RD Sharma Class 12 Exercise 18.20 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.20 Indefinite Integrals Solutions Maths - Download PDF Free Online

Updated on 24 Jan 2022, 12:24 PM IST

The RD Sharma Class 12 Math Solutions have been studied by the whole country for a long time and it has been a huge competition for other publications as well.. RD Sharma Class 12th Exercise 18.20 has 11 questions based on indefinite integrals. The questions in this exercise will be solved only if a student has understood the concept of previous exercise. RD Sharma Solutions This exercise discusses questions based on integrating the function, completing squaring method, and some important formulae used for evaluating the integrals.

This Story also Contains

  1. RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:18.20
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.20


Indefinite Integrals Exercise 18.20 Question 1.

Answer: $x+\log \left|x^{2}-x\right|+2 \log |x-1|-2 \log |x|+c$
Given: $\int \frac{x^{2}+x+1}{x^{2}-x} d x$
Hint: Using Partial fraction and $\int \frac{1}{x} d x$
Explanation: Let $I=\int \frac{x^{2}+x+1}{x^{2}-x} d x$
$\frac{x^{2}+x+1}{x^{2}-x}=\frac{x^{2}-x+x+x+1}{x^{2}-x}=\frac{x^{2}-x+2 x+1}{x^{2}-x}$
$=1+\frac{2 x+1}{x^{2}-x}$
$\therefore \int \frac{x^{2}+x+1}{x^{2}-x} d x=\int\left(1+\frac{2 x-1+2}{x^{2}-x}\right) d x$
$\begin{aligned} &=\int 1 d x+\int \frac{2 x-1}{x^{2}-x} d x+2 \int \frac{1}{x^{2}-x} d x\\ &=x+\log \left|x^{2}-x\right|+2 I_{1} \quad \ldots \ldots \end{aligned}$(1)
where, $I_{1}=\int \frac{1}{x^{2}-x} d x$
Now,$\int \frac{1}{x^{2}-x} d x=\int \frac{1}{x(x-1)} d x$
$\frac{1}{x(x-1)}=\frac{A}{x}+\frac{B}{x-1}$
Multiplying by $x(x-1)$
$1=A(x-1)+B(x)$
Putting
$\begin{aligned} &x=1 \\ &1=A(1-1)+B(1) \Rightarrow B=1 \end{aligned}$
Putting
$\begin{aligned} &x=0 \\ &1=A(0-1)+B(0) \Rightarrow A=-1 \end{aligned}$
$\begin{aligned} &\therefore \frac{1}{x(x-1)}=\frac{-1}{x}+\frac{1}{x-1} \\ &\therefore \int \frac{1}{x(x-1)} d x=-\int \frac{1}{x} d x+\int \frac{1}{x-1} d x \\ &\therefore I_{1}=-\log |x|+\log |x-1| \end{aligned}$
Put in (1)
$\begin{aligned} &I=x+\log \left|x^{2}-x\right|+2[-\log |x|+\log |x-1|] \\ &=x+\log \left|x^{2}-x\right|-2 \log |x|+2 \log |x-1|+c \end{aligned}$

Indefinite Integrals Exercise 18.20 Question 2.

