a distance of 7 units from the origin and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k} .

Answer:

We have given the distance between the plane and origin equal to 7 units and normal to the vector 3\widehat{i}+5\widehat{j}-6\widehat{k} .

So, it is known that the equation of the plane with position vector \vec{r} is given by, the relation,

\vec{r}.\widehat{n} =d , where d is the distance of the plane from the origin.

Calculating \widehat{n} ;

\widehat{n} = \frac{\vec{n}}{|\vec{n}|} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{(3)^2+(5)^2+(6)^2}} = \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}}

\vec{r}.\left ( \frac{3\widehat{i}+5\widehat{j}-6\widehat{k}}{\sqrt{70}} \right ) = 7 is the vector equation of the required plane.

Question:3(a) Find the Cartesian equation of the following planes:

\overrightarrow{r}.(\widehat{i}+\widehat{j}-\widehat{k})=2

Answer:

Given the equation of the plane \overrightarrow{r}.(\widehat{i}+\widehat{j}-\widehat{k})=2

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by,

\vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(\widehat{i}+\widehat{j}-\widehat{k}) =2

Or, x+y-z=2

Therefore this is the required Cartesian equation of the plane.

Question:3(b) Find the Cartesian equation of the following planes:

\overrightarrow{r}.(2\widehat{i}+3\widehat{i}-4\widehat{k})=1

Answer:

Given the equation of plane \overrightarrow{r}.(2\widehat{i}+3\widehat{i}-4\widehat{k})=1

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by,

\vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).(2\widehat{i}+3\widehat{j}-4\widehat{k}) =1

Or, 2x+3y-4z=1

Therefore this is the required Cartesian equation of the plane.

Question:3(c) Find the Cartesian equation of the following planes:

\overrightarrow{r}.\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right ]=15

Answer:

Given the equation of plane \overrightarrow{r}.\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right ]=15

So we have to find the Cartesian equation,

Any point A (x,y,z) on this plane will satisfy the equation and its position vector given by, \vec{r}=x\widehat{i}+y\widehat{j}-z\widehat{k}

Hence we have,

(x\widehat{i}+y\widehat{j}+z\widehat{k}).\left [ \left ( s-2t \right )\widehat{i}+(3-t) \widehat{j}+(2s+t)\widehat{k}\right] =15

Or, (s-2t)x+(3-t)y+(2s+t)z=15

Therefore this is the required Cartesian equation of the plane.

Question:4(a) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

2 x + 3y + 4 z - 12 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given a plane equation 2x+3y+4z-12=0 ,

Or, 2x+3y+4z=12

The direction ratios of the normal of the plane are 2, 3 and 4 .

Therefore \sqrt{(2)^2+(3)^2+(4)^2} = \sqrt{29}

So, now dividing both sides of the equation by \sqrt{29} we will obtain,

\frac{2}{\sqrt{29}}x+\frac{3}{\sqrt{29}}y+\frac{4}{\sqrt{29}}z = \frac{12}{\sqrt{29}}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left [ \frac{2}{\sqrt{29}}.\frac{12}{\sqrt{29}},\frac{3}{\sqrt{29}}.\frac{12}{\sqrt{29}},\frac{4}{\sqrt{29}}.\frac{12}{\sqrt{29}} \right ] or \left [ \frac{24}{29}, \frac{36}{49}, \frac{48}{29} \right ]

Question:4(b) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

3y + 4z - 6 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given a plane equation 3y+4z-6=0 ,

Or, 0x+3y+4z=6

The direction ratios of the normal of the plane are 0,3 and 4 .

Therefore \sqrt{(0)^2+(3)^2+(4)^2} = 5

So, now dividing both sides of the equation by 5 we will obtain,

0x+\frac{3}{5}y+\frac{4}{5}z = \frac{6}{5}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left (0,\frac{3}{5}.\frac{6}{5},\frac{4}{5}.\frac{6}{5} \right ) or \left ( 0, \frac{18}{25}, \frac{24}{25} \right )

Question:4(c) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

x + y + z = 1

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given plane equation x+y+z=1 .

The direction ratios of the normal of the plane are 1,1 and 1 .

