The RD Sharma books are the most prescribed solution materials by the CBSE board schools to their students. It helps them in solving sums that are complicated, and they can recheck their answers effortlessly. Moreover, in class 12, chapter 18 in mathematics has Revision Exercise (RE) for the students to practice better in this chapter. The questions given in this are challenging to solve; hence, they can use the RD Sharma Class 12th RE book as a reference.
This Story also Contains
RD Sharma Class 12 Solutions Chapter 18 RE Indefinite Integrals - Other Exercise Indefinite Integrals Excercise:RE RD Sharma Chapter wise Solutions RD Sharma Class 12 Solutions Chapter 18 RE Indefinite Integrals - Other Exercise Indefinite Integrals Excercise:RE Indefinite Integrals Exercise Revision Exercise Question 4
Answer: 1 3 ( 4 x + 7 ) 2 3 − 1 2 4 x + 7 + c Given: ∫ ( ( 8 x + 13 ) 4 x + 7 d x Hint:
Separate the terms and integrate
Solution: ∫ ( 8 x + 13 ) 4 x + 7 d x = ∫ 8 x + 14 − 1 4 x + 7 d x = ∫ 2 ( 4 x + 7 ) − 1 4 x + 7 d x = ∫ 2 ( 4 x + 7 ) 4 x + 7 − 1 4 x + 7 d x = 2 ∫ 4 x + 7 d x − ∫ ( 4 x + 7 ) 1 2 d x = 2 ( ( 4 x + 7 ) 3 2 ) 4 × 3 2 − 2 ( 4 x + 7 ) 1 2 4 + c = ( ( 4 x + 7 ) 3 2 ) 3 − ( 4 x + 7 ) 1 2 2 + c Indefinite Integrals Exercise Revision Exercise Question 5
Answer: − 1 x + log | x + 1 | + c Given: ∫ 1 + x + x 2 x 2 ( 1 + x ) d x Hint:
Use partial function method.
Solution: I = ∫ 1 + x + x 2 x 2 ( 1 + x ) d x using partial function
1 + x + x 2 x 2 ( 1 + x ) = A x + B x 2 + c 1 + x 1 + x + x 2 = A ( x + x 2 ) + B ( 1 + x ) + C x 2 1 + x + x 2 = A x 2 + A x + B + B x + C x 2 1 + x + x 2 = B + ( A + B ) x + ( A + C ) x 2 B = 1 , A + 1 = 1 ∴ A = 0 , A + C = 1 ∴ C = 1 now,
1 + x + x 2 x 2 ( 1 + x ) = ∫ 1 x 2 + 1 1 + x d x
= − 1 x + log | x + 1 | + c
Indefinite Integrals Exercise Revision Exercise Question 7
Answer: x − tan x + sec x + c Given : ∫ sin x 1 + sin x d x Hint:
Do rationalization and then use trigonometry identities.
Solution: ∫ sin x 1 + sin x d x On rationalising,
∫ Sin x 1 + sin x × 1 − sin x 1 − sin x d x ∫ Sin x − sin 2 1 − sin 2 x d x = ∫ sin x cos 2 x − tan 2 x d x = ∫ sin x cos x × 1 cos x − ( sec 2 x − 1 ) d x = ∫ ( sec x tan x − sec 2 x + 1 ) d x = sec x − tan x + x + c Indefinite Integrals Exercise Revision Exercise Question 9
Answer: sin 2 x + tan x − 2 x + c Given: ∫ sec 2 x cos 2 2 x d x Hint:
Use trigonometry identity.
