Careers360 Logo
RD Sharma Class 12 Exercise 18.14 Relation Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.14 Relation Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:12 PM IST

RD Sharma class 12th exercise 18.14 is one of the best exercise solutions for CBSE maths textbooks. Students who have used these solutions have greatly benefited from the answers and have even found some common questions in their board exams. Since, students I Class 12 get minimal time for exam preparations, the RD Sharma class 12 chapter 18 exercise 18.14 can be of immense help to them. With the use of RD Sharma solutions, students will be able to practice maths at home and improve their problem-solving skills.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.14


Indefinite Integrals Excercise 18.14 Question 1

Answer: \frac{1}{2 a b} \log \left|\frac{a+b x}{a-b x}\right|+c
Hint: To solve this integral, use the formula of special integral.
Given: I=\int \frac{1}{a^{2}-b^{2} x^{2}} d x
Solution: Let
I=\int \frac{1}{a^{2}-b^{2} x^{2}} d x=\frac{1}{b^{2}} \int \frac{1}{\frac{a^{2}}{b^{2}}-x^{2}} d x
=\frac{1}{b^{2}} \int \frac{1}{\left(\frac{a}{b}\right)^{2}-x^{2}} d x
=\frac{1}{b^{2}} \cdot \frac{1}{2 \times \frac{a}{b}} \log \left|\frac{\frac{a}{b}+x}{\frac{a}{b}-x}\right|+c \quad \quad \quad \quad \quad\left[\because \int \frac{1}{a^{2}-x^{2}} d x=\frac{1}{2 a} \log \left|\frac{a+x}{a-x}\right|+c\right]
\begin{aligned} &= \frac{1}{2 a b} \log \left|\frac{\frac{a+b x}{b}}{\frac{a-b x}{b}}\right|+c \\\\ &= \frac{1}{2 a b} \log \left|\frac{a+b x}{a-b x}\right|+c \end{aligned}

Indefinite Integrals Excercise 18.14 Question 2

Answer: \frac{1}{2 a b} \log \left|\frac{a x-b}{a x+b}\right|+c
Hint: To solve this integral, use special integral formula.
Given: \int \frac{1}{a^{2} x^{2}-b^{2}} d x
Solution: Let I=\int \frac{1}{a^{2} x^{2}-b^{2}} d x \: x=\frac{1}{a^{2}} \int \frac{1}{x^{2}-\frac{b^{2}}{a^{2}}} d x
=\frac{1}{a^{2}} \int \frac{1}{x^{2}-\left(\frac{b}{a}\right)^{2}} d x
=\frac{1}{a^{2}} \cdot \frac{1}{2 \times \frac{b}{a}} \log \left|\frac{x-\frac{b}{a}}{x+\frac{b}{a}}\right|+c \quad \quad \quad \quad \quad \quad \quad\left[\because \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c\right]
\begin{aligned} &=\frac{1}{2 a b} \log \left|\frac{\frac{a x-b}{a}}{\frac{a x+b}{a}}\right|+c \\ \end{aligned}
=\frac{1}{2 a b} \log \left|\frac{a x-b}{a x+b}\right|+c

Indefinite Integrals Excercise 18.14 Question 3

Answer: \frac{1}{a b} \tan ^{-1}\left|\frac{a x}{b}\right|+c
Hint: To solve this integral, use special integral formula.
Given:\int \frac{1}{a^{2} x^{2}+b^{2}} d x
Solution: Let I=\int \frac{1}{a^{2} x^{2}+b^{2}} d x=\frac{1}{a^{2}} \int \frac{1}{x^{2}+\frac{b^{2}}{a^{2}}} d x
=\frac{1}{a^{2}} \int \frac{1}{x^{2}+\left(\frac{b}{a}\right)^{2}} d x
=\frac{1}{a^{2}} \cdot \frac{1}{\frac{b}{a}} \tan ^{-1}\left|\frac{x}{\frac{b}{a}}\right|+c \quad\quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left|\frac{x}{a}\right|+c\right]
=\frac{1}{a b} \tan ^{-1}\left|\frac{a x}{b}\right|+c