Therefore \sqrt{(1)^2+(1)^2+(1)^2} = \sqrt3

So, now dividing both sides of the equation by \sqrt3 we will obtain,

\frac{x}{\sqrt3}+\frac{y}{\sqrt3}+\frac{z}{\sqrt3} = \frac{1}{\sqrt3}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left ( \frac{1}{\sqrt3}.\frac{1}{\sqrt3},\frac{1}{\sqrt3}.\frac{1}{\sqrt3},\frac{1}{\sqrt3}.\frac{1}{\sqrt3} \right ) or \left ( \frac{1}{3},\frac{1}{3},\frac{1}{3} \right ) ..

Question: 4(d) In the following cases, find the coordinates of the foot of the perpendicular drawn from the origin.

5y + 8 = 0

Answer:

Let the coordinates of the foot of perpendicular P from the origin to the plane be (x_{1},y_{1},z_{1})

Given plane equation 5y+8=0 .

or written as 0x-5y+0z=8

The direction ratios of the normal of the plane are 0, -5 and 0 .

Therefore \sqrt{(0)^2+(-5)^2+(0)^2} = 5

So, now dividing both sides of the equation by 5 we will obtain,

-y=\frac{8}{5}

This equation is similar to lx+my+nz = d where, l,\ m,\ n are the directions cosines of normal to the plane and d is the distance of normal from the origin.

Then finding the coordinates of the foot of the perpendicular are given by (ld,md,nd) .

\therefore The coordinates of the foot of the perpendicular are;

\left ( 0,-1(\frac{8}{5}),0 \right ) or \left ( 0,\frac{-8}{5},0 \right ) .

Question:5(a) Find the vector and cartesian equations of the planes (a) that passes through the point (1, 0, – 2) and the normal to the plane is \widehat{i}+\widehat{j}-\widehat{k}.

Answer:

Given the point A (1,0,-2) and the normal vector \widehat{n} which is perpendicular to the plane is \widehat{n} = \widehat{i}+\widehat{j}-\widehat{k}

The position vector of point A is \vec {a} = \widehat{i}-2\widehat{k}

So, the vector equation of the plane would be given by,

(\vec{r}-\vec{a}).\widehat{n} = 0

Or \left [ \vec{r}-(\widehat{i}-2\widehat{k}) \right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

where \vec{r} is the position vector of any arbitrary point A(x,y,z) in the plane.

\therefore \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}

Therefore, the equation we get,

\left [(x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}-2\widehat{k}) \right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

\Rightarrow \left [(x-1)\widehat{i}+y\widehat{j}+(z+2)\widehat{k}\right ].(\widehat{i}+\widehat{j}-\widehat{k}) = 0

\Rightarrow(x-1)+y-(z+2) = 0

\Rightarrow x+y-z-3=0 or x+y-z=3

So, this is the required Cartesian equation of the plane.

Question:5(b) Find the vector and cartesian equations of the planes

that passes through the point (1,4, 6) and the normal vector to the plane is \widehat{i}-2\widehat{j}+\widehat{k} .

Answer:

Given the point A (1,4,6) and the normal vector \widehat{n} which is perpendicular to the plane is \widehat{n} = \widehat{i}-2\widehat{j}+\widehat{k}

The position vector of point A is \vec {a} = \widehat{i}+4\widehat{j}+6\widehat{k}

So, the vector equation of the plane would be given by,

(\vec{r}-\vec{a}).\widehat{n} = 0

Or \left [ \vec{r}-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

where \vec{r} is the position vector of any arbitrary point A(x,y,z) in the plane.

\therefore \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k}

Therefore, the equation we get,

\left [ (x\widehat{i}+y\widehat{j}+z\widehat{k})-(\widehat{i}+4\widehat{j}+6\widehat{k}) \right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

\Rightarrow \left [(x-1)\widehat{i}+(y-4)\widehat{j}+(z-6)\widehat{k}\right ].(\widehat{i}-2\widehat{j}+\widehat{k}) = 0

(x-1)-2(y-4)+(z-6)=0

\Rightarrow x-2y+z+1=0

So, this is the required Cartesian equation of the plane.

Question:6(a) Find the equations of the planes that passes through three points.

(1, 1, – 1), (6, 4, – 5), (– 4, – 2, 3)

Answer:

The equation of the plane which passes through the three points A(1,1,-1),\ B(6,4,-5),\ and\ C(-4,-2,3) is given by;

Determinant method,

\begin{vmatrix} 1 &1 &-1 \\ 6& 4 & -5\\ -4& -2 &3 \end{vmatrix} = (12-10)-(18-20)-(-12+16)

Or, = 2+2-4 = 0

Here, these three points A, B, C are collinear points.