Given: $x+\log \left|\frac{x-2}{x+3}\right|+c$
Hint: Using Partial Fraction
Explanation:
$I=\int \frac{x^{2}+x-1}{x^{2}+x-6} d x$
$\frac{x^{2}+x-1}{x^{2}+x-6}=\frac{x^{2}+x-6+5}{x^{2}+x-6}=1+\frac{5}{x^{2}+x-6}$
$=1+\frac{5}{(x-2)(x+3)}$
$\left[\begin{array}{l} x^{2}+x-6=x^{2}+3 x-2 x-6 \\ =x(x+3)-2(x+3) \\ =(x-2)(x+3) \end{array}\right]$
$\because \int \frac{x^{2}+x-1}{x^{2}+x-6} d x=\int 1 d x+5 \int \frac{1}{(x-2)(x+3)} d x$
$\because I=x+5 I_{1}$ .......................(1)
Where $I_{1}=\int \frac{1}{(x-2)(x+3)} d x$
$\frac{1}{(x-2)(x+3)}=\frac{A}{(x-2)}+\frac{B}{(x+3)}$
Multiplying by $(x-2)(x+3)$
$1=A(x+3)+B(x-2)$
Put x=3
$1=A(0)+B(-5) \Rightarrow B=\frac{-1}{5}$
Put x=2
$1=A(5)+B(0) \Rightarrow A=\frac{1}{5}$
$\therefore \frac{1}{(x-2)(x+3)}=\frac{\frac{1}{5}}{(x-2)}+\frac{-\frac{1}{5}}{(x+3)}$
$\therefore \int \frac{1}{(x-2)(x+3)} d x=\frac{1}{5} \int \frac{1}{x-2} d x+\left(\frac{-1}{5}\right) \int \frac{1}{x+3} d x$
$\begin{aligned} &=\frac{1}{5} \log |x-2|-\frac{1}{5} \log |x+3|+c \\ &=\frac{1}{5} \log \left|\frac{x-2}{x+3}\right|+c \end{aligned}$
Put in (1)
$\begin{aligned} &I=x+5\left(\frac{1}{5} \log \left|\frac{x-2}{x+3}\right|\right)+c \\ &I=x+\log \left|\frac{x-2}{x+3}\right|+c \end{aligned}$

Indefinite Integrals Exercise 18.20 Question 3.

Answer: $\frac{x}{2}+\log |x|-\frac{3}{4} \log |2 x-1|+c$
Given: $\int \frac{\left(1-x^{2}\right)}{x(1-2 x)} d x$
Hint: Using Partial fraction
Explanation:
Let$I=\int \frac{\left(1-x^{2}\right)}{x(1-2 x)} d x=\int \frac{1-x^{2}}{x-2 x^{2}} d x$
$I=\int \frac{x^{2}-1}{2 x^{2}-x} d x$
$\frac{x^{2}-1}{2 x^{2}-x}=\frac{1}{2}+\frac{\frac{1}{2} x-1}{2 x^{2}-x}$
$\therefore \int \frac{x^{2}-1}{2 x^{2}-x} d x=\int \frac{1}{2} d x+\int \frac{\frac{x}{2}-1}{2 x^{2}-x} d x$
$=\frac{1}{2} x+I_{1}$ ............(1) Where $I_{1}=\int \frac{\frac{x}{2}-1}{2 x^{2}-x} d x$
$\frac{\frac{x}{2}-1}{2 x^{2}-x}=\frac{\frac{x}{2}-1}{x(2 x-1)}=\frac{A}{x}+\frac{B}{2 x-1}$
Multiplying by $x(2 x-1)$
$\frac{x}{2}-1=A(2 x-1)+B(x)$
Putting x = 0
$-1=A(-1)+B(0) \Rightarrow A=1$
Putting x = 2
$\begin{aligned} &1-1=1(4-1)+B(2) \\ &0=3+2 B \\ &B=\frac{-3}{2} \end{aligned}$
$\begin{aligned} &\therefore \frac{\frac{x}{2}-1}{2 x^{2}-x}=\frac{1}{x}-\frac{3}{2(2 x-1)} \\ &\therefore I_{1}=\int \frac{1}{x} d x-\frac{3}{2} \int \frac{2}{2(2 x-1)} d x \\ &=\int \frac{1}{x} d x-\frac{3}{4} \int \frac{2}{(2 x-1)} d x \\ &=\log |x|-\frac{3}{4} \log |2 x-1| \end{aligned}$
Put in (1)
$\frac{1}{2} x+\log |x|-\frac{3}{4} \log |2 x-1|+c$

Indefinite Integrals Exercise 18.20 Question 4.

