RD Sharma Class 12 Exercise 18.17 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.17 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:18 PM IST

RD Sharma class 12th exercise 18.17 is the top choice of students when it comes to NCERT solutions for maths. This book is a must-have for all students who want to improve their math skills and develop their chances of scoring high in board exams. Since in class 12 students have their board exams near, they should get hold of the RD Sharma class 12 chapter 18 exercise 18.17 solution to help them prepare for their upcoming exams. RD Sharma Solutions

The RD Sharma class 12 solutions Indefinite Integrals 18.17 is another great book from the maths solutions series which will be beneficial for all students who have opted for maths. The 18th chapter of the maths textbook will teach students

Graphs, reverse power rule, indefinite integrals, and common functions too. Exercise 18.17 has 9 questions that seek to build the general understanding of the chapter. The RD Sharma class 12th exercise 18.17 will help solve doubts on calculations and problem-solving techniques.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.17

Indefinite Integrals Exercise Very Short Answer Question 2

Answer:

Answer:-
Hint:-To solve this problem, use special integration formula
Given:-
Solution:- Let

Put

Indefinite Integrals Exercise Very Short Answer Question 2 Maths Textbook Solutio
Edit Q



Indefinite Integrals Exercise Very Short Answer Question 3

Answer:-\frac{1}{\sqrt{2}}\sin^{-1}\left ( \frac{x+1}{\sqrt{\frac{}{2}}} \right )+c
Hint:-To solve this problem, use special integration formula.
Given:-\int \frac{1}{\sqrt{5-4x-2x^{2}}}dx
Solution:- Let \int \frac{1}{\sqrt{5-4x-2x^{2}}}dx\Rightarrow \int \frac{1}{\sqrt{-\left \{ \left ( 2x^{2} +4x-5\right ) \right \}}}dx
\begin{gathered} =\int \frac{1}{\sqrt{-2\left\{x^{2}+2 x-\frac{5}{2}\right\}}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{x^{2}+2 x \cdot 1+(1)^{2}-(1)^{2}-\frac{5}{2}\right\}}} d x \\ \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{(x+1)^{2}-1-\frac{5}{2}\right\}}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{(x+1)^{2}-\left(1+\frac{5}{2}\right)\right\}}} d x \end{gathered}
\begin{aligned} &=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{(x+1)^{2}-\left(\frac{2+5}{2}\right)\right\}}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{(x+1)^{2}-\frac{7}{2}\right\}}} d x\\ &=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\frac{7}{2}-(x+1)^{2}}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\sqrt{\frac{7}{2}}\right)^{2}-(x+1)^{2}}} d x\\ &=\frac{1}{\sqrt{2}} \int \frac{1}{\left.\sqrt{-\left\{(x+1)^{2}-\left(\frac{2+5}{2}\right)\right.}\right\}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{(x+1)^{2}-\frac{7}{2}\right\}}} d x\\ &=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\frac{7}{2}-(x+1)^{2}}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-(x+1)^{2}}} d x \end{aligned}
Put x+1=t\Rightarrow dx=dt then
I=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-t^{2}}} d t \Rightarrow \frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{t}{\frac{\sqrt{7}}{2}}\right)+c \quad \quad \quad \quad \quad\left.\because \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c\right]\\ = \frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x+1}{\frac{\sqrt{7}}{2}}\right)+c \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad\quad{[\because t=x+1]} \quad \begin{aligned} \end{aligned}