Hence there will be an infinite number of planes possible which passing through the given points.

Question:6(b) Find the equations of the planes that passes through three points.

(1, 1, 0), (1, 2, 1), (– 2, 2, – 1)

Answer:

The equation of the plane which passes through the three points A(1,1,0),\ B(1,2,1),\ and\ C(-2,2,-1) is given by;

Determinant method,

\begin{vmatrix} 1 &1 &0 \\ 1& 2 & 1\\ -2& 2 &-1 \end{vmatrix} = (-2-2)-(2+2)= -8 \neq 0

As determinant value is not equal to zero hence there must be a plane that passes through the points A, B, and C.

Finding the equation of the plane through the points, (x_{1},y_{1},z_{1}), (x_{2},y_{2},z_{2})\ and\ (x_{3},y_{3},z_{3})

\begin{vmatrix} x-x_{1} &y-y_{1} &z-z_{1} \\ x_{2}-x_{1} &y_{2}-y_{1} &z_{2}-z_{1} \\ x_{3}-x_{1}&y_{3}-y_{1} &z_{3}-z_{1} \end{vmatrix} = 0

After substituting the values in the determinant we get,

\begin{vmatrix} x-1 &y-1 &z \\ 0& 1 &1 \\ -3& 1&-1 \end{vmatrix} = 0

\Rightarrow(x-1)(-1-1)-(y-1)(0+3)+z(0+3) = 0

\Rightarrow-2x+2-3y+3+3z = 0

2x+3y-3z = 5

So, this is the required Cartesian equation of the plane.

Question:7 Find the intercepts cut off by the plane 2x + y – z = 5.

Answer:

Given plane 2x + y-z = 5

We have to find the intercepts that this plane would make so,

Making it look like intercept form first:

By dividing both sides of the equation by 5 (as we have to make the R.H.S =1) , we get then,

\frac{2}{5}x+\frac{y}{5}-\frac{z}{5} =1

\Rightarrow \frac{x}{\frac{5}{2}}+\frac{y}{5}+\frac{z}{-5} =1

So, as we know that from the equation of a plane in intercept form, \frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1 where a,b,c are the intercepts cut off by the plane at x,y, and z-axes respectively.

Therefore after comparison, we get the values of a,b, and c.

a = \frac{5}{2},\ b=5,\ and\ c=-5 .

Hence the intercepts are \frac{5}{2},\ 5,\ and\ -5 .

Question:8 Find the equation of the plane with intercept 3 on the y-axis and parallel to ZOX plane.

Answer:

Given that the plane is parallel to the ZOX plane.

So, we have the equation of plane ZOX as y = 0 .

And an intercept of 3 on the y-axis \Rightarrow b =3

Intercept form of a plane given by;

\frac{x}{a}+\frac{y}{b}+\frac{z}{c} = 1

So, here the plane would be parallel to the x and z-axes both.

we have any plane parallel to it is of the form, y=a .

Equation of the plane required is y=3 .

Question:9 Find the equation of the plane through the intersection of the planes 3x – y + 2z – 4 = 0 and x + y + z – 2 = 0 and the point (2, 2, 1).

Answer:

The equation of any plane through the intersection of the planes,

3x-y+2z-4=0\ and\ x+y+z-2=0

Can be written in the form of; (3x-y+2z-4)\ +\alpha( x+y+z-2)= 0 , where \alpha \epsilon R

So, the plane passes through the point (2,2,1) , will satisfy the above equation.

(3\times2-2+2\times1-4)+\alpha(2+2+1-2) = 0

That implies 2+3\alpha= 0

\alpha = \frac{-2}{3}

Now, substituting the value of \alpha in the equation above we get the final equation of the plane;

(3x-y+2z-4)\ +\alpha( x+y+z-2)= 0

(3x-y+2z-4)\ +\frac{-2}{3}( x+y+z-2)= 0

\Rightarrow 9x-3y+6z-12\ -2 x-2y-2z+4= 0

\Rightarrow 7x-5y+4z-8= 0 is the required equation of the plane.

Question:10 Find the vector equation of the plane passing through the intersection of the planes \overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})=7 , \overrightarrow{r}(2\widehat{i}+5\widehat{j}+3\widehat{k})=9 and through the point (2, 1, 3).

