Careers360 Logo
RD Sharma Solutions Class 12 Mathematics Chapter 18 RE

RD Sharma Solutions Class 12 Mathematics Chapter 18 RE

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:47 PM IST

The RD Sharma books are the most prescribed solution materials by the CBSE board schools to their students. It helps them in solving sums that are complicated, and they can recheck their answers effortlessly. Moreover, in class 12, chapter 18 in mathematics has Revision Exercise (RE) for the students to practice better in this chapter. The questions given in this are challenging to solve; hence, they can use the RD Sharma Class 12th RE book as a reference.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 18 RE Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:RE
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter 18 RE Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:RE

Indefinite Integrals Exercise Revision Exercise Question 1

Answer:
23[(x+1)32x82]+c
Given:
1x+(x+1)dx
Hint:
Do Rationalization
Solution:
we have,
1x+(x+1)dx
=1x+x+1×xx+1xx+1dx( rationalizing )
=xx+1x(x+1)dx[(ab)(a+b)=(a2b2)]=(x+1x)1dx
=x+1xdx=(x+1)8232x3232+c
=23[(x+1)32x82]+c

Indefinite Integrals Exercise Revision Exercise Question 2

Answer:
x+x22+x83+x44+c
Hint:
Use the formula a2b2=(ab)(a+b)
Solution: we have
=1x41xdx=(1x2)(1+x2)1xdx=(1x)(1+x)(1+x2)1xdx=(1+x)(1+x2)dx=1+x2+x+x3dx=x+x33+x22+x44+c=x+x22+x33+x44+c

Indefinite Integrals Exercise Revision Exercise Question 3

Answer:
11+x12(x+1)2+C
Given:
x+2(x+1)3dx
Hint:
Use power rule for integration.
Solution: we have
x+2(x+1)3dx
=x+1+1(x+1)3dx=x+1(x+1)3+1(x+1)3dx
=1(x+1)2+1(x+1)3dx=1x+112(x+1)2+c

Indefinite Integrals Exercise Revision Exercise Question 4

Answer:
13(4x+7)23124x+7+c
Given:
((8x+13)4x+7dx
Hint:
Separate the terms and integrate
Solution:
(8x+13)4x+7dx
=8x+1414x+7dx
=2(4x+7)14x+7dx
=2(4x+7)4x+714x+7dx
=24x+7dx(4x+7)12dx=2((4x+7)32)4×322(4x+7)124+c=((4x+7)32)3(4x+7)122+c

Indefinite Integrals Exercise Revision Exercise Question 5

Answer:
1x+log|x+1|+c
Given:
1+x+x2x2(1+x)dx
Hint:
Use partial function method.
Solution:
I=1+x+x2x2(1+x)dx
using partial function1+x+x2x2(1+x)=Ax+Bx2+c1+x1+x+x2=A(x+x2)+B(1+x)+Cx21+x+x2=Ax2+Ax+B+Bx+Cx21+x+x2=B+(A+B)x+(A+C)x2B=1,A+1=1A=0,A+C=1C=1

now,

1+x+x2x2(1+x)=1x2+11+xdx

=1x+log|x+1|+c


Indefinite Integrals Exercise Revision Exercise Question 7

Answer:
xtanx+secx+c
Given :
sinx1+sinxdx
Hint:
Do rationalization and then use trigonometry identities.
Solution:
sinx1+sinxdx
On rationalising,
Sinx1+sinx×1sinx1sinxdx
Sinxsin21sin2xdx
=sinxcos2xtan2xdx
=sinxcosx×1cosx(sec2x1)dx
=(secxtanxsec2x+1)dx
=secxtanx+x+c



Indefinite Integrals Exercise Revision Exercise Question 8

Answer:
x33tan1x+c
Given:
x4+x21x2+1dx
=x2(x2+1)1x2+1dx
=x2(x2+1)x2+11x2+1dx
=x2dx1x2+1dx
=x33tan1x+c


Indefinite Integrals Exercise Revision Exercise Question 9

Answer:
sin2x+tanx2x+c
Given:
sec2xcos22xdx
Hint:
Use trigonometry identity.
Solution:
sec2xcos2(2x)dx
=sec2x(2cos2x1)2dx[cos2x=2cos2x1]
=sec2x(4cos4x4cos2x+1)dx
=4cos2x4+sec2xdx[1sec2x=cos2x]
=4cos2x1dx+sec2xdx
=22cos2xdx4dx+sec2xdx
=2(1+cos2x)dx4dx+sec2xdx
=2x+2sin2x24x+tanx+c
=sin2x2x+tanx+c


Indefinite Integrals Exercise Revision Exercise Question 10

Answer:
cotxsin2x2x+c
Given:
cosec2xcos22xdx
Hint:
Use trigonometric identities and integrate it by parts.
Solution:
cosec2xcos22xdx
=cosec2x(12sin2x)2dx[cos2x=12sin2x]
=cosec2x(1+4sin4x4sin2x)dx[(ab)2=a2+b22ab]
=(cosec2x+4sin2x4)dx[sinx=1cosecx]
=cosec2xdx+21cos2xdx4dx
=cotx+2xsin2x4x+c
=cotxsin2x2x+c

Indefinite Integrals Exercise Revision Exercise Question 11

Answer:
3x8+sin8x64sin4x8+c
Given:
sin42xdx
Hint:
You must know about trigonometric identities.
Solution:
[sin2(2x)]2dx
=(1cos4x)24dx[cos2x=12sin2x]
=12cos4x+cos24x4dx
=12cos4x4dx+1+cos8x8dx:[1+cos2x=2cos2x]
=14dx12cos4xdx+18dx+18cos8xdx
=38xsin4x8+sin8x64+c

Indefinite Integrals Exercise Revision Exercise Question 12

Answer:
sin3x3sin83x9+c
Given:
cos33xdx
Hint:
Let the term and derivate it and then integrate it.
Solution:
cos33xdx
=cos23xcos3xdx
=(1sin23x)cos3xdx[cos2x+sin2x=1]
now,letu=sin3x
Differentiatew.r.tx
dudx=3cos3x
du=3cos3xdx
Now,
133(1sin23x)cos3xdx
=131u2du(putu&du)
=13du13u2du
=13u13×u2du
=13sin3xsin83x9+c



Indefinite Integrals Exercise Revision Exercise Question 13

Answer:
1b2log(a2+b2sin2x)+c
Given:
sin2xa2+b2sin2xdx
Hint:
Let the denominator and then integrate the equation.
Solution:
sin2xa2+b2sin2xdx
letu=a2+b2sin2x
differentiateitwithrespecttox
dudx=2b2sinxcosx
dudx=b2sin2x
1b2du=sin2xdx
now
I=1b21udu( put u&du)
=1b2log|u|+c
=1b2log|a2+b2sin2x|+c

Indefinite Integrals Exercise Revision Exercise Question 15

Answer:
(sin1x)44+c
Given:
(sin1x)31x2dx
Hint:
We must know about substitution formula to integrate.
Solution:
(sin1x)31x2dx
Let u=sin1x
Differentiate it with respect to x
dudx=11x2
du=11x2dx
now,u3du (putu&du)
=u44+c
(sin1x)44+c

Indefinite Integrals Exercise Revision Exercise Question 16

Answer:
xlog|ex+1|+c
Given:
1ex+1dx
Hint:
Do integration by separation.
Solution:
1ex+1dx
=(ex+1)(ex)ex+1dx
=dxexex+1dx
now,letex+1=u
Differentiate it with respect to x
dudx=ex
du=exdx
now,
I=dx1udu
=xlog|u|+c
=xlog|ex+1|+c(u=ex+1)



Indefinite Integrals Exercise Revision Exercise Question 17

Answer:
2log|ex+1|x+c
Given:
ex1ex+1dx
Hint:
Use partial fraction method.
Solution:
ex1ex+1dx
letex=u
exdx=du (differentiatewithrespecttox)
dx=duu
now,
I=u1u+1×duu(putu&du)
use partial fraction
u1=A(1+u)+Bu
u1=A+Au+Bu
A=1&B+A=1B=2(oncomparing)
So,ex1ex+1dx
=1u+2u+1du
=log|u|+2log|u+1|+c
=log|ex|+2log|ex+1|+c
=2log|ex+1|x+c(loge=1)


Indefinite Integrals Exercise Revision Exercise Question 18

Answer:
tan1(ex)+c
Given:
1ex+exdx
Hint:
Use substitution method.
Solution:
1ex+exdx
=1ex+(1ex)dx
=ex(ex)2+1dx
letu=ex
du=exdx(ondifferentiating)
now,
I=1u2+1du
=tan1u+c
=tan1(ex)+c

Indefinite Integrals Exercise Revision Exercise Question 19

Answer:
log|sinx|sinx63sin2x2+3sin4x4+c
Given:
cos7xsinxdx
Hint:
Use trigonometric identities and substitution method of integration.
Solution:
cos7xsinxdx
Let t=sinx
dt=cosxdx (ondifferentiating)
now,
I=cos7xsinxdx
=(1sin2t)(1sin2t)(1sin2t)tdt
=(1t2)2(1t2)tdt
=(1+t42t2)(1t2)tdt
=13t2+3t4t6tdt
=1t3t+3t3t5dt
=logt3t22+3t44t66+c
=log|sinx|sinx63sin2x2+3sin4x4+c

Indefinite Integrals Exercise Revision Exercise Question 20

Answer:
cos4x16cos2x8+cos6x24+c
Given:
sinxsin2xsin3xdx
Hint:
Use the formula 2sinAsinB=cos(A+B)+cos(AB)
Solution:
sinxsin2xsin3xdx
=12[cos(x2x)cos(x+2x)]sin3xdx
=12(cos(x)cos3x)sin3xdx
=12cosxsin3xcos3xsin3xdx
=1212(sin4x+sin2x)dx1212(sin6x)dx
=14[(sin4x+sin2xsin6x)dx]
=14[cos4x4cos2x2+cos6x6]+c
cos4x16cos2x8+cos6x24+c

Indefinite Integrals Exercise Revision Exercise Question 21

Answer:
I=14(x+sin6x6+sin4x4+sin2x2)+c
Given:
cosxcos2xcos3xdx
Hint:
To solve this equation we will use trigonometry method.
Solution:
(cosxcos2x)cos3xdx
I=cos(x+2x)+cos(x2x)2cos3xdx[cosCcosD=12cos(C+D)+cos(CD))
I=12(cos3x+cosx)cos3xdx
I=12(cos23xdx+cosxcos3x)dx
I=121+cos6x2dx+12cos(x+3x)+cos(x2x)dx
I=121+cos6x2dx+12(cos4x+cos(2x))dx
I=1212dx+cos6x2dx+12cos4xdx+12cos2xdx
I=12(12x+12sin6x6+12sin4x4+12sin2x2)+c
I=12(x2+sin6x12+sin4x8+sin2x4)+c