Answer: $10 \log |x-3|-5 \log |x-2|+c$
Given: $\int \frac{x^{2}+1}{x^{2}-5 x+6} d x$
Hint: Using partial fraction and $\int \frac{1}{x} d x$
Explanation:
$\begin{aligned} &\text { Let }\\ &I=\int \frac{x^{2}+1}{x^{2}-5 x+6} d x \end{aligned}$
$\frac{x^{2}+1}{x^{2}-5 x+6}=\frac{x^{2}+1}{(x-3)(x-2)} \quad\left[\begin{array}{l} x^{2}-5 x+6=x^{2}-3 x-2 x+6 \\ =x(x-3)-2(x-3) \\ =(x-3)(x-2) \end{array}\right]$
$\frac{x^{2}+1}{x^{2}-5 x+6}=\frac{A}{(x-3)}+\frac{B}{(x-2)}$
Multiplying by $\left ( x-3 \right )$ and $\left ( x-2\right )$
$x^{2}+1=A(x-2)+B(x-3)$
Putting x = 2
$4+1=A(0)+B(-1) \Rightarrow B=-5$
Putting x = 3
$9+1=A(3-2)+B(0) \Rightarrow A=10$
$\therefore \int \frac{x^{2}+1}{x^{2}-5 x+6} d x=10 \int \frac{1}{x-3} d x-5 \int \frac{1}{x-2} d x$
$=10 \log |x-3|-5 \log |x-2|+c$

Indefinite Integrals Exercise 18.20 Question 5.

Answer: $-\frac{25}{3} \log |x+5|+\frac{4}{3} \log |x+2|+c$
Given: $\int \frac{x^{2}}{x^{2}+7 x+10} d x$
Hint: Using Partial Fraction and $\int \frac{1}{x} d x$
Explanation:
Let $I=\int \frac{x^{2}}{x^{2}+7 x+10} d x$
$\frac{x^{2}}{x^{2}+7 x+10}=\frac{x^{2}}{x^{2}+5 x+2 x+10}=\frac{x^{2}}{x(x+5)+2(x+5)}=\frac{x^{2}}{(x+5)(x+2)}$
$\frac{x^{2}}{(x+5)(x+2)}=\frac{A}{x+5}+\frac{B}{x+2}$
Multiply by $(x+5)(x+2)$
$x^{2}=A(x+2)+B(x+5)$
Put x = -2
$4=A(0)+B(3) \Rightarrow B=\frac{4}{3}$
Put x = -5
$25=A(-3)+B(0) \Rightarrow A=-\frac{25}{3}$
$\frac{x^{2}}{(x+5)(x+2)}=\frac{\frac{-25}{3}}{x+5}+\frac{\frac{4}{3}}{x+2}$
$\therefore \int \frac{x^{2}}{(x+5)(x+2)} d x=\frac{-25}{3} \int \frac{1}{x+5} d x+\frac{4}{3} \int \frac{1}{x+2} d x$
$=\frac{-25}{3} \log |x+5|+\frac{4}{3} \log |x+2|+c$

Indefinite Integrals Exercise 18.20 Question 6.

Answer: $x+\log \left|x^{2}-x+1\right|+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)+c$
Given: $\int \frac{x^{2}+x+1}{x^{2}-x+1} d x$
Hint: Using Partial Fraction
Explanation:
Let
$I=\int \frac{x^{2}+x+1}{x^{2}-x+1} d x$
$\frac{x^{2}+x+1}{x^{2}-x+1}=\frac{x^{2}-x+x+x+1}{x^{2}-x+1}=\frac{x^{2}-x+1}{x^{2}-x+1}+\frac{2 x}{x^{2}-x+1}$
$=1+\frac{2 x-1}{x^{2}-x+1}+\frac{1}{x^{2}-x+1}$
$\int \frac{x^{2}+x+1}{x^{2}-x+1} d x=\int 1 d x+\int \frac{2 x-1}{x^{2}-x+1} d x+\int \frac{1}{x^{2}-x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1} d x$
$=\int 1 d x+\int \frac{2 x-1}{x^{2}-x+1} d x+\int \frac{1}{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
$=x+\log \left|x^{2}-x+1\right|+\frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)+c$
$=x+\log \left|x^{2}-x+1\right|+\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)+c$

Indefinite Integrals Exercise 18.20 Question 7.