Indefinite Integrals Exercise 18.17 Question 4

Answer\frac{1}{\sqrt{3}}\log \left | \left ( x+\frac{5}{6} \right ) +\sqrt{x^{2}+\frac{5x}{3}}+\frac{7}{3}\right |+c
Hint:-To solve this problem, use special integration formula.
Given:-\int \frac{1}{\sqrt{3x^{2}+5x+7}}dx
Solution:-
Let
\int \frac{1}{\sqrt{3x^{2}+5x+7}}dx\Rightarrow \int \frac{1}{\sqrt{3\left \{ x^{2}+\frac{5x}{3}+\frac{7}{3} \right \}}}dx
\frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{x^{2}+2.x.\frac{5}{6}+\left ( \frac{5}{6} \right )^{2}-\left ( \frac{5}{6} \right )^{2}+\frac{7}{3}}}dx
\frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{\left ( x+\frac{5}{6} \right )^{2}-\frac{25}{36}+\frac{7}{3}}}dx
\frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{\left ( x+\frac{5}{6} \right )^{2}-\left ( \frac{25-84}{36} \right )}}dx
\frac{1}{\sqrt{3}}\int \frac{1}{\sqrt{\left ( x+\frac{5}{6} \right )^{2}+\frac{59}{36}}}dx
Put
x+\frac{5}{6}=t\Rightarrow dx=dt
\begin{gathered} I=\frac{1}{\sqrt{3}} \int \frac{1}{\sqrt{t^{2}+\left(\frac{\sqrt{59}}{6}\right)^{2}}} d x \\ =\frac{1}{\sqrt{3}} \log \left|t+\sqrt{t^{2}+\left(\frac{\sqrt{59}}{6}\right)^{2}}\right|+c \\ {\left[\because \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c\right]} \end{gathered}
\begin{aligned} &=\frac{1}{\sqrt{3}} \log \left(x+\frac{5}{6}\right)+\sqrt{\left(x+\frac{5}{6}\right)^{2}+\frac{59}{36}} \mid+c \\ &=\frac{1}{\sqrt{3}} \log \left(x+\frac{5}{6}\right)+\sqrt{(x)^{2}+\left(\frac{5}{6}\right)^{2}+2 \cdot \frac{5}{6} x+\frac{59}{36} \mid+c} \quad\quad\quad\quad\quad\quad\quad\left[\because t=x+\frac{5}{6}\right] \\ &=\frac{1}{\sqrt{3}} \log \left(x+\frac{5}{6}\right)+\sqrt{x^{2}+\frac{5 x}{3}+\frac{25}{36}+\frac{59}{36}} \mid+c \end{aligned}
\begin{aligned} &=\frac{1}{\sqrt{3}} \log \left(x+\frac{5}{6}\right)+\sqrt{x^{2}+\frac{5 x}{3}+\frac{84}{36}} \mid+c \\ &=\frac{1}{\sqrt{3}} \log \left(x+\frac{5}{6}\right)+\sqrt{x^{2}+\frac{5 x}{3}+\frac{7}{3}} \mid+c \end{aligned}

Indefinite Integrals Exercise 18.17 Question 5

Answer\sin^{-1}\left ( \frac{2x-\alpha-\beta}{\beta -\alpha } \right )+c
Hint:-To solve this problem, use special integration formula
Given:-\int \frac{1}{\sqrt{\left ( 1-\alpha \right )\left ( \beta -x \right )}}dx,\left ( \beta > \alpha \right )
Solution:-
Let \begin{aligned} I=& \int \frac{1}{\sqrt{(x-\alpha)(\beta-x)}} d x=\int \frac{1}{\sqrt{x \beta-x^{2}-\alpha \beta+\alpha x}} d x \\ &=\int \frac{1}{\sqrt{-\left\{x^{2}-x(\alpha+\beta)+\alpha \beta\right\}}} d x \\ &=\int \frac{1}{\sqrt{-\left\{x^{2}-2 x \cdot \frac{\alpha+\beta}{2}+\left(\frac{\alpha+\beta}{2}\right)^{2}-\left(\frac{\alpha+\beta}{2}\right)^{2}+\alpha \beta\right\}}} d x \end{aligned}
\begin{aligned} &=\int \frac{1}{\sqrt{-\left[\left\{x-\left(\frac{\alpha+\beta}{2}\right)^{2}\right\}-\left\{\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta}{4}-\alpha \beta\right\}\right]}} d x \\ &=\int \frac{1}{\sqrt{-\left[\left\{x-\left(\frac{\alpha+\beta}{2}\right)\right\}^{2}-\left\{\frac{\alpha^{2}+\beta^{2}+2 \alpha \beta-4 \alpha \beta}{4}\right\}\right]}} d x \\ &=\int \frac{1}{\sqrt{-\left[\left\{x-\left(\frac{\alpha+\beta}{2}\right)\right\}^{2}-\left\{\frac{\alpha^{2}+\beta^{2}-2 \alpha \beta}{4}\right\}\right]}} d x \end{aligned}
\begin{aligned} &=\int \frac{1}{\sqrt{-\left\{\left\{x-\left(\frac{\alpha+\beta}{2}\right)\right\}^{2}-\left(\frac{\alpha-\beta}{2}\right)^{2}\right]}} \Rightarrow \int \frac{1}{\sqrt{-\left[\left\{x-\left(\frac{\alpha+\beta}{2}\right)\right\}^{2}-\left(\frac{\beta-\alpha}{2}\right)^{2}\right]} d x}\quad\quad\quad \quad(\because \beta>\alpha) \\ &=\int \frac{1}{\sqrt{\left(\frac{\beta-\alpha}{2}\right)^{2}-\left\{x-\left(\frac{\alpha+\beta}{2}\right)\right\}^{2}}} d x \end{aligned}
\begin{aligned} &x-\left(\frac{\alpha+\beta}{2}\right)=t \Rightarrow d x=d t \text { then } \\ &\mathrm{I}=\int \frac{1}{\sqrt{\left(\frac{\beta-\alpha}{2}\right)^{2}-t^{2}}} d t=\sin ^{-1}\left(\frac{t}{\frac{\beta-\alpha}{2}}\right)+c \quad\quad\quad\quad\quad\left[\because \int \frac{1}{a^{2}-x^{2}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c\right] \end{aligned}
\begin{aligned} &=\sin ^{-1}\left(\frac{x-\left(\frac{\alpha+\beta}{2}\right)}{\frac{\beta-\alpha}{2}}\right)+c \Rightarrow \sin ^{-1}\left(\frac{2 x-(\alpha+\beta)}{\frac{2}{\frac{\beta-\alpha}{2}}}\right)+c\quad\quad\quad\quad\quad \quad\left[\because t=x-\left(\frac{\alpha+\beta}{2}\right)\right] \\ &=\sin ^{-1}\left(\frac{2 x-\alpha-\beta}{\beta-\alpha}\right)+c \end{aligned}