Solution: ∫ sec 2 x cos 2 ( 2 x ) d x = ∫ sec 2 x ( 2 cos 2 x − 1 ) 2 d x [ ∵ cos 2 x = 2 cos 2 x − 1 ] = ∫ sec 2 x ( 4 cos 4 x − 4 cos 2 x + 1 ) d x = ∫ 4 cos 2 x − 4 + sec 2 x d x [ ∵ 1 sec 2 x = cos 2 x ] = 4 ∫ cos 2 x − 1 d x + ∫ sec 2 x d x = 2 ∫ 2 cos 2 x d x − 4 ∫ d x + ∫ sec 2 x d x = 2 ∫ ( 1 + cos 2 x ) dx − 4 ∫ dx + ∫ sec 2 x dx = 2 x + 2 sin 2 x 2 − 4 x + tan x + c = sin 2 x − 2 x + tan x + c Indefinite Integrals Exercise Revision Exercise Question 10
Answer: − cot x − sin 2 x − 2 x + c Given: ∫ cosec 2 x cos 2 2 x d x Hint:
Use trigonometric identities and integrate it by parts.
Solution: ∫ cosec 2 x ⋅ cos 2 2 x d x = ∫ cosec 2 x ( 1 − 2 sin 2 x ) 2 d x [ ∵ cos 2 x = 1 − 2 sin 2 x ] = ∫ cosec 2 x ( 1 + 4 sin 4 x − 4 sin 2 x ) d x [ ∵ ( a − b ) 2 = a 2 + b 2 − 2 a b ] = ∫ ( cosec 2 x + 4 sin 2 x − 4 ) d x [ ∵ sin x = 1 cosec x ] = ∫ cosec 2 x d x + 2 ∫ 1 − cos 2 x d x − 4 ∫ d x = − cot x + 2 x − sin 2 x − 4 x + c = − cot x − sin 2 x − 2 x + c Indefinite Integrals Exercise Revision Exercise Question 11
Answer: 3 x 8 + sin 8 x 64 − sin 4 x 8 + c Given: ∫ sin 4 2 x d x Hint:
You must know about trigonometric identities.
Solution: ∫ [ sin 2 ( 2 x ) ] 2 d x = ∫ ( 1 − cos 4 x ) 2 4 d x ∵ [ cos 2 x = 1 − 2 sin 2 x ] = ∫ 1 − 2 cos 4 x + cos 2 4 x 4 d x = ∫ 1 − 2 cos 4 x 4 d x + ∫ 1 + cos 8 x 8 d x : [ 1 + cos 2 x = 2 cos 2 x ] = 1 4 ∫ d x − 1 2 ∫ cos 4 x d x + 1 8 ∫ d x + 1 8 ∫ cos 8 x d x = 3 8 x − sin 4 x 8 + sin 8 x 64 + c Indefinite Integrals Exercise Revision Exercise Question 12
Answer: sin 3 x 3 − sin 8 3 x 9 + c Given: ∫ cos 3 3 x d x Hint:
Let the term and derivate it and then integrate it.
Solution: ∫ cos 3 3 x d x = ∫ cos 2 3 x cos 3 x d x = ∫ ( 1 − sin 2 3 x ) cos 3 x d x [ ∵ cos 2 x + sin 2 x = 1 ] now,let
u = sin 3 x D i f f e r e n t i a t e w . r . t x du dx = 3 cos 3 x d u = 3 cos 3 x d x Now,
1 3 ∫ 3 ( 1 − sin 2 3 x ) cos 3 x d x = 1 3 ∫ 1 − u 2 d u ( p u t u & d u ) = 1 3 ∫ d u − 1 3 ∫ u 2 d u = 1 3 u − 1 3 × ∫ u 2 d u = 1 3 sin 3 x − sin 8 3 x 9 + c Indefinite Integrals Exercise Revision Exercise Question 13
Answer: 1 b 2 log ( a 2 + b 2 sin 2 x ) + c Given: ∫ sin 2 x a 2 + b 2 sin 2 x d x Hint:
Let the denominator and then integrate the equation.