Answer:

Here \vec{n_{1}} =2 \widehat{i}+2\widehat{j}-3\widehat{k} and \vec{n_{2}} = 2\widehat{i}+5\widehat{j}+3\widehat{k}

and d_{1} = 7 and d_{2} = 9

Hence, using the relation \vec{r}.(\vec{n_{1}}+\lambda\vec{n_{2}}) = d_{1}+\lambda d_{2} , we get

\vec{r}.[2\widehat{i}+2\widehat{j}-3\widehat{k}+\lambda(2\widehat{i}+5\widehat{j}+3\widehat{k})] = 7+9\lambda

or \vec{r}.[(2+2\lambda)\widehat{i}+(2+5\lambda)\widehat{j}+(3\lambda-3)\widehat{k}] = 7+9\lambda ..............(1)

where, \lambda is some real number.

Taking \vec{r} = x\widehat{i}+y\widehat{j}+z\widehat{k} , we get

(\vec{x\widehat{i}+y\widehat{j}+z\widehat{k}}).[(2+2\lambda)\widehat{i}+(2+5\lambda)\widehat{j}+(3\lambda-3)\widehat{k}] = 7+9\lambda

or x(2+2\lambda) + y(2+5\lambda) +z(3\lambda-3) = 7+9\lambda

or 2x+2y-3z-7 + \lambda(2x+5y+3z-9) = 0 .............(2)

Given that the plane passes through the point (2,1,3) , it must satisfy (2), i.e.,

(4+2-9-7) + \lambda(4+5+9-9) = 0

or \lambda = \frac{10}{9}

Putting the values of \lambda in (1), we get

\vec{r}\left [\left ( 2+\frac{20}{9} \right )\widehat{i}+\left ( 2+\frac{50}{9} \right )\widehat{j}+\left ( \frac{10}{3}-3 \right )\widehat{k} \right ] = 7+10

or \vec{r}\left ( \frac{38}{9}\widehat{i}+\frac{68}{9}\widehat{j}+\frac{1}{3}\widehat{k} \right ) = 17

or \vec{r}.\left ( 38\widehat{i}+68\widehat{j}+3\widehat{k} \right ) = 153

which is the required vector equation of the plane.

Question:11 Find the equation of the plane through the line of intersection of the planes x + y + z = 1 and 2x + 3y + 4z = 5 which is perpendicular to the plane x – y + z = 0.

Answer:

The equation of the plane through the intersection of the given two planes, x+y+z =1 and 2x+3y+4z =5 is given in Cartesian form as;

(x+y+z-1) +\lambda(2x+3y+4z -5) = 0

or (1+2\lambda)x(1+3\lambda)y+(1+4\lambda)z-(1+5\lambda) = 0 ..................(1)

So, the direction ratios of (1) plane are a_{1},b_{1},c_{1} which are (1+2\lambda),(1+3\lambda),\ and\ (1+4\lambda) .

Then, the plane in equation (1) is perpendicular to x-y+z= 0 whose direction ratios a_{2},b_{2},c_{2} are 1,-1,\ and\ 1 .

As planes are perpendicular then,

a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

we get,

(1+2\lambda) -(1+3\lambda)+(1+4\lambda) = 0

or 1+3\lambda = 0

or \lambda = -\frac{1}{3}

Then we will substitute the values of \lambda in the equation (1), we get

\frac{1}{3}x-\frac{1}{3}z+\frac{2}{3} = 0

or x-z+2=0

This is the required equation of the plane.

Question:12 Find the angle between the planes whose vector equations are \overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})= 5 and \overrightarrow{r}.(3\widehat{i}-3\widehat{j}+5\widehat{k})= 3 .

Answer:

Given two vector equations of plane

\overrightarrow{r}.(2\widehat{i}+2\widehat{j}-3\widehat{k})= 5 and \overrightarrow{r}.(3\widehat{i}-3\widehat{j}+5\widehat{k})= 3 .