Indefinite Integrals Exercise 18.17 Question 6

Answer:-\frac{1}{\sqrt{2}}\sin^{-1}\left ( \frac{4x+3}{\sqrt{65}} \right )+c
Hint:-to solve this problem, use special integration formula
Given:-\int \frac{1}{\sqrt{7-3 x-2 x^{2}}} d x
Solution:-
Let
\begin{aligned} &I=\int \frac{1}{\sqrt{7-3 x-2 x^{2}}} d x \Rightarrow \int \frac{1}{\sqrt{-2\left\{x^{2}+\frac{3}{2} x-7 / 2\right\}}}dx \\ &=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{x^{2}+2 x \cdot \frac{3}{4}+\left(\frac{3}{4}\right)^{2}-\left(\frac{3}{4}\right)^{2}-7 / 2\right\}}}dx \\ &=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{\left(x+\frac{3}{4}\right)^{2}-\frac{9}{16}-\frac{7}{2}\right\}}} d x \end{aligned}
\begin{aligned} &= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{\left(x+\frac{3}{4}\right)^{2}-\frac{9+56}{16}\right\}}} d x \\ &= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{-\left\{\left(x+\frac{3}{4}\right)^{2}-\frac{65}{16}\right\}}} d x \Rightarrow \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{+\frac{65}{16}-\left(x+\frac{3}{4}\right)^{2}}} d x \\ &= \frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{\sqrt{65}}{4}\right)^{2}-\left(x+\frac{3}{4}\right)^{2}}} d x \end{aligned}
\begin{aligned} &\text { put } \mathrm{x}+\frac{3}{4}=t \Rightarrow d x=d t \text { then } \\ &I=\frac{1}{\sqrt{2}} \int \frac{1}{\sqrt{\left(\frac{\sqrt{65}}{4}\right)^{2}-t^{2}}} d t \Rightarrow \frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{t}{\left(\frac{\sqrt{65}}{4}\right)}\right)+c \quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c\right] \end{aligned}
\begin{aligned} &=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{x+3 / 4}{\frac{\sqrt{65}}{4}}\right)+c &\quad\quad\quad\quad{[\because t=x+3 / 4]}\\ &=\frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{4 x+3}{\frac{4}{\sqrt{65}}}{4}\right) +c \Rightarrow \frac{1}{\sqrt{2}} \sin ^{-1}\left(\frac{4 x+3}{\sqrt{65}}\right)+c\\ \\ \end{aligned}





Indefinite Integrals Exercise 18.17Question 7

Answer:-\sin^{-1}\left ( \frac{x+3}{5} \right )+c
Hint: - To solve this problem, use special integration formula
Given:-\int \frac{1}{\sqrt{16-6x-x^{2}}}dx
Solution:-Let\: I=\int \frac{1}{\sqrt{16-6x-x^{2}}}dx\Rightarrow \int \frac{1}{\sqrt{-\left \{ x^{2}+6x-16 \right \}}}dx
\begin{aligned} &=\int \frac{1}{\sqrt{-\left\{x^{2}+2 x .3+(3)^{2}-(3)^{2}-16\right\}}} d x \\ &=\int \frac{1}{\sqrt{-\left\{(x+3)^{2}-9-16\right\}}} d x=\int \frac{1}{\sqrt{-\left\{(x+3)^{2}-25\right\}}} d x \\ &\Rightarrow I=\int \frac{1}{\sqrt{25-(x+3)^{2}}} d x=\int \frac{1}{\sqrt{(5)^{2}-(x+3)^{2}}} d x \end{aligned}
\Gamma \begin{aligned} &\text { put } x+3=t \Rightarrow d x=d t \text { then }\quad\quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c\right]\\&I=\int \frac{1}{\sqrt{(5)^{2}-t^{2}}} d t=\sin ^{-1}\left(\frac{t}{5}\right)+c\\ &=\sin ^{-1}\left(\frac{x+3}{4}\right)+c \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad[\because t=x+3] \end{aligned}