Solution: ∫ sin 2 x a 2 + b 2 sin 2 x d x l e t u = a 2 + b 2 sin 2 x d i f f e r e n t i a t e i t w i t h r e s p e c t t o x d u d x = 2 b 2 sin x cos x d u d x = b 2 sin 2 x 1 b 2 d u = sin 2 x d x n o w I = 1 b 2 ∫ 1 u d u ( put u & d u ) = 1 b 2 log | u | + c = 1 b 2 log | a 2 + b 2 sin 2 x | + c Indefinite Integrals Exercise Revision Exercise Question 16
Answer: x − log | e x + 1 | + c Given: ∫ 1 e x + 1 d x Hint:
Do integration by separation.
Solution: ∫ 1 e x + 1 d x = ∫ ( e x + 1 ) ( − e x ) e x + 1 d x = ∫ d x − ∫ e x e x + 1 d x n o w , l e t e x + 1 = u Differentiate it with respect to x
d u d x = e x d u = e x d x now, I = ∫ d x − ∫ 1 u d u = x − log | u | + c = x − log | e x + 1 | + c ( ∵ u = e x + 1 ) Indefinite Integrals Exercise Revision Exercise Question 17
Answer: 2 log | e x + 1 | − x + c Given: ∫ e x − 1 e x + 1 d x Hint: Use partial fraction method.
Solution: ∫ e x − 1 e x + 1 d x let e x = u e x d x = d u ( d i f f e r e n t i a t e w i t h r e s p e c t t o x ) d x = d u u n o w , I = ∫ u − 1 u + 1 × d u u ( p u t u & d u ) use partial fraction
u − 1 = A ( 1 + u ) + B u u − 1 = A + A u + B u A = − 1 & B + A = 1 ∴ B = 2 ( o n c o m p a r i n g ) So,
∫ e x − 1 e x + 1 d x = − ∫ 1 u + 2 u + 1 d u = − log | u | + 2 log | u + 1 | + c = − log | e x | + 2 log | e x + 1 | + c = − 2 log | e x + 1 | − x + c … ( loge = 1 ) Indefinite Integrals Exercise Revision Exercise Question 19
Answer: log | sin x | − sin x 6 − 3 sin 2 x 2 + 3 sin 4 x 4 + c Given: ∫ cos 7 x sin x d x Hint:
Use trigonometric identities and substitution method of integration.
Solution:
∫ cos 7 x sin x d x Let
t = sin x d t = cos x d x ( o n d i f f e r e n t i a t i n g ) n o w , I = ∫ cos 7 x sin x d x = ∫ ( 1 − sin 2 t ) ( 1 − sin 2 t ) ( 1 − sin 2 t ) t d t = ∫ ( 1 − t 2 ) 2 ( 1 − t 2 ) t d t = ∫ ( 1 + t 4 − 2 t 2 ) ( 1 − t 2 ) t d t = ∫ 1 − 3 t 2 + 3 t 4 − t 6 t d t = ∫ 1 t − 3 t + 3 t 3 − t 5 d t = logt − 3 t 2 2 + 3 t 4 4 − t 6 6 + c = log | sin x | − sin x 6 − 3 sin 2 x 2 + 3 sin 4 x 4 + c Indefinite Integrals Exercise Revision Exercise Question 20
Answer: − cos 4 x 16 − cos 2 x 8 + cos 6 x 24 + c Given: ∫ sin x sin 2 x sin 3 x d x Hint:
Use the formula
2 sin A sin B = − cos ( A + B ) + cos ( A − B ) ⌋ Solution: ∫ sin x sin 2 x sin 3 x d x = ∫ 1 2 [ cos ( x − 2 x ) − cos ( x + 2 x ) ] sin 3 x d x = ∫ 1 2 ( cos ( − x ) − cos 3 x ) sin 3 x dx = 1 2 ∫ cos x sin 3 x − cos 3 x sin 3 x d x = 1 2 ∫ 1 2 ( sin 4 x + sin 2 x ) d x − 1 2 ∫ 1 2 ( sin 6 x ) d x = 1 4 [ ∫ ( sin 4 x + sin 2 x − sin 6 x ) dx ] = 1 4 [ − cos 4 x 4 − cos 2 x 2 + cos 6 x 6 ] + c − cos 4 x 16 − cos 2 x 8 + cos 6 x 24 + c Indefinite Integrals Exercise Revision Exercise Question 21
Answer: I = 1 4 ( x + sin 6 x 6 + sin 4 x 4 + sin 2 x 2 ) + c Given: ∫ cos x cos 2 x cos 3 x d x Hint:
To solve this equation we will use trigonometry method.