Here, \vec{n_{1}} = 2\widehat{i}+2\widehat{j}-3\widehat{k} and \vec{n_{2}} = 3\widehat{i}-3\widehat{j}+5\widehat{k}

The formula for finding the angle between two planes,

\cos A = \left | \frac{\vec{n_{1}}.\vec{n_{2}}}{|\vec{n_{1}}||\vec{n_{2}}|} \right | .............................(1)

\vec{n_{1}}.\vec{n_{2}} = (2\widehat{i}+2\widehat{j}-3\widehat{k})(3\widehat{i}-3\widehat{j}+5\widehat{k}) = 2(3)+2(-3)-3(5) = -15

|\vec{n_{1}}| =\sqrt{(2)^2+(2)^2+(-3)^2} =\sqrt{17}

and |\vec{n_{2}}| =\sqrt{(3)^2+(-3)^2+(5)^2} =\sqrt{43}

Now, we can substitute the values in the angle formula (1) to get,

\cos A = \left | \frac{-15}{\sqrt{17}\sqrt{43}} \right |

or \cos A =\frac{15}{\sqrt{731}}

or A = \cos^{-1}\left ( \frac{15}{\sqrt{731}} \right )

Question:13(a) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

7x + 5y + 6z + 30 = 0 and 3x – y – 10z + 4 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 7x + 5y + 6z + 30 = 0\ and\ 3x -y - 10z + 4 = 0

Here,

a_{1} = 7,b_{1} = 5, c_{1} = 6 and a_{2} = 3,b_{2} = -1, c_{2} = -10

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{7}{3}, \frac{b_{1}}{b_{2}}=\frac{5}{-1},\frac{c_{1}}{c_{2}} = \frac{6}{-10}

Clearly, the given planes are NOT parallel. \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}}

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 7(3)+5(-1)+6(-10) = 21-5-60 = -44 \neq 0 .

Clearly, the given planes are NOT perpendicular.

Then find the angle between them,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |

= \cos^{-1}\left | \frac{-44}{\sqrt{7^2+5^2+6^2}.\sqrt{3^2+(-1)^2+(-10)^2}} \right |

= \cos^{-1}\left | \frac{-44}{\sqrt{110}.\sqrt{110}} \right |

= \cos^{-1}\left ( \frac{44}{110} \right )

= \cos^{-1}\left ( \frac{2}{5} \right )

Question:13(b) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x + y + 3z – 2 = 0 and x – 2y + 5 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x + y + 3z -2 = 0\ and\ x -2y + 5 = 0

Here,

a_{1} = 2,b_{1} = 1, c_{1} = 3 and a_{2} = 1,b_{2} = -2, c_{2} = 0

So, applying each condition to check:

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

\Rightarrow 2(1)+1(-2)+3(0) = 2-2+0 = 0 .

Thus, the given planes are perpendicular to each other.

Question:13(c) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – 2y + 4z + 5 = 0 and 3x – 3y + 6z – 1 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x - 2y + 4z + 5 = 0\ and\ 3x -3y +6z -1 = 0

Here,

a_{1} = 2,b_{1} = -2, c_{1} = 4 and a_{2} = 3,b_{2} = -3, c_{2} = 6

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{2}{3}, \frac{b_{1}}{b_{2}}=\frac{-2}{-3}=\frac{2}{3},\ and\ \frac{c_{1}}{c_{2}} = \frac{4}{6}=\frac{2}{3}

Thus, the given planes are parallel as \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Question:13(d) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

2x – y + 3z – 1 = 0 and 2x – y + 3z + 3 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 2x - y + 3z -1 = 0\ and\ 2x -y +3z + 3 = 0

Here,

a_{1} = 2,b_{1} = -1, c_{1} = 3 and a_{2} = 2,b_{2} = -1, c_{2} = 3

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{2}{2}=1, \frac{b_{1}}{b_{2}}=\frac{-1}{-1} =1,\frac{c_{1}}{c_{2}} = \frac{3}{3} = 1

Therefore \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}} = \frac{c_{1}}{c_{2}}

Thus, the given planes are parallel to each other.

Question:13(e) In the following cases, determine whether the given planes are parallel or perpendicular, and in case they are neither, find the angles between them.