Answer: $x-2 \log \left|x^{2}+x+2\right|+3 \tan ^{-1}(x+1)+c$
Given: $\int \frac{(x-1)^{2}}{x^{2}+2 x+2} d x$
Hint: $\text { Using } \int \frac{1}{x} d x \text { and } \int \frac{1}{1+x^{2}} d x$
Explanation: Let
$I=\int \frac{(x-1)^{2}}{x^{2}+2 x+2} d x=\int \frac{x^{2}-2 x+1}{x^{2}+2 x+2} d x$
$=1-\frac{(4 x+1)}{x^{2}+2 x+2}$
$=1-2\left(\frac{2 x+\frac{1}{2}}{x^{2}+2 x+2}\right)$
$=1-2\left(\frac{2 x+2-2+\frac{1}{2}}{x^{2}+2 x+2}\right)$
$=1-2\left(\frac{2 x+2-2+\frac{1}{2}}{x^{2}+2 x+2}\right)$
$=1-2\left(\frac{2 x+2}{x^{2}+2 x+2}\right)-2\left(\frac{-\frac{3}{2}}{x^{2}+2 x+(1)^{2}-(1)^{2}+2}\right)$
$=1-2\left(\frac{2 x+2}{x^{2}+2 x+2}\right)+3\left(\frac{1}{(x+1)^{2}+1}\right)$
$\therefore \int \frac{(x-1)^{2}}{x^{2}+2 x+2} d x=\int 1 d x-2 \int \frac{2 x+2}{x^{2}+2 x+2} d x+3 \int \frac{1}{(x+1)^{2}+1} d x$
$=x-2 \log \left|x^{2}+2 x+2\right|+3 \tan ^{-1}(x+1)+c$


Indefinite Integrals Exercise 18.20 Question 8.

Answer: $\frac{x^{2}}{2}+2 x+\frac{3}{2} \log \left|x^{2}-x+1\right|+\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)+c$
Given: $\int \frac{x^{3}+x^{2}+2 x+1}{x^{2}-x+1} d x$
Hint: Useing $\int \frac{1}{x} d x \text { and } \int \frac{1}{1+x^{2}} d x$
Explanation:
$I=\int \frac{x^{3}+x^{2}+2 x+1}{x^{2}-x+1} d x$
$\frac{x^{3}+x^{2}+2 x+1}{x^{2}-x+1}=(x+2)+\left(\frac{3 x-1}{x^{2}-x+1}\right)$
$\therefore \int \frac{x^{3}+x^{2}+2 x+1}{x^{2}-2 x+1} d x=\int(x+2) d x+\frac{3}{2} \int \frac{2 x-\frac{2}{3}}{x^{2}-x+1} d x$
$=\int(x+2) d x+\frac{3}{2} \int \frac{2 x-1+1-\frac{2}{3}}{x^{2}-x+1} d x$
$=\int(x+2) d x+\frac{3}{2} \int \frac{2 x-1}{x^{2}-x+1} d x+\frac{3}{2} \times \frac{1}{3} \int \frac{1}{x^{2}-x+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}+1} d x$
$=\int(x+2) d x+\frac{3}{2} \int \frac{2 x-1}{x^{2}-x+1} d x+\frac{1}{2} \int \frac{1}{\left(x-\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x$
$=\frac{x^{2}}{2}+2 x+\frac{3}{2} \log \left|x^{2}-x+1\right|+\frac{1}{2} \times \frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)+c$
$=\frac{x^{2}}{2}+2 x+\frac{3}{2} \log \left|x^{2}-x+1\right|+\frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x-1}{\sqrt{3}}\right)+c$


Indefinite Integrals Exercise 18.20 Question 9.