Solution: ∫ ( cos x cos 2 x ) cos 3 x d x I = ∫ cos ( x + 2 x ) + cos ( x − 2 x ) 2 cos 3 x d x [ ∵ cos C ⋅ cos D = 1 2 cos ( C + D ) + cos ( C − D ) ) I = 1 2 ∫ ( cos 3 x + cos x ) cos 3 x d x I = 1 2 ( ∫ cos 2 3 x d x + ∫ cos x cos 3 x ) d x I = 1 2 ∫ 1 + cos 6 x 2 d x + 1 2 ∫ cos ( x + 3 x ) + cos ( x − 2 x ) d x I = 1 2 ∫ 1 + cos 6 x 2 d x + 1 2 ∫ ( cos 4 x + cos ( 2 x ) ) d x I = 1 2 ∫ 1 2 d x + ∫ cos 6 x 2 d x + 1 2 ∫ cos 4 x d x + 1 2 ∫ cos 2 x d x I = 1 2 ( 1 2 x + 1 2 sin 6 x 6 + 1 2 sin 4 x 4 + 1 2 sin 2 x 2 ) + c I = 1 2 ( x 2 + sin 6 x 12 + sin 4 x 8 + sin 2 x 4 ) + c Indefinite Integrals Exercise Revision Exercise Question 22
Answer: 2 [ tan − 1 ( ( 2 tan x − 1 ) 2 ) + tan − 1 ( 2 tan x + 1 2 ) ] Given: ∫ sin x + cos x sin 2 x d x Hint:
To solve this equation we use partial function method.
Solution: ∫ sin x + cos x 2 sin x cos x d x ∵ [ sin x = tan x sec x , cos x = 1 sec x ] ∫ tan x sec x + 1 sec x stan x sec x × 1 sec x d x ∫ tan x + 1 2 ( tan x ) d x 1 2 ∫ tan x + 1 tan x tan 2 x + 1 tan 2 x + 1 d x 1 2 ∫ sec 2 x ( tan x + 1 ) tan x ( tan 2 x + 1 ) d x [ ∵ tan x = u , sec 2 x d x = d u ] = 1 2 ∫ u + 1 u ( u 2 + 1 ) d u = 1 2 ∫ v 2 + 1 u ( v 4 + 1 ) 2 u d v ⋯ . . [ put u = v 2 , d u = 2 v d v ] = 2 ∫ v 2 + 1 v 4 + 1 d v = 2 ∫ v 2 + 1 ( v 2 − 2 v + 1 ) ( v 2 + 2 v + 1 ) d v = v 2 + 1 ( v 2 − 2 v + 1 ) ( v 2 + 2 v + 1 ) = A v 2 − 2 v + 1 + B v 2 + 2 v + 1 = 2 ( 1 2 ) ( ∫ 1 v 2 − 2 v + 1 d v + ∫ 1 v 2 + 2 v + 1 d v ) = 2 2 × 2 ∫ 1 v − ( 1 2 ) 2 + 1 2 d v + ∫ 1 v + ( 1 2 ) 2 + ( 1 2 ) d v [ 1 x 2 + a 2 = 1 a tan − 1 ( x a ) ] = 1 2 2 tan − 1 ( v − ( 1 2 ) ) 1 2 + 2 tan − 1 ( v + ( 1 2 ) ) 1 2 = 2 [ tan − 1 ( 2 v − 1 2 ) + tan − 1 ( 2 v + 1 2 ) ] = 2 [ tan − 1 ( 2 v − 1 2 ) + tan − 1 ( 2 v + 1 2 ) ] [ ∵ v = u , u = tan x ] = 2 [ tan − 1 ( ( 2 tan x − 1 ) 2 ) + tan − 1 ( 2 tan x + 1 2 ) ] Indefinite Integrals Exercise Revision Exercise Question 23
Answer: − log | sin x + cos x + sin 2 x | + c Given: ∫ sin x − cos x sin 2 x d x Hint:
To solve this equation we use sin x formula and substitute method.