4x + 8y + z – 8 = 0 and y + z – 4 = 0

Answer:

Two planes

L_{1}:a_{1}x+b_{1}y+c_{1}z = 0 whose direction ratios are a_{1},b_{1},c_{1} and L_{2}:a_{2}x+b_{2}y+c_{2}z = 0 whose direction ratios are a_{2},b_{2},c_{2} ,

are said to Parallel:

If, \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

and Perpendicular:

If, a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

And the angle between L_{1}\ and\ L_{2} is given by the relation,

A = \cos^{-1}\left | \frac{a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2}}{\sqrt{a_{1}^2+b_{1}^2+c_{1}^2}.\sqrt{a_{2}^2+b_{2}^2+c_{2}^2}} \right |
So, given two planes 4x + 8y + z -8 = 0\ and\ y + z - 4 = 0

Here,

a_{1} = 4,b_{1} = 8, c_{1} = 1 and a_{2} = 0,b_{2} = 1, c_{2} = 1

So, applying each condition to check:

Parallel check: \frac{a_{1}}{a_{2}} = \frac{b_{1}}{b_{2}}=\frac{c_{1}}{c_{2}}

\Rightarrow \frac{a_{1}}{a_{2}} =\frac{4}{0}, \frac{b_{1}}{b_{2}}=\frac{8}{1},\frac{c_{1}}{c_{2}} = \frac{1}{1}

Clearly, the given planes are NOT parallel as \frac{a_{1}}{a_{2}} \neq \frac{b_{1}}{b_{2}} \neq \frac{c_{1}}{c_{2}} .

Perpendicular check: a_{1}a_{2}+b_{1}b_{2}+c_{1}c_{2} = 0

More About NCERT Solutions for Class 12 Maths Chapter 11 Exercise 11.3

  • Fourteen questions in total are given in the exercise 11.3 Class 12 Maths.
  • There are sub-questions to certain question numbers.
  • All these 14 questions are detailed in the NCERT solutions for Class 12 Maths chapter 11 exercise 11.3
JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download EBook

Also Read| Three Dimensional Geometry Class 12th Notes

Significance of NCERT Solutions for Class 12 Maths Chapter 11 Exercise 11.3

  • The topic plane covers many concepts and the questions from this part are important for the CBSE Board exam preparation for Class 12.
  • Exercise 11.3 is a part of the topic plane and the NCERT solutions for Class 12 Maths chapter 11 exercise 11.3 will be useful to score well in the exam.

Key Features Of NCERT Solutions for Exercise 11.3 Class 12 Maths Chapter 11

  • Comprehensive Coverage: The solutions encompass all the topics covered in ex 11.3 class 12, ensuring a thorough understanding of the concepts.
  • Step-by-Step Solutions: In this class 12 maths ex 11.3, each problem is solved systematically, providing a stepwise approach to aid in better comprehension for students.
  • Accuracy and Clarity: Solutions for class 12 ex 11.3 are presented accurately and concisely, using simple language to help students grasp the concepts easily.
  • Conceptual Clarity: In this 12th class maths exercise 11.3 answers, emphasis is placed on conceptual clarity, providing explanations that assist students in understanding the underlying principles behind each problem.
  • Inclusive Approach: Solutions for ex 11.3 class 12 cater to different learning styles and abilities, ensuring that students of various levels can grasp the concepts effectively.
  • Relevance to Curriculum: The solutions for class 12 maths ex 11.3 align closely with the NCERT curriculum, ensuring that students are prepared in line with the prescribed syllabus.

Also see-

NCERT Solutions Subject Wise

Subject Wise NCERT Exemplar Solutions

Frequently Asked Questions (FAQs)

1. What is the main topic that is to be covered to solve exercise 11.3 Class 12 Maths?

The topic 11.6 plane

2. What is discussed after Class 12 Maths chapter 11 exercise 11.3?

Miscellaneous examples are given after Class 12th Maths chapter 11 exercise 11.3

3. Who solved the NCERT solutions for Class 12 Maths chapter 11 exercise 11.3?

A team of mathematics experts solved exercise 11.3 discussed here

4. Why students should solve Class 12 Maths chapter 11 exercise 11.3?

To understand how much students have grasped the concepts of plane discussed in the NCERT mathematics book, it is good to solve exercise 11.3

5. Is there any supporting NCERT material for more practice questions?

Yes, NCERT exemplars have a good number of practice questions and will be useful in the preparation of the chapter.

6. Are NCERT solutions helpful in the CBSE board examination?

Yes, for the CBSE board there will be a good number of similar questions as discussed in the NCERT book. 

7. Is three-dimensional geometry important for JEE Main examination?

Yes. Questions are asked from three-dimensional geometry in the JEE Main papers.