Answer: $\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+20 x-40 \tan ^{-1} \frac{x}{2}+c$
Hint: Using $\int \frac{1}{x} d x \text { and } \int \frac{1}{1+x^{2}} d x$
Explanation: Let
$I=\int \frac{x^{2}\left(x^{4}+4\right)}{x^{2}+4} d x$
$\frac{x^{2}\left(x^{4}+4\right)}{x^{2}+4}=\frac{\left(x^{2}+4-4\right)\left(x^{4}+4\right)}{x^{2}+4}=\frac{\left[\left(x^{2}+4\right)-4\right]\left(x^{4}+4\right)}{x^{2}+4}$
$=\frac{\left(x^{2}+4\right)\left(x^{4}+4\right)}{x^{2}+4}-\frac{4\left(x^{4}+4\right)}{x^{2}+4}$
$\therefore \int \frac{x^{2}\left(x^{4}+4\right)}{x^{2}+4} d x=\int\left(x^{4}+4\right) d x-4 \int \frac{x^{4}}{x^{2}+4} d x-16 \int \frac{1}{x^{2}+4} d x$
$=\int\left(x^{4}+4\right) d x-4 \int\left(x^{2}-\frac{4 x^{2}}{x^{2}+4}\right) d x-16 \int \frac{1}{x^{2}+4} d x$
$\left[\because \frac{x^{4}}{x^{2}+4}=x^{2}-\frac{4 x^{2}}{x^{2}+4}\right]$
$=\int\left(x^{4}+4\right) d x-4 \int x^{2} d x+16 \int \frac{x^{2}+4-4}{x^{2}+4} d x-16 \int \frac{1}{x^{2}+4} d x$
$=\int\left(x^{4}+4\right) d x-4 \int x^{2} d x+16 \int 1 d x-64 \int \frac{d x}{x^{2}+4}-16 \int \frac{d x}{x^{2}+4}$
$=\frac{x^{5}}{5}+4 x-\frac{4 x^{3}}{3}+16 x-\frac{64}{2} \tan ^{-1} \frac{x}{2}-\frac{16}{2} \tan ^{-1} \frac{x}{2}+c$
$=\frac{x^{5}}{5}+20 x-\frac{4 x^{3}}{3}-40 \tan ^{-1} \frac{x}{2}+c$
$=\frac{x^{5}}{5}-\frac{4 x^{3}}{3}+20 x-40 \tan ^{-1} \frac{x}{2}+c$

Indefinite Integrals Exercise 18.20 Question 10.

Answer: $x-3 \log \left|x^{2}+6 x+12\right|+2 \sqrt{3} \tan ^{-1}\left(\frac{x+3}{\sqrt{3}}\right)+c$
Given: $\int \frac{x^{2}}{x^{2}+6 x+12} d x$
Hint: Using$\int \frac{1}{x} d x \text { and } \int \frac{1}{1+x^{2}} d x$
Explanation: Let
$I=\int \frac{x^{2}}{x^{2}+6 x+12} d x$
$\begin{aligned} &=\int\left(1-\left(\frac{6 x+12}{x^{2}+6 x+12}\right)\right) d x \\ &=\int 1 d x-6 \int \frac{x+2}{x^{2}+6 x+12} d x \\ &=\int 1 d x-\frac{6}{2} \int \frac{2 x+4+2-2}{x^{2}+6 x+12} d x \end{aligned}$
$\begin{aligned} &=\int 1 d x-3 \int \frac{2 x+6}{x^{2}+6 x+12} d x+6 \int \frac{1}{x^{2}+6 x+(3)^{2}-(3)^{2}+12} d x \\ &=\int 1 d x-3 \int \frac{2 x+6}{x^{2}+6 x+12}+6 \int \frac{1}{(x+3)^{2}+(\sqrt{3})^{2}} d x \end{aligned}$
$\begin{aligned} &=x-3 \log \left|x^{2}+6 x+12\right|+6 \times \frac{1}{\sqrt{3}} \tan ^{-1}\left(\frac{x+3}{\sqrt{3}}\right)+c \\ &=x-3 \log \left|x^{2}+6 x+12\right|+2 \sqrt{3} \tan ^{-1}\left(\frac{x+3}{\sqrt{3}}\right)+c \end{aligned}$

Indefinite Integrals Exercise 18.20 Question 11.