Indefinite Integrals Exercise Revision Exercise Question 22

Answer:
2[tan1((2tanx1)2)+tan1(2tanx+12)]
Given:
sinx+cosxsin2xdx
Hint:
To solve this equation we use partial function method.
Solution:
sinx+cosx2sinxcosxdx[sinx=tanxsecx,cosx=1secx]
tanxsecx+1secxstanxsecx×1secxdx
tanx+12(tanx)dx
12tanx+1tanxtan2x+1tan2x+1dx
12sec2x(tanx+1)tanx(tan2x+1)dx[tanx=u,sec2xdx=du]
=12u+1u(u2+1)du
=12v2+1u(v4+1)2udv..[ put u=v2,du=2vdv]
=2v2+1v4+1dv
=2v2+1(v22v+1)(v2+2v+1)dv
=v2+1(v22v+1)(v2+2v+1)=Av22v+1+Bv2+2v+1
=2(12)(1v22v+1dv+1v2+2v+1dv)
=22×21v(12)2+12dv+1v+(12)2+(12)dv
[1x2+a2=1atan1(xa)]
=122tan1(v(12))12+2tan1(v+(12))12
=2[tan1(2v12)+tan1(2v+12)]
=2[tan1(2v12)+tan1(2v+12)][v=u,u=tanx]
=2[tan1((2tanx1)2)+tan1(2tanx+12)]


Indefinite Integrals Exercise Revision Exercise Question 23

Answer:
log|sinx+cosx+sin2x|+c
Given:
sinxcosxsin2xdx
Hint:
To solve this equation we use sin x formula and substitute method.
Solution:
sinxcosxsin2xdx [(cosx+sinx)2=cos2x+sin2x+2cosxsinx]=1+sin2x
[sin2x=(cosx+sinx)21,t=cosx+sinx,dt=(sinx+cosx)dx
=sinxcosx((cosx+sinx)21))dx
Let t=cosx+sinx,dt=(sinx+cosx)dx
=dtt21 [1t2a2dt=log|t+t2a2|+c
=log|t+t21|+c
=log|sinx+cosx+(sinx+cosx)21|+c
=log|sinx+cosx+sin2x|+c


Indefinite Integrals Exercise Revision Exercise Question 24

Answer:
1sin(ab)log|sin(xa)sin(xb)|+c
Given:
1(sinxa)sin(xb)dx
Hint:
To solve the statement we have to use formula such as sin(A-B).
Solution:
1sin(ab)sin(ab)sin(xa)(sin(xb))dx
=1sin(ab)sin[(xb)(xa)]sin(xa)(sin(xb))dx
=1sin(ab)sin(xb)cos(xa)cos(xb)sin(xa)sin(xa)(sin(xb))dx
=1sin(ab)cos(xa)dxsin(xa)cos(xb)sin(xb)dx
=1sin(ab)log|sin(xa)|log|sin(xb)|+c
=1sin(ab)log|sin(xa)sin(xb)|+c

Indefinite Integrals Exercise Revision Exercise Question 25

Answer:
1sin(ab)log|sec(xb)|log|sec(xa)|+c
Given:
1cos(xa)cos(xb)dx
Hint:
To solve this statement we have to convert cos into tan.
Solution:
1cos(xa)cos(xb)=1sin(ab)sin(xb)(xa)cos(xa)cos(xb)
=1sin(ab)sin(xb)cos(xa)sin(xa)cos(xb)cos(xa)cos(xb)
=1sin(ab)sin(xb)cos(xb)sin(xa)cos(xa)
=1sin(ab)tan(xb)tan(xa)
I=1cos(xa)cos(xb)dx
=1sin(ab)[tan(xb)tan(xa)]dx
=1sin(ab)log|sec(xb)|log|sec(xa)|+c

Indefinite Integrals Exercise Revision Exercise Question 26

Answer:
21sinx+2ln|sec(π4x2)+tan(π4x2)|+c
Given:
sinx1+sinxdx
Hint:
To solve the statement we have to use formula like sin x and 1+cos x
Solution:
I=sinx+11sinx+1dx
=sinx+1dxdxsinx+1
I1=sinx+1dx
=1+sinx1sinx1sinxdx
=(1+sinx)(1sinx)1sinxdx
=cos2x1sinxdx
=cosx1sinxdx
=1sinx=u
121sinxcosxdx=du
cosx1sinx=2du
I1=2du=2u=21sinx
I2=dx1+sinx=dx1+cos(π2x) [sinx=cos(π2x)],[1+cosx=2cos2xx2]
=dx2cos2(π4x2)
=dx2(cos(π4x2) [secxdx=ln|secx+tanx|+c]
=12sec(π4x2)dx
=12112ln|sec(π4x2)+tan(π4x2)|+c

=2ln|sec(π4x2)+tan(π4x2)|+c
I1I2=l=21sinx+2ln|sec(π4x2)+tan(π4x2)|+c

Indefinite Integrals Exercise Revision Exercise Question 27

Answer:
122log|2cosx+12cosx1|+c
Given:
sinxcos2xdx
Hint:
To solve the equation we will use substitution method.
Solution:
I=sinxcos2xdx
=sinx2cos2x1dx
I=dt2t21[putcosx=t,sinxdx=dt]
I=12dt12t2
I=12dtt2(12)2
I=1222log|t12t+12|+c
I=122log|2cosx+12cosx1|+C

Indefinite Integrals Exercise Revision Exercise Question 28

Answer:
12tan2xlog|secx|+c
Given:
tan3xdx
Hint:
To solve this statement we have to change tan into sec form.
Solution:
tan2xtanxdx
(sec2x1)tanxdx(tan2x=sec2x1)
sec2xtanxdxtanxdx

I1=sec2xtanxdx [tanx=t,sec2xdx=dt,xndx=xn+1n+1]
I1=tdt
=t22=12tan2x
I=I1+I2
=12tan2xlog|secx|+c


Indefinite Integrals Exercise Revision Exercise Question 29

Answer:
tan8x3tanx+x+c
Given:
tan4xdx
Hint:
To solve this statement we have to change tan into sec and then their formula.
Solution:
tan4xdx
I=tan2xtan2xdx[tan2x=sec2x1]
I=tan2x(sec2x1)dx
=tan2xsec2xdxtan2xdx
=tan2xsec2xdx(sec2x1)dx
=tan2xsec2xdxsec2xdx+dx
tanx=t,sec2dx=dt
t2dtsec2xdx+dx
=t83tanx+x+c
tan8x3tanx+x+c

Indefinite Integrals Exercise Revision Exercise Question 30

Answer:
tan4x4(tanx)22+log|secx|+c
Given:
tan5xdx
Hint:
To solve this statement we have to change tan into sec and then use formula such tan²x.
Solution:
I=tan5xdx
I=tan3xtan2xdx
=tan3x(sec2x1)dx[tan2x=sec2x1]
=tan3xsec2xdxtan3xdx
=tan3xsec2xdxtanxtan2xdx
I1 I2
lettanx=t,sec2xdx=dt
=t3dttanxtan2xdx
=t44tanx(sec2x1)dx
=t44tanxsec2xdx+tanxdx
=tan4x4(tanx)22+log|secx|+c
=tan4x4(tanx)22+log|secx|+c


Indefinite Integrals Exercise Revision Exercise Question 31

Answer:
13cot3x+cotx+x+c
Given:
cot4xdx
Hint:
To solve the given statement split the given term (cot4x) into (cot2xcot2x)
Solution:
cot2x(cosec2x1)dx
I=cot2xcosec2xdxcot2dx
I=cot2xcosec2xdx(cosec2x1)dx [cotx=p,cosec2xdx=dp
I=p2dp+dp+dx
I=p83+p+x+c
I=13cot3x+cotx+x+c

Indefinite Integrals Exercise Revision Exercise Question 32

Answer:
14cot4x+12cot2x+log|sinx|+c
Given:
cot5xdx
Hint:
To solve the given statement we will split into cot3xcot2x
Solution:
cot3xcot2xdx
I=cot3x(cosec2x1)dx
=cot3xcosec2xdxcotx(cosec2x1)dx
=cot3xcosec2xdxcotxcosec2xdx+cotxdx
=p3dp+pdp+cotxdx[cotx=p,cosecxdx=dp]
=p44+p22+log(sinx)+c
=14cot4x+12cot2x+log|sinx|+c

Indefinite Integrals Exercise Revision Exercise Question 33

Answer:
log|x1|2(x1)12(x1)2+c
Given:
x2(x1)3dx
Hint:
To solve the statement we will use partial fractions
Solution:
Letx2(x1)3dx=A(x1)+B(x1)2+C(x1)3
x2=A(x1)2+B(x1)+c
x2=x2A+x(2A+B)+A+B+C
On equating the coeffiecients of x2:A=1
On equating the coeffiecients of x:B=2
On equating the constants :C=1
Thus,x2(x1)3dx=1(x1)dx+2(x1)2dx+1(x1)3dx

=log|x1|+2(x1)2+12+112(x1)2+c
=log|x1|2(x1)12(x1)2+c

Indefinite Integrals Exercise Revision Exercise Question 34

Answer:
I=(2x+3)283(2x+3)14+c
Given:
x2x+3dx
Hint
To solve the statement we have to put root statement to t:2x+3=t
Solution:
2x+3=t
put2x+3=t2=>x=t232
2dx=2tdt
dx=tdt
I=t232tdt
I=12(t23)tdt
I=12(t33t)dt
I=12(t443t22)
I=t483t24+c
I=(2x+3)283(2x+3)44+c

Indefinite Integrals Exercise Revision Exercise Question 35

Answer:
12|log(1+x2)|+12(1+x2)+c
Given:
x3(1+x2)2dx
Hint:
To solve the statement we will suppose x in term of t.
Solution:
x2x(1+x2)2dx
Let1+x2=t
2x=dtdx
xdx=dt2
I=12t1t2dt
I=12tt2dt1t2dt
I=121tdtt2dt
I=12logt12(t2+1)2+1+c
I=12|log(1+x2)|+12(1+x2)+c

Indefinite Integrals Exercise Revision Exercise Question 36

Answer:
sin6x212+c
Given:
xsin5x2cosx2dx
Hint:
To solve this statement we have to suppose or assume sin x and cos x as v and dv.
Solution:
I=xsin5x2cosx2dx
I=12sin5tcostdt[x2=t,2xdx=dt,xdx=dt2]
I=12v5dv [sint=v,costdt=dv]
I=12v66+c
I=12(sin6t)6+c
I=sin6x212+c

Indefinite Integrals Exercise Revision Exercise Question 37

Answer:
cos5x5cos7x7+C
Given:
sin3xcos4xdx
Hint:
To solve the statement we will convert cos into sin and use some formula of 2sin(A+B) and 2sin(A-B)
Solution:
sin3xcos4xdx
put
sinxsin2xcos4xdx
putcosx=t,sinxdx=dt
sinx(1cos2x)cos4xdx[sin2x=1cos2x]
(1t2)t4dt
t4t6dt
t4dtt6dt
t55t77
t=cosx
cos5x5cos7x7+C

Indefinite Integrals Exercise Revision Exercise Question 38

Answer:
23cos3x15cos5xcosx+c
Given:
sin5xdx
Hint:
To solve the statement we have to convert sin x into cos x.
Solution:
sinx(sinx)4dx
sinx(sin2x)2dx [sin2θ+cos2θ=1,sin2θ=1cos2θ]
sinx(1cos2x)2dx
Let cosx= t
sinxdx=dt
sinxdx=dt
I=(1t2)2dt
I=(1+t42t2)dt
I=(2t2t41)dt[xndx=xn+1n+1]
I=2t33t55t+c
I=23cos3x15cos5xcosx+c