Indefinite Integrals Exercise 18.17 Question 8

Answer:-\sin^{-1}\left ( \frac{x+3}{4} \right )+c
Hint: - To solve this problem, use special integration formula
Given:-\int \frac{1}{\sqrt{7-6x-x^{2}}}dx
Solution:-
Let I=\int \frac{1}{\sqrt{7-6x-x^{2}}}dx\Rightarrow \int \frac{1}{\sqrt{-\left \{ x^{2}+6x -7\right \}}}dx
\begin{aligned} &=\int \frac{1}{\sqrt{-\left\{x^{2}+2 x \cdot 3+(3)^{2}-(3)^{2}-7\right\}}} d x \\ &=\int \frac{1}{\sqrt{-\left\{(x+3)^{2}-9-7\right\}}} d x \Rightarrow \int \frac{1}{\sqrt{-\left\{(x+3)^{2}-16\right\}}} d x \\ &=\int \frac{1}{\sqrt{16-(x+3)^{2}}} d x \Rightarrow \int \frac{1}{\sqrt{(4)^{2}-(x+3)^{2}}} d x \\ &\text { put } \mathrm{x}+3=\mathrm{t} \Rightarrow \mathrm{dx}=\mathrm{dt} \text { then } \end{aligned}
\begin{aligned} &I=\int \frac{1}{\sqrt{(4)^{2}-t^{2}}} d t=\sin ^{-1}\left(\frac{t}{4}\right)+c \quad\quad\quad\quad\quad\left[\because \int \frac{1}{a^{2}-x^{2}} d x=\sin ^{-1}\left(\frac{x}{a}\right)+c\right] \\ &=\sin ^{-1}\left(\frac{x+3}{4}\right)+c \quad\quad\quad\quad\quad\quad\quad\quad\quad[\because t=x+3] \end{aligned}

Indefinite Integrals Exercise 18.17 Question 9

Answer:-\frac{1}{\sqrt{5}}\log \left | \left ( x-\frac{1}{5} \right )+\sqrt{x^{2}-\frac{2x}{5}} \right |+c
Hint: - To solve this problem, use special integration formula
Given:-\int \frac{1}{\sqrt{5x^{2}-2x}}dx
Solution:-
Let\: I=\int \frac{1}{\sqrt{5x^{2}-2x}}dx=\int \frac{1}{\sqrt{5\left ( x^{2}-\frac{2}{5}x \right )}}dx
\begin{aligned} &\Rightarrow I=\frac{1}{\sqrt{5}} \int \frac{1}{\sqrt{x^{2}-2 x \cdot \frac{1}{5}+\left(\frac{1}{5}\right)^{2}-\left(\frac{1}{5}\right)^{2}}} d x \\ &\Rightarrow I=\frac{1}{\sqrt{5}} \int \frac{1}{\sqrt{\left(x-\frac{1}{5}\right)^{2}-\left(\frac{1}{5}\right)^{2}}} d x \end{aligned}
\begin{aligned} &\text { put } \mathrm{x}-\frac{1}{5}=t \Rightarrow d x=d t \text { then } \\ &\mathrm{I}=\frac{1}{\sqrt{5}} \int \frac{1}{\sqrt{t^{2}-\left(\frac{1}{5}\right)^{2}}} d t \\ &I=\frac{1}{\sqrt{5}} \log \left|t+\sqrt{t^{2}-\left(\frac{1}{5}\right)^{2}}\right|+c \quad\quad\quad\quad\quad\quad\left[\because \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \mid x+\sqrt{x^{2}-a|}+c\right] \end{aligned}
\begin{aligned} &I=\frac{1}{\sqrt{5}} \log \left|\left(x-\frac{1}{5}\right)+\sqrt{\left(x-\frac{1}{5}\right)^{2}-\left(\frac{1}{5}\right)^{2}}\right|+c \quad\quad\quad\quad\left(\because t=x-\frac{1}{5}\right) \\ &\Rightarrow I=\frac{1}{\sqrt{5}} \log \left|\left(x-\frac{1}{5}\right)+\sqrt{x^{2}-\frac{2 x}{5}+\frac{1}{25}-} \frac{1}{25}\right|+c \\ &\Rightarrow I=\frac{1}{\sqrt{5}} \log \left|\left(x-\frac{1}{5}\right)+\sqrt{x^{2}-\frac{2 x}{5}}\right|+c \end{aligned}