8. Which NCERT Class 12 chapter explains the concepts of vectors?

Chapter 10 of Class 12 NCERT book

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Admit Card Date:13 December,2024 - 06 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

View All School Exams

Explore Top Universities Across Globe

University of Essex, Colchester
 Wivenhoe Park Colchester CO4 3SQ
University College London, London
 Gower Street, London, WC1E 6BT
The University of Edinburgh, Edinburgh
 Old College, South Bridge, Edinburgh, Post Code EH8 9YL
University of Bristol, Bristol
 Beacon House, Queens Road, Bristol, BS8 1QU
University of Nottingham, Nottingham
 University Park, Nottingham NG7 2RD

Questions related to CBSE Class 12th

Have a question related to CBSE Class 12th ?

Hello there! Thanks for reaching out to us at Careers360.

Ah, you're looking for CBSE quarterly question papers for mathematics, right? Those can be super helpful for exam prep.

Unfortunately, CBSE doesn't officially release quarterly papers - they mainly put out sample papers and previous years' board exam papers. But don't worry, there are still some good options to help you practice!

Have you checked out the CBSE sample papers on their official website? Those are usually pretty close to the actual exam format. You could also look into previous years' board exam papers - they're great for getting a feel for the types of questions that might come up.

If you're after more practice material, some textbook publishers release their own mock papers which can be useful too.

Let me know if you need any other tips for your math prep. Good luck with your studies!

It's understandable to feel disheartened after facing a compartment exam, especially when you've invested significant effort. However, it's important to remember that setbacks are a part of life, and they can be opportunities for growth.

Possible steps:

  1. Re-evaluate Your Study Strategies:

    • Identify Weak Areas: Pinpoint the specific topics or concepts that caused difficulties.
    • Seek Clarification: Reach out to teachers, tutors, or online resources for additional explanations.
    • Practice Regularly: Consistent practice is key to mastering chemistry.
  2. Consider Professional Help:

    • Tutoring: A tutor can provide personalized guidance and support.
    • Counseling: If you're feeling overwhelmed or unsure about your path, counseling can help.
  3. Explore Alternative Options:

    • Retake the Exam: If you're confident in your ability to improve, consider retaking the chemistry compartment exam.
    • Change Course: If you're not interested in pursuing chemistry further, explore other academic options that align with your interests.
  4. Focus on NEET 2025 Preparation:

    • Stay Dedicated: Continue your NEET preparation with renewed determination.
    • Utilize Resources: Make use of study materials, online courses, and mock tests.
  5. Seek Support:

    • Talk to Friends and Family: Sharing your feelings can provide comfort and encouragement.
    • Join Study Groups: Collaborating with peers can create a supportive learning environment.

Remember: This is a temporary setback. With the right approach and perseverance, you can overcome this challenge and achieve your goals.

I hope this information helps you.







Hi,

Qualifications:
Age: As of the last registration date, you must be between the ages of 16 and 40.
Qualification: You must have graduated from an accredited board or at least passed the tenth grade. Higher qualifications are also accepted, such as a diploma, postgraduate degree, graduation, or 11th or 12th grade.
How to Apply:
Get the Medhavi app by visiting the Google Play Store.
Register: In the app, create an account.
Examine Notification: Examine the comprehensive notification on the scholarship examination.
Sign up to Take the Test: Finish the app's registration process.
Examine: The Medhavi app allows you to take the exam from the comfort of your home.
Get Results: In just two days, the results are made public.
Verification of Documents: Provide the required paperwork and bank account information for validation.
Get Scholarship: Following a successful verification process, the scholarship will be given. You need to have at least passed the 10th grade/matriculation scholarship amount will be transferred directly to your bank account.

Scholarship Details:

Type A: For candidates scoring 60% or above in the exam.

Type B: For candidates scoring between 50% and 60%.

Type C: For candidates scoring between 40% and 50%.

Cash Scholarship:

Scholarships can range from Rs. 2,000 to Rs. 18,000 per month, depending on the marks obtained and the type of scholarship exam (SAKSHAM, SWABHIMAN, SAMADHAN, etc.).

Since you already have a 12th grade qualification with 84%, you meet the qualification criteria and are eligible to apply for the Medhavi Scholarship exam. Make sure to prepare well for the exam to maximize your chances of receiving a higher scholarship.