Answer:$x+\log \left|\frac{x}{x+1}\right|+c$
Given: $\int \frac{x^{3}+1}{x^{3}-x} d x$
Hint: using Partial Fraction and $\int \frac{1}{x} d x$
Explanation: Let
$I=\int \frac{x^{3}+1}{x^{3}-x} d x$
$\frac{x^{3}+1}{x^{3}-x}=\left(1+\frac{x+1}{x^{3}-x}\right)=1+\frac{x+1}{x\left(x^{2}-1\right)}$
$=1+\frac{x+1}{x(x-1)(x+1)}=1+\frac{1}{x(x-1)}$
$\therefore \int \frac{x^{3}+1}{x^{3}-x} d x=\int 1 d x+\int \frac{1}{x(x+1)} d x$
$=x+I_{1}$ ...................(1) Where $I_{1}=\int \frac{1}{x\left ( x+1 \right )}dx$
$\frac{1}{x(x+1)}=\frac{A}{x}+\frac{B}{(x+1)}$

Multiplying by $x\left ( x+1 \right )$

$1=A\left ( x+1 \right )+B\left ( x+1 \right )$
Putting x = -1
$1=A\left ( 0+1 \right )+B\left ( 0 \right )\Rightarrow A=1$
$\begin{aligned} &\frac{1}{x(x+1)}=\frac{1}{x}-\frac{1}{(x+1)} \\ &\therefore \int \frac{1}{x(x+1)} d x=\int \frac{1}{x} d x-\int \frac{1}{x+1} d x \end{aligned}$
$=\log |x|-\log |x+1|$
Put in (1)
$\begin{aligned} I &=x+\log |x|-\log |x+1|+c \\ &=x+\log \left|\frac{x}{x+1}\right|+c \end{aligned}$


Indefinite Integrals Exercise 18.12 Question 9

Answer: - $-\frac{1}{6} \cos ^{6} x+\frac{1}{8} \cos ^{8} x+C$
Hint: - Use substitution method to solve this integral.
Given: -$\int \sin ^{3} x \cdot \cos ^{5} x d x$
Solution: - Let $I=\int \sin ^{3} x \cdot \cos ^{5} x d x$
Substitute $\cos x=t \Rightarrow-\sin x d x=d t$ then
$\begin{aligned} I &=\int\sin ^{3} x t^{5} \cdot \frac{d t}{-\sin x}\quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \quad \left [ \because \cos x=t \right ] \\ &=-\int \sin ^{2} x t^{5} \cdot d t=-\int\left(t-\cos ^{2} x\right) t^{5} d t \quad \quad \quad \quad \quad \quad \quad \left [ \because \sin ^{2}x+\cos ^{2 }x=1 \right ]\\ &=-\int\left(1-t^{2}\right)\left(t^{5}\right) d t=-\int\left(t^{5}-t^{5} t^{2}\right) d t \end{aligned}$
$\begin{aligned} &=-\int\left(t^{5}-t^{7}\right) d t=-\int t^{5} d t+\int t^{7} d t \\ &=-\frac{t^{5+1}}{5+1}+\frac{t^{7+1}}{7+1}+C \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right] \\ &=-\frac{t^{6}}{6}+\frac{t^{8}}{8}+c=-\frac{\cos ^{6} x}{6}+\frac{\cos ^{8} x}{8}+C \quad\quad\quad\quad\quad\quad\quad[\because \cos x=t] \end{aligned}$