Indefinite Integrals Exercise 18.17 Question 2

Answer:-\sin^{-1}\left ( \frac{2x-3}{\sqrt{41}} \right )+c
Hint:-To solve this problem, use special integration formula
Given:-\int \frac{1}{\sqrt{8+3x-x^{2}}}dx
Solution:-Let I=\int \frac{1}{\sqrt{8+3x-x^{2}}}dx=\int \frac{1}{\sqrt{-\left ( x^{2}-3x-8 \right )}}dx
\begin{aligned} &\Rightarrow I=\int \frac{1}{\sqrt{-\left\{x^{2}-2 \cdot x \cdot \frac{3}{2}+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}-8\right\}}} d x \\ &=\int \frac{1}{\sqrt{-\left\{\left(x-\frac{3}{2}\right)^{2}-\frac{9}{4}-8\right\}}} d x=\int \frac{1}{\sqrt{-\left\{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{9+32}{4}\right)\right\}}} d x \end{aligned}

\begin{aligned} &=\int \frac{1}{\sqrt{-\left\{\left(x-\frac{3}{2}\right)^{2}-\frac{41}{4}\right\}}} d x=\int \frac{1}{\sqrt{\frac{41}{4}-\left(x-\frac{3}{2}\right)^{2}}} d x \\ &=\int \frac{1}{\sqrt{\left(\frac{\sqrt{41}}{2}\right)^{2}-\left(x-\frac{3}{2}\right)^{2}}} d x \end{aligned}
Put x-\frac{3}{2}=t\Rightarrow dx=dt\: then
I=\int \frac{1}{\sqrt{\left ( \frac{\sqrt{41}}{2} \right )^{2}-t^{2}}}dt=\sin^{-1}\left (\frac{t}{\frac{\sqrt{41}}{2}} \right )+c \left [ \because \int \frac{1}{\sqrt{a^{2}-x^{2}}}dx=\sin^{-1}\left ( \frac{x}{a} \right )+c \right ]
=\sin^{-1}\left ( \frac{x-\frac{3}{2}}{\frac{\sqrt{41}}{2}} \right )+c=\sin^{-1}\left ( \frac{\frac{2x-3}{2}}{\frac{\sqrt{41}}{2}} \right )+c \left [ \because t=x-\frac{3}{2} \right ]

The class 12 RD Sharma chapter 18 exercise 18.17 solution will be quite handy for students who like to practice at home and test their knowledge about the concerns they learn at school. Chapter 18 of the maths book is a lengthy and complex chapter with many sample questions. Hence, the answers in the RD Sharma class 12 solutions chapter 18 ex 18.17 will be of immense help to them.

RD Sharma class 12 solutions chapter 18 ex 18.17 contains accurate answers which are crafted by skilled professionals in mathematics. These answers employ some easy and modern calculations which will help students solve questions faster and more accurately. The answers in the RD Sharma class 12th exercise 18.17 can be extremely useful in testing their knowledge and marking their performance.

School teachers make use of RD Sharma class 12th exercise 18.17 to give homework to students. Students can seek the help of the solutions to mark their answers and solve all questions. The pdf of RD Sharma class 12th exercise 18.17 is easily available at Career360 and with an updated syllabus.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. How can I download class 12 RD Sharma chapter 18 exercise 18.17 solution?

Students who wish to download the class 12 RD Sharma chapter 18 exercise 18.17 solution will find the free copy of the Solution at the Career360 website.


2. Is RD Sharma class 12th exercise 18.17 beneficial for JEE mains preparations?

The RD Sharma class 12th exercise 18.17 covers a syllabus that is common to most exams in class 12. Therefore, students can use these solutions to prepare for their JEE mains exams.

3. How can RD Sharma class 12 chapter 18 exercise 18.17 help in solving homework?

School teachers will often test students' progress by giving them homework from RD Sharma class 12 chapter 18 exercise 18.17. Therefore,  school students can use these solutions to solve their homework correctly.

4. Does RD Sharma class 12 solutions chapter 18 ex 18.17 have the latest syllabus?

RD Sharma class 12 solutions chapter 18 ex 18.17 have the latest syllabus  according to the changes made in the NCERT books.

5. Why RD Sharma Solutions are the best NCERT solutions?

Experts and professionals in mathematics are appointed to frame the solutions for all the questions given in the mathematics textbook, therefore it is the best set of solution books.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top