Indefinite Integrals Exercise Revision Exercise Question 39

Answer:
sinx+sin5x52sin8x3+c
Given:
cos5xdx
Hint:
To solve the statement we have to convert cos term in sin
Solution:
cos4xcosxdx
I=(cos2x)2cosxdx[cos2x=1sin2x]
I=(1sin2x)2cosxdx
sinx=t,cosxdx=dt
I=(1t2)2dt
I=(1+t42t2)dt
I=t+t552t33+c
I=sinx+sin5x52sin3x3+c

Indefinite Integral Exercise Rivision Exercise Question 66

Answer :
I=+12ln|1+cosx|110ln|1cosx|35ln|3cosx+2|+c
Hint: To solve the given solution we multiply and divide the given statement with sin x.
Given : 1sinx(2+3cosx)dx
Solution :
I=1sinx(2+3cosx)dxI=sinxsin2x(2+3cosx)dxI=sinxdx(1cos2x)(2+3cosx)
t=cosx,dt=sinxdxI=dt(1t2)(2+3t)I=dt(1+t)(1t)(2+3t)
1(1+t)(1t)(23t)=A1+t+B1t+c2+3t=A(1t)(2+3t)+B(1+t)(2+3t)+C(1+t)(1t)
A=1(1(1))(23)=12[1+t=0,t=1]B=1(1+1)(2+3)=110[1t=0,t=1]C=11(49)=95[2+3t=0,t=23]
I=dt(A1+t+B1t+C2+3t)I=[A11+tdt+B11tdt+C12+3tdt
I=[12ln|1+t|+110ln|1t|+95×13ln|2+3t|+cI=+12ln|1+t|110ln|1t|35ln|3t+2|+c
I=+12ln|1+cosx|110ln|1cosx|35ln|3cosx+2|+c

Indefinite Integrals Exercise Revision Exercise Question 40

Answer:
2(sinx)32327(sinx)72+c
Given:
sinxcos3xdx
Hint:
To solve this equation we have to suppose sin x in term of t and cos x into 2t.
Solution:
I=sinxcos3xdx [sinx=t,sinx=t2,cosxdx=2tdt
I=sinx(1sin2x)cosxdx
I=t(1t4)2tdt
I=2t2dt2t6dt
I=2t332t77+c
I=2(sinx)32327(sinx)72+c

Indefinite Integrals Exercise Revision Exercise Question 41

Answer:
tan1(tan2x)+c
Given:
sin2xsin4x+cos4xdx
Hint:
In this statement we have to convert sin in term of tan.
Solution:
I=2sinxcosxsin4x+cos4xdx
I=2sinxcosxcos4x(tan4x+1)dx
I=2tanxsec2xtan4x+1dx
I=2tanxsec2xtan4x+1dx [lettanx=t,sec2xdx=dt]
I=2tdtt4+1
I=dyy2+1[t2=y,2tdt=dy]
=tan1y+c
=tan1(t2)+c
=tan1(tan2x)+c


Indefinite Integral Exercise Rivision Exercise Question 67

Answer :
=16ln(1cosx)+12ln(1+cosx)23ln(1+2cosx)+c
Hint : To solve the given statement we will use partial fraction rule.
Given : 1sinx+sin2xdx
Solution :
I=1sinx+2sinxcosxdxI=sinxsin2x(1+2cosx)dxI=sinx(1cos2x)(1+2cosx)dx
1(1t)(1+t)(1+2t)=A1t+B1+t+c1+2t=A(1+t)(1+2t)+B(1t)(1+2t)+C(1t)(1+t)
1=A+2At+At+2At2+B+2BtBt2Bt2+CCt20=2A2BC..(1)
0=3A+B (2) B=3A1=A+B+C (3) 
On solving, A=16,B=12,C=43
1(1t)(1+t)(1+2t)dt=16(1t)+12(1+t)431(1+2t)dt
=16ln(1t)+12ln(1+t)43×12ln(1+2t)=16ln(1cosx)+12ln(1+cosx)23ln(1+2cosx)+c

Indefinite Integrals Exercise Revision Exercise Question 42

Answer:
ln|x+x2a2|+C
 where C=Clna

Given:
1x2a2dx
Hint:
In this statement we have to assume x as asecθ.
Solution:
I=1x2a2dx
 putting x=asecθ
dx=asecθtanθdθ
I=asecθtanθdθa2sec2θa2
=asecθtanθdθatanθ
=secθtanθdθ
=ln|secθ+tanθ|+C
=ln|secθ+sec2θ1|+C
=ln|xa+(xa)21|+C
=ln|x+x2a2a|+C
=ln|x+x2a2|+C
=ln|x+x2a2|lna+C
=ln|x+x2a2|+C
 where C=Clna

Indefinite Integrals Exercise Revision Exercise Question 43

Answer:
log(xa+1+(x2a2))+c
Given:
1x2+a2dx
Hint:
In this statement we assume x as atanθ.
Solution:
I=1x2+a2dx [x=atanθ,dx=asec2θdθ]
I=1a2tan2θ+a2asec2θdθ
I=secθdθ.[1+tan2θ=sec2θ]
I=log|secθ+tanθ|+c
I=log(xa+1+(x2a2))+c

Indefinite Integrals Exercise Revision Exercise Question 44

Answer:
I=14tan1(x+12)+c
Given:
14x2+4x+5dx
Hint:
To solve this equation we will use split term method.
Solution:
I=dx4x2+4x+5
I=dx4(x2+x)+5
I=dx4(x+12)2+4 [(x2+12)2=x2+14+2x2=x2+x+14(14)]
I=14dx(x+12)2+(1)2
I=14tan1(x+12)1+c

Indefinite Integrals Exercise Revision Exercise Question 46

Answer:
I=117log|8x+1+178x1+17|+c
Given:
11x4x2dx
Hint:
To solve this statement we have to do whole square method.
Solution:
114(x4+x2)dx
I=114(x+18)2+116dx
I=11764(x+18)2dx
I=141(178)2(x+18)2dx [dxa2x2=12alog|a+xax|+c]
I=14417log|x+18+178178x18|+c
I=117log|8x+1+178x1+17|+c

Indefinite Integrals Exercise Revision Exercise Question 47

Answer:
117log|x28x+5|+c
Given:
13x2+13x10dx
Hint:
In this equation we have to make whole square statement from quadratic equation.
Solution:
I=131x2+18x8108dx
I=131(x+186)216936103dx
I=13dx(x+186)2169+12036
I=13dx(x+186)228936
I=13dx(x+136)2(176)2
I=1312×176log|x+186176x+136+176|+c
I=117+log|x46x+306|+c
I=117log|x28x+5|+c

Indefinite Integrals Exercise Revision Exercise Question 48

Answer:
I=ln|(cosx1)+cos2x2cosx+3|+c
Given:
sinxcos2x2cosx3dx
Hint:
To solve this statement we have to use standard formula.
Solution:
I=sinxcos2x2cosx3dx [cosx=t,dt=sinxdx=>sinxdx=dt]
I=dtt22t3
I=dt(t1)213

I=dt(t1)24
I=dt(t1)2(2)2 [dxx2a2=ln|x+x2a2|+c
I=ln(t1)+(t1)2(2)2+c
I=ln|(t1)+t22t3|+c
I=ln|(cosx1)+cos2x2cosx+3|+c

Indefinite Integrals Exercise Revision Exercise Question 49

Answer:
I=ln|sinx+12+sin2x+sinx|+c
Given:
cosecx1dx
Hint:
To solve this statement we have to convert cosec into sin and then we apply standard formula.
Solution:
cosecx1dx
I=1sinx1dx
I=1sinxsinxdx
I=1sinx1+sinxsinx1+sinxdx
I=1sin2xsinx(1+sinx)dx
I=cos2xsinx(1+sinx)dx
I=cosxsinx(1+sinx)dx
sin x = t ,
dt = cos x dx
I=dtt(t+1)=dtt2+t=dt(t+12)214=dt(t+12)2(12)2
I=ln|t+12+t2+t|+c[dxx2+a2=ln|x+x2+a2|+c]I=ln|sinx+12+sin2x+sinx|+c



Indefinite Integrals Exercise Revision Exercise Question 50

Answer:
I=sin1(x+12)+c
Given:
132xx2dx
Hint

Solution:
132xx2dx
I=13+1(x+1)2dx
I=14(x+1)2dx
I=dx(2)2(x+1)2
t=x+1
dt=dx
=dt22t2[dxa2x2=sin1xa+c
=sin1(t2)+c
I=sin1(x+12)+c

Indefinite Integrals Exercise Revision Exercise Question 52

Answer:
I=5x29x+20+592log|(x92)+x29x+20|+c
Given:
5x+7(x5)(x4)dx
Hint:
To solve this equation we have to do differentiation method.
Solution:
I=5x+7(x5)(x4)dx
I=5x+7x29x+20dx
Take 5/2 common from numerator and add and subtract 9,
I=522x+1459+9x29x+20dx
I=52(2x9)+145+9x29x+20dx
I=52(2x9)x29x+20dx+52595x29x+20dx
 put x29x+20=t
dtdx=12x29x+20×(2x9)
dx=dt×22x9x29x+20
I1=522x9x29x+20×dt(2x29x+20)2x9
I1=5dt
I1=5t
I1=5x29x+20
I2=5921x29x+20dx
=5921x29x+814814+20dx
=5921x29x+814+(20814)dx
=5921(x92)2(12)2dx
=[dxx2a2=log|x+x2a2|+c
 let x92=u
dx=du
I=592duu2(12)2
=592log|u+u2(12)2|+c
=592log|u+u2(12)2|+c
 Adding I1 and I2
I=5x29x+20+592log|(x92)+x29x+20|+c


Indefinite Integrals Exercise Revision Exercise Question 53

Answer:
I=[x2+x+ln(x+x+1)]+c

ùTo solve this equation we have to take x = u².
Solution:
I=(x+1)xdx
 Let x=u2
dx=2udu
I=(u2+1)u22udu

I=2u2+1du [x2+a2=x2x2+a2+a22lnx+x2+a2+c]
I=2[u2u2+1+12ln(u+u2+1)]+c
I=2[x2x+1+12ln(x+x+1)]+c
I=[x2+x+ln(x+x+1)]+c

Indefinite Integrals Exercise Revision Exercise Question 54

Answer:
I=sin1x+12sin2sin1x+c
Given:
1xxdx
Hint:
To solve this question we have to assume that x as sin²θ
Solution:
I=1xxdx
x=sin2θdx=2sinθcosθdθ
I=1sin2θsin2θdθ(2sinθcosθ)
I=cos2θsin2θ(2sinθcosθ)dθ
I=cosθ2cosθdθ
I=2cos2θdθ
I=(1+cos2θ)dθ
I=1dθ+cos2θdθ
I=θ+12sin2θ+c
I=sin1x+12sin2sin1x+c