Indefinite Integrals Excercise 18.14 Question 4

Answer: x-\frac{5}{2} \tan ^{-1}\left|\frac{x}{2}\right|+c
Hint: To solve this integral, use special integral formula.
Given:\int \frac{x^{2}-1}{x^{2}+4} d x
Solution:
Let,
\begin{aligned} &I=\int \frac{x^{2}-1}{x^{2}+4} d x=\int \frac{x^{2}-1+4-4}{x^{2}+4} d x\\ \\ &=\int \frac{\left(x^{2}+4\right)-1-4}{x^{2}+4} d x=\int\left(\frac{x^{2}+4}{x^{2}+4}-\frac{5}{x^{2}+4}\right) d x \\\\ &=\int\left(1-\frac{5}{x^{2}+4}\right) d x=\int 1 d x-5 \int \frac{1}{x^{2}+2^{2}} \end{aligned}

=x-5 \cdot \frac{1}{2} \tan ^{-1}\left(\frac{x}{2}\right)+c \quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left|\frac{x}{a}\right|+c\right]

=x-\frac{5}{2} \tan ^{-1}\left|\frac{x}{2}\right|+c

Indefinite Integrals Excercise 18.14 Question 5

Answer: \frac{1}{2} \log \left|x+\sqrt{x^{2}+\frac{1}{4}}\right|+c
Hint: To solve this integral, use special integral formula.
Given:\int \frac{1}{\sqrt{1+4 x^{2}}} d x
Solution:
Let
\begin{aligned} &I=\int \frac{1}{\sqrt{1+4 x^{2}}} d x=\int \frac{1}{\sqrt{4\left(\frac{1}{4}+x^{2}\right)}} d x \\ &=\frac{1}{2} \int \frac{1}{\sqrt{x^{2}+\left(\frac{1}{2}\right)^{2}}} d x \end{aligned}
\begin{aligned} &=\frac{1}{2} \log \left|x+\sqrt{x^{2}+\left(\frac{1}{2}\right)^{2}}\right|+c \quad\quad\quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c\right] \\ \\&=\frac{1}{2} \log \left|x+\sqrt{x^{2}+\frac{1}{4}}\right|+c \end{aligned}

Indefinite Integrals Excercise 18.14 Question 6

Answer: \frac{1}{b} \log \left|b x+\sqrt{a^{2}+b^{2} x^{2}}\right|+c
Hint: To solve this integral, use special integral formula.
Given: \int \frac{1}{\sqrt{a^{2}+b^{2} x^{2}}} d x
Solution:
Let I=\int \frac{1}{\sqrt{a^{2}+b^{2} x^{2}}} d x
\text { Put } b x=t \Rightarrow b d x=d t \Rightarrow d x=\frac{d t}{b} \text { then }
\begin{aligned} &I=\int \frac{1}{\sqrt{a^{2}+t^{2}}} \frac{d t}{b}=\frac{1}{b} \int \frac{1}{\sqrt{a^{2}+t^{2}}} d t \\\\ &=\frac{1}{b} \log \left|t+\sqrt{a^{2}+t^{2}}\right|+c \quad\quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c\right] \end{aligned}
=\frac{1}{b} \log \left|b x+\sqrt{a^{2}+b^{2} x^{2}}\right|+c \quad\quad\quad\quad\quad\quad\quad[\because t=b x]