Solution: ∫ sin x − cos x sin 2 x d x [ ( cos x + sin x ) 2 = cos 2 x + sin 2 x + 2 cos x sin x ] = 1 + sin 2 x [ sin 2 x = ( cos x + sin x ) 2 − 1 , t = cos x + sin x , d t = ( − sin x + cos x ) d x = ∫ sin x − cos x ( ( cos x + sin x ) 2 − 1 ) ) d x Let
t = cos x + sin x , d t = ( − sin x + cos x ) d x = − d t t 2 − 1 [ ∵ 1 t 2 − a 2 d t = log | t + t 2 − a 2 | + c = − log | t + t 2 − 1 | + c = − log | sin x + cos x + ( sin x + cos x ) 2 − 1 | + c = − log | sin x + cos x + sin 2 x | + c Indefinite Integrals Exercise Revision Exercise Question 24
Answer: 1 sin ( a − b ) log | sin ( x − a ) sin ( x − b ) | + c Given: ∫ 1 ( sin x − a ) sin ( x − b ) d x Hint:
To solve the statement we have to use formula such as sin(A-B).
Solution: 1 sin ( a − b ) ∫ sin ( a − b ) sin ( x − a ) ( sin ( x − b ) ) d x = 1 sin ( a − b ) ∫ sin [ ( x − b ) − ( x − a ) ] sin ( x − a ) ( sin ( x − b ) ) d x = 1 sin ( a − b ) ∫ sin ( x − b ) cos ( x − a ) − cos ( x − b ) sin ( x − a ) sin ( x − a ) ( sin ( x − b ) ) d x = 1 sin ( a − b ) ∫ cos ( x − a ) d x sin ( x − a ) − cos ( x − b ) sin ( x − b ) d x = 1 sin ( a − b ) log | sin ( x − a ) | − log | sin ( x − b ) | + c = 1 sin ( a − b ) log | sin ( x − a ) sin ( x − b ) | + c Indefinite Integrals Exercise Revision Exercise Question 25
Answer: 1 sin ( a − b ) log | sec ( x − b ) | − log | sec ( x − a ) | + c Given: ∫ 1 cos ( x − a ) cos ( x − b ) d x Hint:
To solve this statement we have to convert cos into tan.