Indefinite Integrals Exercise Revision Exercise Question 55

Answer:
I=2a32[(a2)(1ax)2+(1ax)22+(1a)ln|(1ax)|]+c
Given:
ax1axdx
Hint:
To solve this equation we have to suppose denominator as t.
Solution:
I=ax1axdx
1ax=t
ax=t1
a2axdx=dt
dx=2axadt
dx=2(t1)adt
I=1aaax1axdx
I=1aa+(t1)t(2(t1)a)dt
I=2a32(t1)(a+t1)tdt
I=2a32at+t2tat+1tdt
I=2a32t(a2)+t2+(1a)tdt
I=2a32(a2+t+1at)dt
I=2a32[(a2)t+t22+(1a)ln|t|]+c
I=2a32[(a2)(1ax)2+(1ax)22+(1a)ln|(1ax)|]+c

Indefinite Integrals Exercise Revision Exercise Question 56

Answer:
15log|tanx22tanx+1|+c
Given:
1(sinx2cosx)(2sinx+cosx)dx
Hint:
To solve this statement we have to evaluate the team by partial fraction.
Solution:
dx(sinx2cosx)(2sinx+cosx)
Dividing cos²x with numerator and denominator.
I=1cos2xsinx2cosxcosx×2sinx+cosxcosx
I=sec2x(tanx2)(2tanx+1)dx
I=dt(t2)(2t+1) [t=tanx,dt=sec2xdx]
1(t1)(2t+1)=at2+b2t+1
=(2a+b)t+(a2b)(t2)(2t+1)
2a+b=0 (1) 
a2b=1(2)
 --------------------
1×2+(2)=
4a+a=1,a=15
b=25
I=[15×1t225×12t+1]dt
I=15log|t2|25×12log(2t+1)+c
I=15log|t22t+1|+c
I=15log|tanx22tanx+1|+c

Indefinite Integrals Exercise Revision Exercise Question 57

Answer:
I=14tan1(2tanx+1)2+c
Given:
dx4sin2x+4sinxcosx+5cos2x
Hint:
To solve this statement we have to divide numerator and denominator by cos²θ.
Solution:
I=14sin2x+4sinxcosx+5cos2xdx
Dividing numerator and denominator by cos²x.
I=sec2x4tan2x+4sinxcosx1cos2x+5cos2xcos2xdx
I=sec2x4tan2x+4tanx+5dx
I=sec2x(2tanx+1)2+4dx
[2tanx+1=t,dt=2sec2xdx,sec2xdx=dt2
I=dt(12)t2+22=14dtt2+22
I=12×12tan1t2+c
I=14tan1(2tanx+1)2+c

Indefinite Integrals Exercise Revision Exercise Question 58

Answer:
|=ba2+b2ln|cosx+bsinx+aa2+b2x+c
Given:
1a+btanxdx
Hint:
To solve this equation, we have to use standard method form.
Solution:
I=1a+btanxdx
I=1a+bsinxcosxdx=cosxacosx+ssinxdx
 Let cosx=Addx(acosx+bsinx)+B(acosx+bsinx)
=A(asinx+bcosx)+B(acosx+bsinx)
=(Ab+Ba)cosx+(BbAa)sinx
=Ab+Ba=1..(1)BbAa=0.(2)
On solving (1) and (2),
B=aa2+b2
A=ba2+b2
I=A(asinx+bcosx)+B(acosx+bsinx)acosx+bsinxdx
I=A(asinx+bcosx)acosx+bsinx+Bdx
I=A(asinx+bcosx)acosx+bsinxdx+Bdx
I=A(asinx+bcosx)acosx+bsinxdx+Bdx[dt=asinx+bcosx]
I=Adtt+Bx
I=ba2+b2ln|t|+aa2+b2xc
I=ba2+b2ln|acosx+bsinx|+aa2+b2x+c


Indefinite Integrals Exercise Revision Exercise Question 59

Answer:
I=12log|1+2cotx|+c
Given:
1sin2x+sin2xdx
Hint:
To solve this equation we have to take sin²x common and also use sin2x formula.
Solution:
I=1sin2x+sin2xdx
I=dxsin2x+2sinxcosx
I=dxsin2x(1+2cosxsinx)
I=cosec2xdx1+2cotx
 Let cotx=t=>cosec2xdx=dt
I=dt1+2t
I=12log|1+2t|+c[dxx=log|x|+c] [dxax+b=log(ax+b)a+c]
I=12log|1+2cotx|+c

Indefinite Integrals Exercise Revision Exercise Question 60

Answer:
I=45x+35log(2sinx+cosx)+c
Given:
sinx+2cosx2sinx+cosxdx
Hint:
To solve this statement we have to use formula of sin θ+ 2cos θ and also substitute method.
Solution:
sinx+2cosx=Addx(D)+B(D)
sinx+2cosx=A(2cosxsinx)+B(2sinx+cosx)
sinx=>1=2BA..(1)cosx=>2=2A+B.(2)
 On solving (1) \& (2),  A=35&B=45
I=352cosxsinx2sinx+cosx+452sinx+cosx2sinx+cosxdx
I=35dtt+45dx
I=35logt+45x+c
I=45x+35log(2sinx+cosx)+c

Indefinite Integrals Exercise Revision Exercise Question 61

Answer:
I=14ln|x4+x8+4|+c
Hint :
To solve this given statement split the x? term to (x?)² then put x? equal to t.
Given:
x8x8+4dx
Solution:
I=x8x8+4dx
I=x3(x4)2+4dx
I=14dtt2+4 [x4=t,dt=4x3dx,x3dx=dt4]
I=14dtt2+22
I=14ln|t+t2+4|+c
I=14ln|x4+x8+4|+c

Indefinite Integrals Exercise Revision Exercise Question 62

Answer:
125ln|tanx(15)tanx+(15)|+C
Hint:
To solve the given statement we will take cos2xas(1tan2x1+tan2x)
Given:
123cos2xdx
Solution:
I=123(1tan2x1+tan2x)dx
I=1+tan2x2(1+tan2x)3(1tan2x)dx
I=sec2x1+stan2xdx
I=sec2x5(tan2x15)dx
I=15dtt215 [tanx=t,dt=sec2xdx]
I=15dtt2(15)2
I=1512(15)ln|t(15)t+(15)|+c
I=125ln|tanx(15)tanx+(15)|+C

Indefinite Integrals Exercise Revision Exercise Question 63

Answer:
13ln|sinx(32)sinx+(32)|+c
Hint:
To solve this given statement we will write cos²x in terms of sin²x
Given:
cosx14cos2xdx
Solution:
cosx14cos2xdx
I=cosx14(1sin2x)dx
I=cosx34+sin2xdx

sinx=tdt=cosxdx
I=dtt234
I=dtt2(32)2
I=12(32)ln|t(32)t+(32)|+c
I=13ln|sinx(82)sinx+(82)|+c

Indefinite Integrals Exercise Revision Exercise Question 64

Answer:
I=13ln|3+tan(x2)3tan(x2)|+c
Hint
We will write cosxas(1tan2xλ21+tan2x2)
Given:
11+2cosxdx
Solution:
I=11+2cosxdx
I=11+2(1tan2x21+tan2x2)dx
I=1+tan2x21+tan2x2+22tan2x2dx
I=sec2x23tan2x2dx
I=2dt3t2 [tanx2=t,dt=sec2(x2)(12)dx]
I=2dt(3)2t2 [sec2(x2)dx=2dt]
I=2(123)ln|3t3+t|+c
I=13ln|3+t3t|+c
I=13ln|3+tan(x2)3tan(x2)|+c

Indefinite Integrals Exercise Revision Exercise Question 65

Answer:
I=13log|tan(x2)23tan(x2)2+3|+c

Hint:

To solve the above equation we will write sin x as 2tan(x2)1+tan2(x2)
Given:
112sinxdx
Solution:
I=112sinxdx
I=114tan(x2)1+tan2(x2)dx
I=1+tan2(x2)1+tan2(x2)4tan(x2)dx [sinx=2tan(x2)1+tan2(x2)
I=sec2(x2)1+tan2(x2)4tan(x2)dx
I=22sec2(x2)1+tan2(x2)4tan(x2)dx
I=2dt1+t24t [t=tan(x2),dtdx=12sec2(x2),dt=12sec2(x2)dx]
I=2dt(t222t+22)22+1
I=2dt(t2)23
I=2duu2(3)2 [t2=u,dt=du]
[dxx2a2=12alog|xax+a|+c
I=2×123log|u3u+3|+c
I=13log|t23t2+3|+c
I=13log|tan(x2)23tan(x2)2+3|+c


Indefinite Integrals Exercise Revision Exercise Question 69

Answer:23tan15tan(x2)43+c

Hint:

To solve the given statement write sin2(x2)+cos2(x2) and sinas2sin(x2)cos(x2)
Given:
154sinxdx
Solution:
I=154sinxdx
=15(sin2(x2)+cos2(x2)45(2sinx2cos(x2))dx
=dx5sin2(x2)+5cos2(x2)8sin(x2)cos(x2)
 Divide numerator and denominator by cos2(x2)
=sec2(x2)stan2(x2)+58tan(x2)dx
 let tan(x2)=t
sec2(x2)2dx=dt
=215t2+58tdt
=2×151t2(8t)5+1dt
=251t28t5+(45)2(45)2+1dt
=25dt(t(45)2)+(35)2
=25×135tan1(t(45)35)+c
=23tan1(5t4)3+c
=23tan15tan(x2)43+c


Indefinite Integrals Exercise Revision Exercise Question 70

Answer:
tanx+(tanx)33+c
Hint:
To solve the given statement split the sec? x into sec² x sec²x then apply the formula.
Given:
sec4xdx
Solution:
I=sec4xdx
1+tan2x=sec2x
=(1+tan2x)sec2xdx
=(1+t2)dt [tanx=t,sec2xdx=dt,xndx=xn+1n+1+c]
=t+t33+c
=tanx+(tanx)33+c


Indefinite Integrals Exercise Revision Exercise Question 71

Answer:
cot2x2cot82x6+c
Hint:
To solve the given question we will split the cosec? 2x into cosec² 2x cosec² 2x.
Given:
cosec42xdx
Solution:
=cosec42xdx
=cosec22xcosec22xdx
=(1+cot22x)cosec22xdx
putcot2x=t=>cosec22x2dx=dt
=12(1+t2)dt
=12tt36+c
=cot2x2cot32x6+c

Indefinite Integrals Exercise Revision Exercise Question 72

Answer:
12ln|tanx2|+14tan2x2+tanx2+C
Hint:
To solve the given statement multiply and divide the equation by sin x.
Given:
1+sinxsinx(1+cosx)dx
Solution:
I=(1+sinx)sinx(1+cosx)dx
 putting 
sinx=2tanx21+tan2x2
cosx=1tan2x21+tan2x2
I=(1+2tanx21+tan2x2)(2tanx2)(1+tan2x2)(1+1tan2x21+tan2x2)dx
I=(1+tan2x2+2tanx2)(1+tan2x2)(2tanx2)(1+tan2x2+1tan2x2)dx
=14(1+tan2x2+2tanx2)sec2x2tanx2dx
 putting tanx2=t
12sec2(x2)dx=dt
sec2(x2)dx=2dt
I=14(1+t2+2t)(2dt)t
=12(1t+t+2)dt
=12[ln|t|+t22+2t]+C
=12[ln|tanx2|+tan2(x2)2+2tan(x2)]+C[t=tanx2]
=12ln|tanx2|+14tan2x2+tanx2+C