Indefinite Integrals Excercise 18.14 Question 7

Answer:\frac{1}{b} \sin ^{-1}\left(\frac{b x}{a}\right)+c
Hint: To solve this integral, use special integral formula.
Given:\int \frac{1}{\sqrt{a^{2}-b^{2} x^{2}}} d x
Solution:
Let
I=\int \frac{1}{\sqrt{a^{2}-b^{2} x^{2}}} d x
\begin{aligned} &\text { Put } b x=t \Rightarrow b d x=d t \Rightarrow d x=\frac{d t}{b} \text { then } \\ &I=\int \frac{1}{\sqrt{a^{2}-t^{2}}} \frac{d t}{b}=\frac{1}{b} \int \frac{1}{\sqrt{a^{2}-t^{2}}} d t \end{aligned}
\begin{aligned} &=\frac{1}{b} \sin ^{-1}\left(\frac{t}{a}\right)+c \quad\left[\because \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c\right] \\\\ &=\frac{1}{b} \sin ^{-1}\left(\frac{b x}{a}\right)+c \quad[\because t=b x] \end{aligned}

Indefinite Integrals Excercise 18.14 Question 8

Answer: -\log \left|(2-x)+\sqrt{(2-x)^{2}+1}\right|+c
Hint: To solve this integral, use special integral formula.
Given:\int \frac{1}{\sqrt{(2-x)^{2}+1}} d x
Solution:
Let
I=\int \frac{1}{\sqrt{(2-x)^{2}+1}} d x
\text { Put } 2-x=t \Rightarrow-d x=d t \Rightarrow d x=-d t \text { then }
I=\int \frac{1}{\sqrt{t^{2}+1}}(-d t)=-\int \frac{1}{\sqrt{t^{2}+1^{2}}} d t
=-\log \left|t+\sqrt{t^{2}+1}\right|+c \quad\quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{a^{2}+x^{2}}} d x=\log \left|x+\sqrt{a^{2}+x^{2}}\right|+c\right]
=-\log \left|(2-x)+\sqrt{(2-x)^{2}+1}\right|+c

Indefinite Integrals Excercise 18.14 Question 9

Answer: -\log \left|(2-x)+\sqrt{(2-x)^{2}-1}\right|+c
Hint: To solve this integral, use special integral formula.
Given: \int \frac{1}{\sqrt{(2-x)^{2}-1}} d x \\
Solution:
Let
\begin{aligned} &I=\int \frac{1}{\sqrt{(2-x)^{2}-1}} d x \\ \end{aligned}
\text { Put } 2-x=t \Rightarrow-d x=d t \Rightarrow d x=-d t \text { then }
\begin{aligned} &I=\int \frac{1}{\sqrt{t^{2}-1}}(-d t)=-\int \frac{1}{\sqrt{t^{2}-1^{2}}} d t \\ & \end{aligned}
=-\log \left|t+\sqrt{t^{2}-1}\right|+c \quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c\right]
=-\log \left|(2-x)+\sqrt{(2-x)^{2}-1}\right|+c \quad \quad \quad \quad \quad[\because t=2-x]

Indefinite Integrals Excercise 18.14 Question 10

Answer:\frac{x^{3}}{3}-x+2 \tan ^{-1}(x)+c
Hint: To solve this integral, use special integral formula.
Given: \int \frac{x^{4}+1}{x^{2}+1} d x
Solution:
Let
\begin{aligned} &I=\int \frac{x^{4}+1}{x^{2}+1} d x=\int \frac{x^{4}+1+2 x^{2}-2 x^{2}}{x^{2}+1} d x \\\\ &=\int \frac{\left\{\left(x^{2}\right)^{2}+1+2 x^{2}\right\}-2 x^{2}}{x^{2}+1} d x \quad\left[\because a^{2}+b^{2}+2 a b=(a+b)^{2}\right] \end{aligned}