Solution: 1 cos ( x − a ) cos ( x − b ) = 1 sin ( a − b ) sin ( x − b ) − ( x − a ) cos ( x − a ) cos ( x − b ) = 1 sin ( a − b ) sin ( x − b ) ⋅ cos ( x − a ) − sin ( x − a ) cos ( x − b ) cos ( x − a ) cos ( x − b ) = 1 sin ( a − b ) sin ( x − b ) cos ( x − b ) − sin ( x − a ) cos ( x − a ) = 1 sin ( a − b ) ⋅ tan ( x − b ) − tan ( x − a ) I = ∫ 1 cos ( x − a ) cos ( x − b ) d x = 1 sin ( a − b ) ∫ [ tan ( x − b ) − tan ( x − a ) ] d x = 1 sin ( a − b ) log | sec ( x − b ) | − log | sec ( x − a ) | + c Indefinite Integrals Exercise Revision Exercise Question 26
Answer: − 2 1 − sin x + 2 ln | sec ( π 4 − x 2 ) + tan ( π 4 − x 2 ) | + c Given: ∫ sin x 1 + sin x d x Hint:
To solve the statement we have to use formula like sin x and 1+cos x
Solution: I = ∫ sin x + 1 − 1 sin x + 1 d x = ∫ sin x + 1 d x − ∫ d x sin x + 1 I 1 = ∫ sin x + 1 d x = ∫ 1 + sin x ⋅ 1 − sin x 1 − sin x d x = ( 1 + sin x ) ( 1 − sin x ) 1 − sin x d x = cos 2 x 1 − sin x d x = cos x 1 − sin x d x = 1 − sin x = u 1 2 1 − sin x cos x d x = d u cos x 1 − sin x = − 2 d u I 1 = ∫ − 2 d u = − 2 u = − 2 1 − sin x I 2 = ∫ d x 1 + sin x = ∫ d x 1 + cos ( π 2 − x ) [ ∵ sin x = cos ( π 2 − x ) ] , [ 1 + cos x = 2 cos 2 x x 2 ] = ∫ d x 2 cos 2 ( π 4 − x 2 ) = ∫ d x 2 ( cos ( π 4 − x 2 ) [ ∵ ∫ sec x d x = ln | sec x + tan x | + c ] = ∫ 1 2 sec ( π 4 − x 2 ) d x = 1 2 ⋅ 1 − 1 2 ln | sec ( π 4 − x 2 ) + tan ( π 4 − x 2 ) | + c = − 2 ln | sec ( π 4 − x 2 ) + tan ( π 4 − x 2 ) | + c I 1 − I 2 = l = − 2 1 − sin x + 2 ln | sec ( π 4 − x 2 ) + tan ( π 4 − x 2 ) | + c Indefinite Integrals Exercise Revision Exercise Question 27
Answer: 1 2 2 log | 2 cos x + 1 2 cos x − 1 | + c Given: ∫ sin x cos 2 x d x Hint:
To solve the equation we will use substitution method.
Solution: I = ∫ sin x cos 2 x d x = ∫ sin x 2 cos 2 x − 1 d x I = − ∫ d t 2 t 2 − 1 … [ put cos x = t , − sin x dx = d t ] I = 1 2 ∫ d t 1 2 − t 2 I = − 1 2 ∫ d t t 2 − ( 1 2 ) 2 I = − 1 2 2 2 log | t − 1 2 t + 1 2 | + c I = 1 2 2 log | 2 cos x + 1 2 cos x − 1 | + C Indefinite Integrals Exercise Revision Exercise Question 28
Answer: 1 2 tan 2 x − log | sec x | + c Given: ∫ tan 3 x d x Hint:
To solve this statement we have to change tan into sec form.
Solution: ∫ tan 2 x ⋅ tan x d x ∫ ( sec 2 x − 1 ) tan x d x ( tan 2 x = sec 2 x − 1 ) ∫ sec 2 x tan x d x − ∫ tan x d x I 1 = ∫ sec 2 x tan x d x [ ∵ tan x = t , sec 2 x d x = d t , ∫ x n d x = x n + 1 n + 1 ] I 1 = ∫ t d t = t 2 2 = 1 2 tan 2 x I = I 1 + I 2 = 1 2 tan 2 x − log | sec x | + c Indefinite Integrals Exercise Revision Exercise Question 29
Answer: tan 8 x 3 − tan x + x + c Given: ∫ tan 4 x d x Hint:
To solve this statement we have to change tan into sec and then their formula.
Solution: ∫ tan 4 x d x I = ∫ tan 2 x ⋅ tan 2 x ⋅ d x [ ∵ tan 2 x = sec 2 x − 1 ] I = ∫ tan 2 x ( sec 2 x − 1 ) d x = ∫ tan 2 x sec 2 x d x − ∫ tan 2 x d x = ∫ tan 2 x sec 2 x d x − ∫ ( sec 2 x − 1 ) d x = ∫ tan 2 x sec 2 x d x − ∫ sec 2 x d x + ∫ d x tan x = t , sec 2 d x = d t ∫ t 2 d t − ∫ sec 2 x d x + ∫ d x = t 8 3 − tan x + x + c tan 8 x 3 − tan x + x + c Indefinite Integrals Exercise Revision Exercise Question 30
Answer: tan 4 x 4 − ( tan x ) 2 2 + log | sec x | + c Given: ∫ tan 5 x d x Hint:
To solve this statement we have to change tan into sec and then use formula such tan²x.