Hope you find this useful!

hello mahima,

If you have uploaded screenshot of your 12th board result taken from CBSE official website,there won,t be a problem with that.If the screenshot that you have uploaded is clear and legible. It should display your name, roll number, marks obtained, and any other relevant details in a readable forma.ALSO, the screenshot clearly show it is from the official CBSE results portal.

hope this helps.

Hello Akash,

If you are looking for important questions of class 12th then I would like to suggest you to go with previous year questions of that particular board. You can go with last 5-10 years of PYQs so and after going through all the questions you will have a clear idea about the type and level of questions that are being asked and it will help you to boost your class 12th board preparation.

You can get the Previous Year Questions (PYQs) on the official website of the respective board.

I hope this answer helps you. If you have more queries then feel free to share your questions with us we will be happy to assist you.

Thank you and wishing you all the best for your bright future.

View All

A block of mass 0.50 kg is moving with a speed of 2.00 ms-1 on a smooth surface. It strikes another mass of 1.00 kg and then they move together as a single body. The energy loss during the collision is

Option 1)

0.34\; J

Option 2)

0.16\; J

Option 3)

1.00\; J

Option 4)

0.67\; J

A person trying to lose weight by burning fat lifts a mass of 10 kg upto a height of 1 m 1000 times.  Assume that the potential energy lost each time he lowers the mass is dissipated.  How much fat will he use up considering the work done only when the weight is lifted up ?  Fat supplies 3.8×107 J of energy per kg which is converted to mechanical energy with a 20% efficiency rate.  Take g = 9.8 ms−2 :

Option 1)

2.45×10−3 kg

Option 2)

 6.45×10−3 kg

Option 3)

 9.89×10−3 kg

Option 4)

12.89×10−3 kg

 

An athlete in the olympic games covers a distance of 100 m in 10 s. His kinetic energy can be estimated to be in the range

Option 1)

2,000 \; J - 5,000\; J

Option 2)

200 \, \, J - 500 \, \, J

Option 3)

2\times 10^{5}J-3\times 10^{5}J

Option 4)

20,000 \, \, J - 50,000 \, \, J

A particle is projected at 600   to the horizontal with a kinetic energy K. The kinetic energy at the highest point

Option 1)

K/2\,

Option 2)

\; K\;

Option 3)

zero\;

Option 4)

K/4

In the reaction,

2Al_{(s)}+6HCL_{(aq)}\rightarrow 2Al^{3+}\, _{(aq)}+6Cl^{-}\, _{(aq)}+3H_{2(g)}

Option 1)

11.2\, L\, H_{2(g)}  at STP  is produced for every mole HCL_{(aq)}  consumed

Option 2)

6L\, HCl_{(aq)}  is consumed for ever 3L\, H_{2(g)}      produced

Option 3)

33.6 L\, H_{2(g)} is produced regardless of temperature and pressure for every mole Al that reacts

Option 4)

67.2\, L\, H_{2(g)} at STP is produced for every mole Al that reacts .

How many moles of magnesium phosphate, Mg_{3}(PO_{4})_{2} will contain 0.25 mole of oxygen atoms?

Option 1)

0.02

Option 2)

3.125 × 10-2

Option 3)

1.25 × 10-2

Option 4)

2.5 × 10-2

If we consider that 1/6, in place of 1/12, mass of carbon atom is taken to be the relative atomic mass unit, the mass of one mole of a substance will

Option 1)

decrease twice

Option 2)

increase two fold

Option 3)

remain unchanged

Option 4)

be a function of the molecular mass of the substance.

With increase of temperature, which of these changes?

Option 1)

Molality

Option 2)

Weight fraction of solute

Option 3)

Fraction of solute present in water

Option 4)

Mole fraction.

Number of atoms in 558.5 gram Fe (at. wt.of Fe = 55.85 g mol-1) is

Option 1)

twice that in 60 g carbon

Option 2)

6.023 × 1022

Option 3)

half that in 8 g He

Option 4)

558.5 × 6.023 × 1023

A pulley of radius 2 m is rotated about its axis by a force F = (20t - 5t2) newton (where t is measured in seconds) applied tangentially. If the moment of inertia of the pulley about its axis of rotation is 10 kg m2 , the number of rotations made by the pulley before its direction of motion if reversed, is

Option 1)

less than 3

Option 2)

more than 3 but less than 6

Option 3)

more than 6 but less than 9

Option 4)

more than 9

Back to top