=\int \frac{\left(x^{2}+1\right)^{2}-2 x^{2}}{x^{2}+1} d x=\int \frac{\left(x^{2}+1\right)^{2}}{x^{2}+1}-\frac{2 x^{2}}{x^{2}+1} d x


\begin{aligned} &=\int\left\{\left(x^{2}+1\right)-\frac{\left[2 x^{2}+2-2\right]}{x^{2}+1}\right\} d x \\\\ &=\int\left\{\left(x^{2}+1\right)-\frac{\left[2\left(x^{2}+1\right)-2\right]}{x^{2}+1}\right\} d x \\\\ &=\int\left\{\left(x^{2}+1\right)-\frac{2\left(x^{2}+1\right)}{x^{2}+1}+\frac{2}{x^{2}+1}\right\} d x \end{aligned}

\begin{aligned} &=\int\left\{\left(x^{2}+1\right)-2+\frac{2}{x^{2}+1}\right\} d x \\\\ &=\int\left(x^{2}+1\right) d x-2 \int 1 d x+2 \int \frac{1}{x^{2}+1} d x \\ \\&=\int x^{2} d x+\int 1 d x-2 \int 1 d x+2 \int \frac{1}{x^{2}+1} d x \end{aligned}


=\frac{x^{2+1}}{2+1}+x-2 x+2 \cdot \frac{1}{1} \tan ^{-1}\left(\frac{x}{1}\right)+c \quad \quad \quad \quad \quad \quad\left[\begin{array}{l} \because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c, \int 1 d x=x+c \\\\ \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \end{array}\right]
=\frac{x^{3}}{3}-x+2 \tan ^{-1}(x)+c

The RD Sharma class 12 solutions Indefinite Integrals 18.14 covers an important part of the maths syllabus that has 32 Exercises in total. Chapter 18 of the NCERT maths book will teach them the basic concepts of indefinite integrals. Some areas covered in this chapter are Graphs of indefinite integrals and Indefinite integrals of common functions. Exercise 18.14 has 10 questions with subparts. These questions are based on the basic concepts of Indefinite Integrals. The RD Sharma class 12th exercise 18.14 will help students solve these exercise questions and build their skills.

The class 12 RD Sharma chapter 18 exercise 18.14 solution comes recommended from hundreds of students in India who have experienced the magic of using RD Sharma solutions. The answers in the book are handcrafted by experts in maths. They contain some new and improved methods of solving questions which will be immensely helpful to students.

Students will be able to practice maths at home by solving the questions that are present in their maths textbooks. Then they can compare their answers with the RD Sharma class 12 solutions Indefinite Integrals ex 18.14 solutions to check their performance. Teachers sometimes use these solutions to give homework to students so they will find it easy to solve their home assignments with the help of RD Sharma class 12 solutions chapter 18 ex 18.14.

The RD Sharma class 12th exercise 18.14 book is updated pretty regularly whenever there is a change in the syllabus of NCERT Books. Students will be able to find the newest version of the pdf online at the Career360 website. There will be less financial burden on parents as the RD Sharma class 12th exercise 18.14 comes free of cost unlike other study materials that are available.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Do I need to buy the RD Sharma class 12th exercise 18.14 pdf?

Students won't be required to buy the RD Sharma class 12th exercise 18.14 at all. They can just download the free pdf of the book online at Career360.

2. Is RD Sharma class 12 solutions chapter 5 ex VSQ beneficial for exam preparations?

Students will benefit a lot from the RD Sharma class 12 solutions chapter 18 ex 18.14 if they use it for exam preparations since the exercise part covers short answers from all sections of the chapter. 


3. Which is the ideal coursebook for CBSE board preparations?

The RD Sharma solution is the favorite NCERT solution of innumerable students.  Therefore it's safe to say that RD Sharma solutions are the best when it comes to CBSE NCERT solutions.

4. Which site is best to download class 12 RD Sharma chapter 18 exercise 18.14 solution?

Students who want to avail of the class 12 RD Sharma chapter 18 exercise 18.14 solution can download the free pdf of the books from Career360.

5. Will the RD Sharma class 12th exercise 18.14 be useful for JEE mains preparations?

The RD Sharma class 12th exercise 18.14 solution will be fit for use for exams like boards and JEE mains exams.

Articles

Get answers from students and experts
Back to top