Indefinite Integrals Exercise Revision Exercise Question 73

Answer:
2(13)tan1(tan(x2))3
Hint:
To solve the given statement we will write cosxas1tan2(x2)1+tan2(x2)
Given:
12+cosxdx
Solution:
cosx=1tan2(x2)1+tan2(x2)
I=12+1tan2(x2)1+tan2(x2)dx
I=sec2(x2)tan2(x2)+3dx [tan(x2)=t,12sec2(x2)1dx=dt]
I=2dtt2+(3)2
=2(13)tan1(tan(x2))3

Indefinite Integrals Exercise Revision Exercise Question 74

Answer:
x2+ax+a2log|(x+a2)+x2+ax|+c
Hint:
To solve the given statement multiply and divide the equation by a +x.
Given:
a+xxdx
Solution:
=a+xx(a+x)dx
=122(a+x)x2+axdx
=12[2x+ax2+axdx+ax2+axdx]
[d(x2+ax)=12x2+ax(2x+a)]
[d(x2+ax)=ax2+ax+(a24)(a24)]
[d(x2+ax)=a(x+a2)2(a2)2]
=122x2+ax+a(x+a2)2(a2)dx
=x2+ax+alog|(x+a2)+x2+ax|
=x2+ax+a2log|(x+a2)+x2+ax|+c

Indefinite Integrals Exercise Revision Exercise Question 75

Answer:
36+x2x2+1322sin1(4x17)+c
Hint:
To solve the given solution we will use the partial fraction.
Given:
6x+56+x2x2
Solution:
6x+56+x2x2
=82(4x+1)+(132)6+x2x2dx
=32[14x6+x2x2dx+13216+x2x2dx
=32[dtt+132213+(x2)x2dx
=32×2t+132213(x2(x2)+116116)
=36+x2x2+132213+(116)(x(14))2
=36+x2x2+13221(74)2(x(14))2dx
=36+x2x2+1322sin1(x(14)74)+c
=36+x2x2+1322sin1(4x17)+c

Indefinite Integrals Exercise Revision Exercise Question 76

Answer:
13cos8xcosx2cosx+c
Hint:
To solve the given statement we will split sin 5x into sin? x sin x.
Given:
sin5xcos4xdx
Solution:
=sin4xsinxcos4xdx
=(1cos2x)2sinxcos4xdx[ put cosx=t,sinxdx=dt]
=(1t2)2(dt)t4
=(1+t42t2)(dt)t4
=(1t4+1(2t2))(dt)
=1t4dtdt+21t2dt
=t83t+2(tt)+c
=13cos8xcosx2cosx+c


Indefinite Integrals Exercise Revision Exercise Question 77

Answer:
I=log(sinx)sin2x+sin4x4+c
Hint:
to solve the given statement we will split cos? x into cos? x cos x then put cos? x = (1-sin²x)².
Given:
cos5xsinxdx
Solution:
I=cos5xsinxdx
=cosx(cos4x)sinxdx
I=cosx(1sin2x)2sinxdx
[sinx=t,dtdx=cosx,dx=dtcosx]
I=(1t2)2tdt
I=(12t2+t4)tdt
I=1tdt2tdt+t3dt
I=logtt2+t44+c
I=log(sinx)sin2x+sin4x4+c



Indefinite Integrals Exercise Revision Exercise Question 78

Answer:
ln|secx+tanx|sinxsin3x3sin5x5+c
Hint:
To solve the given equation we have to split the sin? x term in sin? x.sin² x.
Given:
sin6xcosxdx
Solution:
I=sin6xcosxdx
=sin4xsin2xcosxdx=sin4xcosx(1cos2x)dx
=sin4xcosxdxsin4xcos2xcosxdx
=sin4xcosxdxsin4xcosxdx
=sin2x(1cos2x)cosxdxt4dt
=sin2xcosxdxsin2xcosxdxt55
=(1cos2x)cosxdxt2dtsin5x5
=1cosxdxcosxdxt83sin5x5
=secxdxsinxsin3x3sin5x5
=ln|secx+tanx|+(sinxsin3x3sin5x5)+c
=ln|secx+tanx|sinxsin3x3sin5x5+c

Indefinite Integrals Exercise Revision Exercise Question 79

Answer:
tan8x3+tan5x5+c
Hint:
To solve the given statement divide the numerator and denominator by cos²x.
Given:
=sin2xcos6xdx
Solution:
=sin2xcos2xcos6xcos2xdx
=tan2xsec4xdx
=tan2xsec2x(sec2xdx)
=t2(1+t2)dt
=t2dt+t4dt
=t33+t55+c
=tan8x3+tan5x5+c


Indefinite Integrals Exercise Revision Exercise Question 80

Answer:
I=tan5x5+2tan8x3+tanx+c
Hint:
To solve the given equation we have to split sec? x into sec? x sec² x.
Given:
sec6xdx
Solution:
I=sec6xdx
=sec4xsec2xdx
=(sec2x)2sec2xdx
sec2x=tan2x+1
I=(tan2x+1)2sec2xdx
[tanx=t,sec2xdx=dt
I=(t2+1)2dt
I=(t4+2t2+1)dt
I=t55+2t33+t+c
I=tan5x5+2tan3x3+tanx+c

Indefinite Integrals Exercise Revision Exercise Question 81

Answer:
sec7x72sec5x5+sec3x3+c
Hint:
You must know about integration of tan x & sec x.
Given:
tan5xsec3xdx
Solution:
 let secx=t
secxtanxdx=dt
 Now, tan4xsec2x(secxtanxdx). (1) 
tan4xsec2xdt
 put the value of secx=tin(1)
tan2xtan2xsec2xdt
((sec2x1)(sec2x1)sec2x)dt
(t21)(t21)t2dt
[t4+(1)22(t2)(1).]t2dt
(t4+12t2)t2dt
t6dt2t4dt+t2dt
=t772t55+t33+c
=sec7x72sec5x5+sec3x3+c

Indefinite Integrals Exercise Revision Exercise Question 82

Answer:
tan4x4+tan6x6+c
Hint:
You must know about the integration of tan x & sec x.
Given :
tan3xsec4xdx
Solution:
lettanx=t,sec2xdx=dt
 now, tan3xsec2xsec2xdx.. (1) 
 put value of tanx=t (1) 
=t3(1+tan2x)sec2xdx
=t3(1+t2)dt
=t3dt+t5dt
=t44+t66+c
=tan4x4+tan6x6+c


Indefinite Integrals Exercise Revision Exercise Question 83

Answer:
12cosx+12sinx122log(cosec(x+π4)cot(x+π4))+c
Hint:
You must know about integration of sec x & cosec x.
Given:
1secx+cosecxdx
Soltuion:
now,11cosx+1sinxdx[secx=1cosx,cosecx=1sinx]
=dx(cosxsinx)sinx+cosx
=122(cosxsinx)sinx+cosxdx [(1+2sinxcosx)=(sinx+cosx)2
=121+2sinxcosx1sinx+cosxdx
=12(sinx+cosx)21sinx+cosxdx
=12(sinx+cosx)=dx1sinx+cosxdx
=12[sinxdx+cosxdxdx2(12sinx+12cosx)]
=12[cosx+sinx12dxsin(x+(π4)]
=12[cosx+sinx12cosec(x+π4)dx]
=12cosx+12sinx122log(cosec(x+π4)cot(x+π4))
=12cosx+12sinx122log(cosec(x+π4)cot(x+π4))+c

Indefinite Integrals Exercise Revision Exercise Question 84

Answer:
x2a2+x2+a22ln|x+x2+a2|+C
Hint:
You must know about integration of a2+x2
Given:
a2+x2dx
Solution:
I=1IIa12+x2dx
=a2+x21dx(ddx(a2+x2)1dx)dx
=a2+x2x1×2x2a2+x2xdx
=a2+x2x(x2+a2a2a2+x2)dx
=xa2+x2a2+x2dx+a21a2+x2dx
=xa2+x2I+a21a2+x2dx
2I=xa2+x2+a2ln|x+x2+a2|
I=x2a2+x2+a22ln|x+x2+a2|+C


Indefinite Integrals Exercise Revision Exercise Question 86

Answer:
a2(12sin1(xa)+(xa)a2x2)+c
Hint:
You must know about how to solve integration.
Given:
a2x2dx
Solution:
 let x=asinθ
dx=acosθdθ
I=a2a2sin2θdθ
I=a21sin2θcosθdθ1sin2θ=cos2θ
I=a2(θ2+12(sin2θ)2)+c [letθ=sin1(xa),cosθ=1(x2a2)
I=a2(12sin1(xa)+122(sin2θ)cosθ2)+c
I=a2(12sin1(xa)+12(xa)1aa2x2)+c
I=a2(12sin1(xa)+(xa)a2x2)+c

Indefinite Integrals Exercise Revision Exercise Question 87

Answer:
16(3x+2)3x2+4x+1318ln|(x+23)+x2+4x3+13|+c
Hint:
You must know about how to solve integration.
Given:
3x2+4x+1dx
Solution:
3x2+4x3+13dx
3x2+4x3+4949+13dx
3(x+(23))2123dx
16(3x+2)3x2+4x+1318ln|(x+23)+x2+4x3+13|+c

Indefinite Integrals Exercise Revision Exercise Question 88

Answer:
(32)[(3x13)13+2x3x2+4sin1(3x1)9]+c
Hint:
You must know about formula of a2x2,x2+a2,x2a2
Given:
1+2x3x2dx
Solution:
313+23xx2dx
313+1919+2x3x2dx
3491923x+x2dx
3(23)2(x13)2dx [(a2x2dx=12(xa2x2)+a2sin1(xa)]
3(12)[(x13)(23)2(x13)2+(23)2sin1(x18)23]
I=(32)[(3x13)13+2x3x2+49sin1(3x1)2]+c

Indefinite Integrals Exercise Revision Exercise Question 89

Answer:
\dpi10013t3213(1+xx2)32+12[2x1454(x12)2+58sin1(2x15)]+c
Hint:
You have to find value of A & B.
Given:
x1+xx2dx
Solution:
 let x=A((ddx)(1+xx2))+B
x=A(12x)+B
x=A+B2Ax
A + B = 0 , -2A = 1
B=12A=12
I=[12(12x)+12)1+xx2dx
=12(12x)1+xx2dx+121+xx2dx
I=12tdt.(1+xx2=t)
=13t32=13(1+xx2)32+c
II=121+xx2dx
=1254(x12)2dx [x12=z,dx=dz]
=12(52)2(z)2dz
=12[12z54z2+1254sin1(2z5)+c]
=12[2x1454(x12)2+58sin1(2x15)+c]
x1+xx2=I+II
I=13t3213(1+xx2)32+c+12[2x1454(x12)2+58sin1(2x15)+c]
I=13t3213(1+xx2)32+12[2x1454(x12)2+58sin1(2x15)]+C