Indefinite Integrals Exercise 18.12 Question 11

Answer: -$-\frac{1}{2} \tan ^{-2} x+3 \log |\tan x|+\frac{3}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+C$
Hint: - Use substitution method to solve this integral.
Given: -$\int \frac{1}{\sin ^{3} x \cdot \cos ^{5} x} d x$
The exponent of denominator is 3+5=8. To solve this type of integral, we have to divide both numerator and denominator by $\cos ^{8 }x$ then
$\begin{aligned} &I=\int \frac{\frac{1}{\cos ^{8} x}}{\frac{\sin ^{3} x \cdot \cos ^{5} x}{\cos ^{8} x}} d x=\int \frac{\sec ^{8} x}{\frac{\sin ^{3} x}{\cos ^{3} x}} d x \\ &=\int \frac{\sec ^{8} x}{\tan ^{3} x} d x=\int \frac{\sec ^{6} x \cdot \sec ^{2} x}{\tan ^{3} x} d x=\int \frac{\left(\sec ^{2} x\right)^{3} \sec ^{2} x}{\tan ^{3} x} \end{aligned}$
$\begin{aligned} &=\int \frac{\left(1+\tan ^{2} x\right)^{3} \sec ^{2} x}{\tan ^{2} x} d x \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\left[\because 1+\tan ^{2} x=\sec ^{2} x\right] \\ &\Rightarrow I=\int \frac{\left(1+\tan ^{6} x+3 \tan ^{2} x+3 \tan ^{4} x\right) \sec ^{2} x}{\tan ^{3} x} d x \end{aligned}$
Substitute $\tan x=t \Rightarrow \sec ^{3} x d x=d t$ then
$\begin{aligned} I &=\int \frac{\left(1+t^{6}+3 t^{2}+3 t^{4}\right)}{t^{3}} d t=\int\left(\frac{1}{t^{3}}+\frac{t^{6}}{t^{3}}+\frac{3 t^{2}}{t^{3}}+\frac{3 t^{4}}{t^{3}}\right) d t \\ &=\int\left(t^{-3}+t^{6-3}+\frac{3}{t}+3 t\right) d t=\int\left(t^{-3}+t^{3}+\frac{3}{t}+3 t\right) d t \\ &=\int t^{-3} d t+\int t^{3} d t+3 \int_{t}^{1} \frac{1}{t} d t+3 \int t d t \end{aligned}$
$=\frac{t^{-3+1}}{-3+1}+\frac{t^{3+1}}{3+1}+3 \log |t|+\frac{3 t^{1+1}}{1+1}+C \quad\quad\quad\quad\quad\quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \& \int \frac{1}{t} d t=\log |t|+C\right]$
$\begin{aligned} &=\frac{t^{-2}}{-2}+\frac{t^{4}}{4}+3 \log |t|+\frac{3 t^{2}}{2}+C \\ &=-\frac{1}{2} t^{-2}+3 \log |t|+\frac{3 t^{2}}{2}+\frac{1}{4} t^{4}+C \\ &=-\frac{1}{2 \tan ^{2} x}+3 \log |\tan x|+\frac{3}{2} \tan ^{2} x+\frac{1}{4} \tan ^{4} x+C \quad\quad\quad\quad[\because t=\tan x] \end{aligned}$


Rd Sharma Class 12th Exercise 18.20 solutions have numerous benefits The advantages of Class 12 RD Sharma Chapter 18 Exercise 18.20 Solutions are:

  1. A team of subject experts are behind these solutions:

A team of experts is behind these solutions. The subject experts have a thorough understanding of the types of questions asked in exams and they prepare the solutions accordingly. Therefore, a student will be able to score high marks in mathematics after going for Rd Sharma Class 12 Chapter 18 Exercise 18.20 solutions.

  1. The solutions to help you increase your grades:

These solutions are the best source if a student wants to learn and understand the concept fast. The students will be able to revise at a fast pace with RD Sharma Class 12 Solutions Chapter 18 ex 18.20.

  1. NCERT Questions covered:

RD Sharma Class 12 Solutions Indefinite Integrals Ex. 18.20 helps a student to learn from NCERT books because these solutions contain NCERT type questions too.

  1. Various methods to solve a single question:

RD Sharma Class 12th Exercise 18.20 helps students find alternative methods to solve a single question. Team of subject experts take utmost care of the type of questions asked and provide answers in such a way that a student can choose which is suitable for him.

  1. Exceptional performance in exams

These solutions help a student score high grades in exams. RD Sharma Class 12 Solutions Ex. 18.20 has all the questions that fulfil all the requirements of exams.

  1. Free of Cost

There is a misconception that the authorized set of RD Sharma books cost a lot. But the fact is that, the students can download these books from the career 360 website without paying even a single penny.

Upcoming School Exams
Ongoing Dates
UP Board 12th Others

11 Aug'25 - 6 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

11 Aug'25 - 6 Sep'25 (Online)