Indefinite Integrals Exercise Revision Exercise Question 90

Answer:
(4x2+5x+6)326+78x24x2+5x+618ln|2x+4x2+5x+6|+c
Hint:
You must have to know about integration method.
Given:
(2x+3)4x2+5x+6dx
Solution:
(2x+3)4x2+5x+6dx
14(8x+5+7)4x2+5x+6dx
14(8x+5)4x2+5x+6dx+74x2+5x+6dx
 Let 4x2+5x+6=t
14(t12+1)32+7(2x+52)2+(6254)dx
14(2(4x2+5x+6)3(4x2+5x+6)+7(2x+52)2+14dx
(4x2+5x+6)326+74(2x+52)2+(12)2dx
(4x2+5x+6)326+74(2x+52)2+(12)2dx
(4x2+5x+6)326+74(2x+52)2(12)214×12ln|2x+4x2+5x+6|+c
(4x2+5x+6)326+78x24x2+5x+618ln|2x+4x2+5x+6|+c

Indefinite Integrals Exercise Revision Exercise Question 91

Answer:
sin2x2(x2+12)+xcos2x2+c
Hint:
You must know about integration of cos2x.
Given:
(1+x)2cos2xdx
Solution:
(1+x)2cos2xdx
cos2xdx+x2cos2xdx
sin2x2+[x2sin2x22x(sin2x2)dx [1.I1dx=IIIdx[(ddx)IIIdx]
sin2x2+[x2sin2x2[xcos2x2+12cos2xdx
sin2x2+x2sin2x2+xcos2x212cos2xdx
sin2x2(1+x2)+xcos2x212sin2x2+c
sin2x(1+x212)+xcos2x2+c
sin2x2(x2+12)+xcos2x2+c

Indefinite Integrals Exercise Revision Exercise Question 92

Answer:
xlog10xx+c
Hint: You must know about integration of logx.
Given:
log10xdx
Solution:
logxdx
logx1dx
xlogx1xxdx [1=x,I.11dx=IIIdxddxIIIdx]
xlog10xx+c


Indefinite Integrals Exercise Revision Exercise Question 93

Answer:
(logx)log(logx)logx+c
Hint:
You must know about integration of log.
Given:
log(logx)xdx
Solution:
letlogx=t
dxx=dt
log(t)dt
tlogtt+c I.IIdx=IIIdxddxII1dx
put value of t
(logx)log(logx)logx+c

Indefinite Integrals Exercise Revision Exercise Question 94

Answer:
xtan2x214log|sec2x|+c
Hint:
You must know about integration of sec x & tan x.
Given:
xsec22xdx
Solution:
xsec22xdx(1.11dx=II1dxddx1.IIdx)
x(tan2x2)12tan2xdx
xtan2x212tan2xdx(tan2x=log|sec2x2|)
xtan2x212log|sec2x2|+c
xtan2x214log|sec2x|+c

Indefinite Integrals Exercise Revision Exercise Question 96

Answer:
ex[x2+1]+c
Hint:
You must know about integration of I and II.(ILATE)
Given:
(x+1)2exdx
Solution:
(x2+1+2x)exdx
(x2ex+ex1+2xex)dx
ex(x22x+2)+ex+ex(2x2) 1.11dx=I11dxddxI IIdx (ex=ex)
ex[x22x+2+1+2x2]+c(ex=ex)
ex[x2+1]+c

Indefinite Integrals Exercise Revision Exercise Question 97

Answer:
xlog(x+x2+a2)x2a2+C[t=x2+a2]
Hint
 Put x=atanθ
Given:
log(x+x2+a2)dx
Solution:
I=1IIlog(x+xI2+a2)dx
=log(x+x2+a2)1dx[ddx{log(x+x2+a2)}1dx]
=log(x+x2+a2)x(1x+x2+a2)×(1+1×2x2x2+a2)xdx
=log(x+x2+a2)xxx2+a2dx
 putting x2+a2= tinthe sec o nd inte gral 
2xdx=dt
xdx=dt2
I=xlog(x+x2+a2)121tdt
=xlog(x+x2+a2)12t12dt
=xlog(x+x2+a2)12[t12+112+1]+C
=xlog(x+x2+a2)t+C
=xlog(x+x2+a2)x2a2+C[t=x2+a2]



Indefinite Integrals Exercise Revision Exercise Question 98

Answer:
12e2logx(2logx+1)+C
Hint:
You must know about integration of e?
Given:
logxx3dx
Solution:
logxx21xdx (putlogx=t,1xdx=dt)
te2tdt (logx=t,x=et)
te2tdt
t(e2t2)1×e2t2dt using Byparts 
(te2t2)+12(e2t2)
12e2t(t+12)+c
14e2t(2t+1)+C
Resubs. t=logx,
12e2logx(2logx+1)+C


Indefinite Integrals Exercise Revision Exercise Question 99

Answer:
log(1x)xlog|x|+log|1x|+c
Hint:
You must know about ILATE
Given:
(log(1x))x2dx
Solution:
(log(1x))x2dx
(1x2)log(1x)dx (ILATE) 
log(1x)(1x)(11x)(1x)dx
log(1x)x1(1x)xdx
log(1x)x(1x+1(1x))dx
log(1x)xlog|x|+log|1x|+c

Indefinite Integrals Exercise Revision Exercise Question 100

Answer:
(logx)2×x44logxx48+x432+C
Hint:
You must know about the log formula of integration.
Given:
x3(logx)2dx
Solution:
x311(log1x)2dx
=(logx2)x3dx2logxx×x44dx
=(logx)2×x4412log1xx3IIdx
=(logx)2×x4412[logxx3dx{ddx(logx)x3dx}dx]
=(logx)2×x4412[logxx441x×x44dx]
=(logx)2×x4412[logxx4414x3dx]
=(logx)2×x4412[logxx44x416]+C
=(logx)2×x44logxx48+x432+C

Indefinite Integrals Exercise Revision Exercise Question 101

Answer: 1nlog|1+xn11+xn+1|+C
Hint
Given:1x1+xndx
Solution:
I=dxx1+xn
=xn1dxxn1x11+xn
=xn1dxxn1+xn
 putting xn=t
nxn1dx=dt
xn1dx=dtn
I=1ndtt1+t
let1+t=p2
dt=2pdp

I=1n2pdp(p21)p
=2ndpp212
=2n×12log|p1p+1|+C
=1nlog|1+t11+t+1|+C
=1nlog|1+xn11+xn+1|+C


Indefinite Integrals Exercise Revision Exercise Question 102

Answer:21x25(1x)5/2+43(1x)3/2+c
Hint: to solve this question we have to use differentiate method
Given:
x21xdx
Solution:
 Let 1x=t
x=1t
 differentiating on both sides, 
dx=dt
dx=dt
I=(1t)2tdt
I=1+t22ttdt
I=1tdtt2tdt+2ttdt
I=t1/2dtttttdt+2tdt
I=(t1/21/2)t3/2dt+2t3/23/2
I=2tt3/2+13/2+1+2x23t3/2+c
I=2tt5/25/2+43t3/2+c
I=21x25(1x)5/2+43(1x)3/2+c

Indefinite Integrals Exercise Revision Exercise Question 103

Answer: 29(1+x3)3/2231+x3+c
Hint: to solve this question we have to use substitute method
Given: x51+x3dx
Solution:
 Let I=x3x21+x3dx
 put 1+x3=t2, differentiate on both sides, 
3x2dx=2tdt
I=(t21)t2tdt3
I=23(t21)dt
I=23t2dt23dt
I=23t3323t+c
I=29(1+x3)3231+x3+c
I=29(1+x3)3/2231+x3+c


Indefinite Integrals Exercise Revision Exercise Question 104

Answer: 32sin1xx21x2+c
Hint: to solve this equation we have to solve this by splitting the team
Given:
I=1+x21x2dx
Solution:
LetI=2(1x2)1x2dx
I=21x2dx1x21x2dx
I=21x2dx1x2dx
I=2sin1x[x21x2+12sin1x]+c.
{1a2x2dx=1asin1xa&a2x2dx=a2a2x2+12sin1(xa)}
I=2sin1xx21x212sin1x+c
I=32sin1xx21x2+c


Indefinite Integrals Exercise Revision Exercise Question 105

Answer: 1x2(x21)12sin1(x)+C
Hint: to solve this equation, we have to assume u as cosΘ
Given:x1x1+xdx
Solution:
I=x1x1+xdx
I=x(1x)(1x)(1+x)(1x)dx
I=x(1x)1x2dx
I=xx21x2dx
I=xx21+11x2dx
I=x2+11x2dx+x11x2dx
I=1x2dx+x1x2dx11x2dx
I=x21x2+12sin1(x)+C11x2+C2sin1(x)
+C3[x1x2dx=1x2+C2]
I=1x2(x21)12sin1(x)+C



Indefinite Integrals Exercise Revision Exercise Question 106

Answer: I=13log|1+x811+x8+1|+c
Hint: to solve this equation we have to do with differentiate method.
Given: 1x1+x3dx
Solution:
x3=t
3x2dx=dt
x2dx=13dt
I=x2x31+x3dx
I=13dtt1+t
 Let 1+t=p2 , dt=2pdp
I=132pdpp21)p
I=23dp(p21)
23×13×12log[p1p+1]+C[dxx2a2=12alog[xax+a]+C]
I=13log|1+x311+x3+1|+c



Indefinite Integrals Exercise Revision Exercise Question 107

Answer:12[122+1log|2+1+t2+1t|+12+1tan1t2+1]+C
 wheret =sinxcosx
Hint: to solve this we have to put sinx+cosu in team of t
Given: sinx+cosxsin4x+cos4xdx
Solution:
I=sinx+cosxsin4x+cos4xdx
=sinx+cosx(sin2x+cos2x)22sin2xcos2xdx
=sinx+cosx12sin2cos2xdx
=sinx+cosx112(2sinxcosx)2dx
=sinx+cosx112sin22xdx
 putting sinxcosx=t(i)
(sinxcosx)2=t2
sin2x+cos2x2sinxcosx=t2
12sinxcosx=t2
sin2x=1t2
 Differentiating (i), weget 
(cosx+sinx)dx=dt
I=1112(1t2)2dt
=22(1t2)2dt
=2(2)2(1t2)2dt
=21(2+1t2)(21+t2)dt
=222[12+1t2+121+t2]dt
=1212+1t2dt+12121+t2dt
=121(2+1)2t2dt+121(21)2+t2dt
=12×122+1log|2+1+t2+1t|+12×12+1tan1t2+1+C
=12[122+1log|2+1+t2+1t|+12+1tan1t2+1]+C
 wheret =sinxcosx

Indefinite Integrals Exercise Revision Exercise Question 108

Answer:x33tan1xx36+16log|1+x2|+c
Hint: in this equation we will us ILATE method and then differentiate the terms
Given: x2tan1xdx
Solution: Considering tan1x as first function and x2 as second

tan1xx2dx(ddxtan1xx2dx)=x33tan1x13xx31+u2xdu=x33tan1x13x(1+x2)1+x2dx+162x1+x2dx=x33tan1xx26+16log|1+x2|+c

Indefinite Integrals Exercise Revision Exercise Question 109

Answer:tan1x(1+x)x+c
Hint: to solve this equation we have to use Byparts method
Given:tan1xdx
Solution:  let x=t
12xdx=dt
dx=2tdt
I=tan1t.2tdt
I=tan1t.t2t2+111+t2dt. using Byparts 
I=tan1tt2dt+11+t2
I=tan1tt2t+tan1t+C
I=tan1t(1+t2)t+C
I=tan1x(1+x)x+C

Indefinite Integrals Exercise Revision Exercise Question 110

Answer: x1x2sin1x(12x)2+C
Hint: to solve the question we have to use ILATE method
Given: sin1xdx
Solution:
I=sin1xdx
 Let x=sint
x=sin2t squaring on both sides 
dx=sintcostdt
I=sin1(sint)sintcostdt
I=12tsin2tdt
[(u.v)dx=uvdx[ddxuudx]]dx
I=12{tcos2t2+cos2t2dt}
I=12{tcos2t2+sin2t4}+C
x=sint
t=sinx
cost=1sin2t
cost=1x
I=sin1x(12x)2+2x1x4+C
I=x1x2sin1x(12x)2+C

Indefinite Integrals Exercise Revision Exercise Question 111

Answer:I=xsec1xx1+C
Hint: to solve this equation we have to useByparts equation;
Given: I=sec1xdx
Solution: Let sec1x be the first function and 1 as the second function 
I=sec1xx1xx12x.. Using Byparts 
I=xsec1x12(x1)1/2dx
I=xsec1xx1+C


Indefinite Integrals Exercise Revision Exercise Question 112

Answer:12[xcos1x1x2]+C
Hint: to solve this question we will presume x as cosθ
Given:tan11x1+xdx
Solution:
I=tan11x1+xdx
letx=cos2θ
dxdθ=2sin2θ
dx=2sin2θdθ
I=tan11cos2θ1+cos2θ2sin2θdθ
cos2θ=2cos2θ1
cos2θ=12sin2θ
I=tan111+2sin2θ1+2cos2θ1×2sin2θdθ
I=tan1tan2θ×2sin2θdθ
I=2θsin2θdθ
I=2[θsin2θdθdθdθsin2θdθ]dx. .applying Byparts 
I=2[θ×cos2θ2(1)cos2θ2]dθ
I=2[θcos2θ2(1)cos2θ2]dθ
I=2[θcos202+cos202]dθ
I=2[cos2θ2+sin2θ4]+C
I=2[(12cos1x)x2+sin(cos1x)4+C]
I=2[x4cos1x+sin(sin11x2)4]+C
I=24[xcos1x+1x2]+C
I=12[xcos1x1x2]+C


Indefinite Integrals Exercise Revision Exercise Question 115

Answer:(sin1x)3x+3(sin1x)21x2+6sin1x61x2+C
Hint: to solve this equation, we have to convert equation into trigonometric formulaes
Given: (sin1x)3dx
Solution:
 Let sin1x=θ
x=sinθ=>dx=cosθdθ
I=θ3cosθdθ
I=θ3sinθ3θ2sinθdθ
I=θ3sinθ+3θ2cosθ(60(sinθ)6(sinθ)
I=θ3sinθ+3θ2cosθ+60sinθ6cosθ+C
I=(sin1x)3x+3(sin1x)21x2+6sin1x61x2+C

Indefinite Integrals Exercise Revision Exercise Question 113

Answer:a[xatan1xa+tan1xaxa]+C
Hint: to solve this statement we will assume sin as tan
Given:sin1xa+xdx
Solution:
I=sin1xa+xdx
 Put x=atan2t=>tant=xa
dx=a(2tan(t)sec2tdt
I=sin1atan2ta+atan2ta(2tan(t)sec2tdt
I=2attan(t)sec2tdt
 Let t be the first function and tan(t)sec2tdt be thee second, applying Byparts 
I=a(ttan2ttant+t)+C
I=a(tan2t+ttant)+C
I=a[xatan1xa+tan1xaxa]+C

Indefinite Integrals Exercise Revision Exercise Question 114

Answer: 3xsin1x+31x2+C
To solve this question we will use ILATE Method
Given:sin1(3x4x3)dx
Solution:
3sin1xdx
I=31sin1xdx
I=31sin1xdx

I=3[xsin1xdt2t] applying byparts 
I=3[xsin1x+12t12dt]
I=3[xsin1x+12t12+112+1+C)
I=3[xsin1x+12t12+C]
I=[3xsin1x+31x2+C]

Indefinite Integrals Exercise Revision Exercise Question 116

Answer:
2[xsin1x+1x2]+C
Hint: to solve this statement we will suppose x as sinθ
Given: cos1(12x)2dx
Solution:
cos1(12x)2dx
letx=sinθ,dx=cosθdθ
I=cos1(12sin2θ)2cosθdθ
I=cos1(cos2θ)cosθdθ
I=2θcosθdθ
uvdx=uvdx[dudvvdx]dx
I=2[θsinθsinθdθ]
I=2[θsinθ+cosθ]+c
I=2[xsin1x+1x2]+C



Indefinite Integrals Exercise Revision Exercise Question 117

Answer: (sin1x)11x212log1+x1x+C

Hint: to solve this equation, we have to assume x as sinθ and then do byparts method
Given: xsin1x(1x2)3/2dx
Soluton: Let x=sinθ
dx=cosθdθ
I=sinθ(θcosθdθ)(1sin2θ)32
(sinθ)(θ)cosθdθcos3θ
sinθcos2θθdθ
I=θsecθtanθdθ
[secθtanθdθ=dsecθ=secθ]
I=θsecθ1secθdθ
I=θsecθln|secθ+tanθ|+C
I=(sin1x)11x212log1+x1x+C

Indefinite Integrals Exercise Revision Exercise Question 118

Answer:e2xtanx2+C
Hint: to solve this equation, we have to assume 2x as t
Given:e2x(1+sin2x1+cos2x)dx
Solution:
e2x(1+sin2x1+cos2x)dx
exf(x)+f(x)dx=ex(x)+C
2x=t2dx=dtdx=dt2 [cos2θ=2cos2θ11+cos2θ=2cos2θ1+cos2x=2cos2xsin2x=2sinxcosx]
I=et(1+sint1+cost)dt2
=et(1+sint1+cost)dt2
=12et(1+2sint2cost22cos2t2)dt
=12et(12sec2t2+2sint2cost22cos2t2)dt
=12et(12sec2t2+tant2)dt
=12ettant2+C
=ettant22+C
=e2xtanx2+C. resubs. t=2x

Indefinite Integrals Exercise Revision Exercise Question 119

Answer: ex/2secx2+C
Hint : To solve this equation we have to use differentiation method
Given: 1sinx1+cosxex/2dx
Solution:
ex(f(x)f(x)dx=exf(x)+C
Letx2=t
x=2t
dx=2dt
I=1sin2t1+cos2tet2dt
I=2et1sin2t1+cos2tdt
1sin2t1+cos2t=sin2t+cos2t2sintcost2cos2t
I=(sintcost)22cos2t=sintcost2cos2t
=12(sintcos2tcostcos2t)
=12(tantcost1cost)
=12(tantsectsect)
f(t)=12sect;f(t)=12tantsect
1sin2t1+cos2t=f(t)f(t)
I=2etf(t)+C
I=2et12sect+C
I=ex/2secx2+C

Indefinite Integrals Exercise Revision Exercise Question 12

Answer: I=ex1tan2x+C
Hint: to solve this equation, we have to break the (1+x2)
Given: ex(1x)2(1+x2)2dx
Solution:
I=ex(1+x22x)(1+x2)2dx
I=ex11+x22x(1+x2)2dxex(f(x)+f(x)dx=exf(x)+C
I=ex11+x2+C

Indefinite Integrals Exercise Revision Exercise Question 121

Answer:emtan1xm2+1(mcos(tan1x)+sin(tan1x)+C
Given: emtan1x(1+x2)3/2dx
Hint: using integration by parts
Explanation
 Let I=emtan1x(1+x2)3/2dx
I=emθ(1+tan2θ)3/2sec2θdθ x=tanθθ=tan1x
Put dx=sec2θdθ
I=emθ(sec2θ)3/2sec2θdθ
I=emθsec3θsec2θdθ
I=emθdθsecθ=emθcosθdθ[1cosθ=secθ]
I=cosθemθm(sinθ)emθmdθusing Byparts 
I=1mcosθemθ+1msinθemθdθ
I=1mcosθemθ+1m[sinθemθmcosθemθmdθ]
I=1mcosθemθ+1m2sinθemθ1m2cosθemθdθ
I=1mcosθemθ+1m2sinθemθ1m2I w?ere I=cosθemθdθ
(1+1m2)I=1mcosθemθ+1msinθemθ+C
(m2+1m2)I=emθ(cosθm+sinθm2)+C
(m2+1)m2I=emθ(mcosθ+sinθm2)+m2C
(m2+1)I=emθ(mcosθ+sinθ)+m2C
I=emθm2+1(mcosθ+sinθ)+m2C
=emtan1xm2+1(mcos(tan1x)+sin(tan1x)+C

Indefinite Integrals Exercise Revision Exercise Question 122

Answer: 18log|x1x+1|(3x44(x1)2)+C
Given:x2(x1)3(x+1)dx
Hint: you must know the steps to integrate by partial function
Explanation: let I=x2(x1)3(x+1)dx
x2(x1)3(x+1)=A(x1)+B(x1)2+C(x1)3+D(x+1)
Multiplying by (x1)3(x+1)
x2=A(x1)3(x+1)+B(x1)(x+1)+C(x+1)+D(x1)3
Putting x=1

1=A(0)+B(0)+C(2)+D(0)c=12
Putting x=-1
1=A(0)+B(0)+C(2)+D(8)c=18

Putting x=0

1=A(1)+B(1)+C(1)+D(1)AB+CD=0AB+12(18)=0AB+12+18=0AB+58=0AB=58
Putting x=2
4=A(1)(3)+B(1)(3)+C(3)+D(1)4=3A+3B+3(12)+(18)3A+3B=432+18=>3(A+B)=3212+18=218A+B=38

Adding (i) and (ii)

A+B=58+78=282A28A=18
Put in (1)
18B=58B=18+58=68=>B=34x2(x1)3=18(x1)+34(x1)2=12(x1)3=18(x+1)18dxx1+34(x1)2+12+1+12(x1)3+13+118log|x+1|+C=18log|x1x+1|3x44(x+1)2+C


Indefinite Integrals Exercise Revision Exercise Question 123

Answer:=13log|x+1|16log|x2+x+1|+13tan12x+13+C
Given: xx31dx
Hint: using partial function
Explanation let I=xx31dx
xx31=x(x1)(x2+x+1)=Ax1+Bx+cx2+x+1
Multiplying by (x1)(x2+x+1)
x=A(x2+x+1)+(Bx+C)(x1)
Putting x=1

1=A(1+1+1)+(B(1)+C)(11)1=3A+0A=13
Putting x=-1

1=A+(2)(B+C)1=13+2B2C2(BC)=113BC=23BC=>23
Putting x=0
0=A(0+0+1)+(0+C)(01)0=A(1)+C(1)0=13C=>C=13
Put in (1)
B13=23=>B=1323=>B=13x(x1)(x2+x+1)=13(x1)+13x+13x2+x+1xdx(x1)(x2+x+1)=131x1dx13x1x2+x+1dx=13log|x1|13I1 (2) 
Where I1=x1x2+x+1dx
=122(x1)+33x2+x+1dx=122x+1x2+x+1dx321x2+x+1dx=12dtt321x2+x+(12)2(12)2+1dx[x2+x+1=t(2x+1)dx=dt]=12dtt321(x+12)2+(32)2=12log|t|3213tan1(2x+13)+C=12log|x2+x+1|3tan1(2x+13)+C

By (2), we get

=13log|x1|13[12log|x2+x+1|3tan1(2x+13)]+C=13log|x1|16log|x2+x+1|+13tan1(2x+13)+C




Indefinite Integrals Exercise Revision Exercise Question 124

Answer: 12log|1+x1+x2|+12tan1x+C
Given:11+x+x2+x3dx
Hint: using partial function
Explanation: let I=11+x+x2+x2dx
11+x+x2+x3=1(1+x)+x2(1+x)=1(1+x2)(1+x)11+x+x2+x3=1(1+x2)(1+x)1(1+x)(1+x2)=A(1+x)+Bx+C(1+x2)
Multiplying by (1+x)(1+x2)
1=A(1+x2)+(Bx+C)(1+x)
 put x=11=A(1+1)+(B(1)+C)(11)1=A(2)+0=>A=12
 put x=01=A(1+0)+(B(0)+C)(1+0)1=A+C=>112=C12
 putting x=11=A(1+1)+(B+C)(1+1)1=2A+2B+2C1=2(12)+2B+2(12)1=2B+1=>2B=12=>B=12
1(1+x)(1+x2)=12(1+x)+12(x+1(1+x2))1(1+x)(1+x2)dx=1211+xdx12x11+x2dx=1211+x2dx1222x1+x2dx+1211+x2dx=12log|1+x|14log|1+x2|+12tan1x+C=12[log|1+x|log|1+x2|]+12tan1x+C=12log|1+x1+x2|+12tan1x+C

Indefinite Integrals Exercise Revision Exercise Question 125

Answer: 13(12tan1x215tan1x5)+C
Given: 1(x2+2)(x2+5)dx
Hint: Using 11+x2dx
Explanation: let I=1(x2+2)(x2+5)dx
=13(x2+5)(x2+2)(x2+5)(x2+2)dx
=13(1x2+21x2+5)dx
=131x2+2dx131x2+5dx
=131x2+(2)2dx131x2+(5)2dx
=132tan1(x2)135tan1(x5)+C
=13(12tan1x215tan1x5)+C

Indefinite Integrals Exercise Revision Exercise Question 126

Answer:2log|x|14log|x+1|14log|x1|34log|x2+1|+c
Given: x22x5xdx
Hint: using partial fraction
Explanation let I=x22x5xdx
=x22x(x41)dx=x22x(x21)(x2+1)I=x22x(x+1)(x1)(x2+1)dxx22x(x+1)(x1)(x2+1)=Ax+Bx+1+Cx1+Dx+Ex2+1
Multiply by x(x+1)(x1)(x2+1)
x22=A(x+1)(x1)(x2+1)+B(u)(u1)(x2+1)+C(x)(x+1)(x2+1)+(Dx+E)(x)(x+1)(x1)
 putting x=002=A(1)(1)(1)+B(0)+C(0)+(Dx+6)(10)2=AA=2
 putting x=112=A(2)(0)(2)+B(0)+C(1)(2)(2)+(Dx+6)(0)1=4C=>C=14
 putting x=112=A(0)+B(1)(2)(2)+C(0)+D(0)1=>4BB=14
 On solving ,D=32&E=0
x22x5xdx=21xdx141x+1dx141x1dx32xx2+1dx
x22x5xdx=21xdx141x+1dx141x1dx32xx2+1dx
=21xdx141x+1dx141x1342xdxx2+1
=2log|x|14log|x+1|14log|x1|34log|x2+1|+c

Indefinite Integrals Exercise Revision Exercise Question 127

Answer: 21x+cos1x+x(1x)+C
Given:1x1+xdx
Hint: You must know the derivatives and integration of sinx and cosx
Explanation:
Let I=1x1+xdx
=1cosθ1+cosθ(2sinθcosθ)dθ=2sin2θ22cos2θ2×2sinθcosθdθ=2tanθ2sinθcosθdθ [ put x=cosθx=cos2θdx=2cosθ(sinθ)dθdx=2sinθcosθdθ]
=2sinθ2cosθ22sinθ2cosθ2cosθdθ=4sin2θ2cosθdθ [1cos2θ=2sin2θ1+cos2θ=2cos2θsin2θ=2sinθcosθ]
=4(1cosθ2)cosθdθ=2(cosθcos2θ)dθ=2cosθdθ+2cos2θdθ
=2cosθdθ+21+cos2θ2dθ=2cosθdθ+1dθ+cos2θdθ
=2sinθ+θ+sin2θθ+C=2sinθ+θ+2sinθcosθ2+C=2sinθ+θ+sinθcosθ+C=21x+cos1x+1xx+C[cosθ=1sin2θ]=21x+cos1x+x(1x)+C

Indefinite Integrals Exercise Revision Exercise Question 128

Answer:2log|x+1|1x+1+3log|x+2|+C
Given: x2+x+1(x+1)2(x+2)dx
Hint: using partial fraction
Explanation: let I=x2+x+1(x+1)2(x+2)dx
x2+x+1(x+1)2(x+2)=A(x+1)+B(x+1)2+C(x+2)
Multiplying by : (x+1)2(x+2)x2+x+1=A(x+1)(x+2)+B(x+2)+C(x+1)2

Putting x=-1

x2+x+1=A(x+1)(u+2)+B(x+2)+C(x+1)2

 putting x=111+1=A(0)(1)+B(1)+C(0)=0+B+0=>B=1

 putting x=24+(2)+1=A(1)(0)+B(0)+C(1)3=0+0+C=>3

 putting x=00+0+1=A(1)(2)+B(2)+C(1)1=2A+2B+C1=2A+2(1)+32A=4A=2

x2+x+1(x+1)2+x+2=2x+1+1(x+1)2+3x+2

x2+x+1(x+1)2+x+2=21x+1dx+11(x+1)2dx+3dxx+2

=2log|x+1|+1(x+1)2dx+3log|x+2|+C

=2log|x+1|+1[(x+1)2+12+1]+3log|x+2|+C

=2log|x+1|1x+1+3log|x+2|+C

Indefinite Integrals Exercise Revision Exercise Question 129

Answer: 12cot2xe2x+C
Hint:Using ex(f(x)f(x))dx
Given: sin4x21cos4xe2xdx
Explanation:
Let
I=sin4x21cos4xe2xdx=12(sin2t21cos2t)etdt=12et(sintcost1sin2t)dt [ put 2x=t2dx=dtdx=12dt]
=12et(costsint1sin2t)dt=12et(cottcosec2t)dt=12etcotdt12etcosec2tdt=12[cotet(cosec2t)etdt12etcosec2tdt]=12cottet+12cosec2tetdt12etcosec2tdt=12cottet+C=12cot2xe2x+C

Indefinite Integrals Exercise Revision Exercise Question 130

Answer:
13log|cotx+1|16log|cot2xcotx+1|13tan1(2cotx13)+C
Given: cotx+cot3x1+cot3xdx
Hint: using partial fraction and 1xdx,11+x2dx
Explanation:
I=cotx+cot3x1+cot3xdx=cotx(1+cot2x)1+cot3xdx=cotxcosec2x1+cot3xdx=t1+t3dt [putcotx=tcosec2x=dtcosec2xdx=dt]
=t(1+t)(t2t+1)
 now: t(1+t)(t2t+1)=A1+t+Bt2t+1 multiplying by (1+t)(t2t+1)t=A(t2t+1)+(Bt+C)(t+1)
 putting\: t =11=A(1+1+1)+(B(1)+C)(0)=3AA=13
 putting t=00=A(00+1)+(B(0)+C)(0+1)0=A(1)+C(1)0=A+C0=13+CC=13
 putting t=+11=A(11+1)+(B+C)(2)1=A(1)+2B+2C1=13+2B+23
1+1323=2B2B=3+1232B=23B=13
t(1+t)(t2t+1)=13t+1+13(t+1)t2t+1
t(1+t)(t2t+1)=131t+1dt13t+1t2t+1dt
=131t+1dt13×22t+23+3t2t+1dt
=131t+1dt162t1t2t+1dt121t2t+(12)2(12)2+1
=131t+1dt162t1t2t+1dt121(t12)2(32)2
=13log|t+1|16log|t2t+1|1213tan1(2t13)+C
=13log|t+1|16log|t2t+1|13tan1(2t13)+C
=13log|cotx+1|16log|cot2xcotx+1|13tan1(2cotx13)+C

Revising the proper set of questions is essential. And class 12, mathematics chapter 18 consists of around 32 exercises. This brings to the point that students might forget what they have learned in the first exercise when they reach the 32nd one. Therefore, it becomes essential to revise the previous portion before jumping to the next chapter.

The RE portion consists of 130 questions with subparts to be answered. These questions come under the concept of evaluating the integrals, Solutions on indefinite integral, Integration by parts, Questions on Fundamental integration formulas, Integration of trigonometric functions.

The students will be required to work out all the sums to have a general idea of the entire chapter. RD Sharma Solution In such instances, recheck or searching for the correct answers become hectic. Hence, the RD Sharma Class 12 Chapter 18 RE solution book can help them out.

This solution book follows the NCERT pattern and can be used by the CBSE board students without hesitation. Instead of picking sums from every exercise separately, this combination of questions will benefit the students by making their work effortless. Hence, you can have a better practice method and an authorized material to refer to the accurate solutions when you have the RD Sharma Class 12th RE book.

Practicing the sums listed in the Revision exercise gives a general idea of all the concepts, formulas, and methods that you have learned in this chapter. You can use the Class 12 RD Sharma Chapter 18 RE Solution material to look out for clarifications or answers. Solving the sums in all the 32 exercises at once will give you a higher level of confidence to face any integration questions. Hence, the RD Sharma Class 12th RE book plays a significant role in making you exam-ready by all means.

The best part of the RD Sharma Class 12 Solutions Indefinite Integrals RE book is that you are not required to pay any money or other monetary charges. All the RD Sharma books are available for free of cost on the Career 360 website. In addition, many students of previous batches have benefitted by using the RD Sharma Class 12 Solutions Chapter 18 RE material for reference. Download your own set of RD Sharma solution books from the Career 360 website.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Which is the best guide for the class 12 students to clarify the doubts regarding the Revision Exercise of chapter 18, mathematics?

The RD Sharma Class 12th RE solution material is the best guide for the students to clarify their doubts in the Indefinite Integrals chapter.

2. What are the benefits availed by the students who use RD Sharma books for preparing exams?
  • They prepare with experts provided solutions.

  • Numerous practice questions are given.

  • The material is available for free

3. How many questions are there in the RE of chapter 18, mathematics?

The Revision Exercise (RE) portion consists of 130 questions. You can use the RD Sharma Class 12th RE book for reference.

4. Where can I find the RD Sharma solution books?

The RD Sharma books can be found on the Career 360 website. You can also download any set-off solution materials.

5. Can everyone access the RD Sharma book?

Yes, this solution book is used by students to do their homework, prepare for the exam. The teachers also use it to pick questions for the tests and exams.

Articles

Upcoming School Exams

Admit Card Date:30 December,2024 - 26 March,2025

Admit Card Date:28 January,2025 - 25 March,2025

View All School Exams
Get answers from students and experts
Back to top