Solution: I = ∫ tan 5 x d x I = ∫ tan 3 x tan 2 x d x = ∫ tan 3 x ( sec 2 x − 1 ) d x [ ∵ tan 2 x = sec 2 x − 1 ] = ∫ tan 3 x sec 2 x d x − ∫ tan 3 x d x = ∫ tan 3 x sec 2 x d x − ∫ tan x tan 2 x d x I 1 I 2 let tan x = t , sec 2 x d x = d t = ∫ t 3 d t − ∫ tan x tan 2 x d x = t 4 4 − ∫ tan x ( sec 2 x − 1 ) d x = t 4 4 − ∫ tan x sec 2 x d x + ∫ tan x d x = tan 4 x 4 − ( tan x ) 2 2 + log | sec x | + c = tan 4 x 4 − ( tan x ) 2 2 + log | sec x | + c Indefinite Integrals Exercise Revision Exercise Question 31
Answer: − 1 3 cot 3 x + cot x + x + c Given: ∫ cot 4 x d x Hint:
To solve the given statement split the given term
( cot 4 x ) into
( cot 2 x cot 2 x ) Solution: ∫ cot 2 x ( cosec 2 x − 1 ) d x I = ∫ cot 2 x cosec 2 x d x − ∫ cot 2 d x I = ∫ cot 2 x cosec 2 x d x − ∫ ( cosec 2 x − 1 ) d x [ ∵ cot x = p , cosec 2 x d x = − d p I = − ∫ p 2 d p + ∫ d p + ∫ d x I = − p 8 3 + p + x + c I = − 1 3 cot 3 x + cot x + x + c Indefinite Integrals Exercise Revision Exercise Question 32
Answer: − 1 4 cot 4 x + 1 2 cot 2 x + log | sin x | + c Given: ∫ cot 5 x d x Hint:
To solve the given statement we will split into
cot 3 x cot 2 x Solution: ∫ cot 3 x cot 2 x d x I = ∫ cot 3 x ( cosec 2 x − 1 ) d x = ∫ cot 3 x cosec 2 x d x − ∫ cot x ( cosec 2 x − 1 ) d x = ∫ cot 3 x cosec 2 x d x − ∫ cot x cosec 2 x d x + ∫ cot x d x = − ∫ p 3 d p + ∫ p d p + ∫ cot x d x [ ∵ cot x = p , cosec x d x = d p ] = − p 4 4 + p 2 2 + log ∣ ( sin x ) + c = − 1 4 cot 4 x + 1 2 cot 2 x + log | sin x | + c Indefinite Integrals Exercise Revision Exercise Question 33
Answer: log | x − 1 | − 2 ( x − 1 ) − 1 2 ( x − 1 ) 2 + c Given: ∫ x 2 ( x − 1 ) 3 d x Hint:
To solve the statement we will use partial fractions
Solution: L e t x 2 ( x − 1 ) 3 d x = A ( x − 1 ) + B ( x − 1 ) 2 + C ( x − 1 ) 3 x 2 = A ( x − 1 ) 2 + B ( x − 1 ) + c x 2 = x 2 A + x ( 2 A + B ) + A + B + C On equating the coeffiecients of
x 2 : A = 1 On equating the coeffiecients of
x : B = − 2 On equating the constants :
C = 1 Thus,
∫ x 2 ( x − 1 ) 3 d x = ∫ 1 ( x − 1 ) d x + ∫ − 2 ( x − 1 ) 2 d x + ∫ 1 ( x − 1 ) 3 d x = log | x − 1 | + 2 ( x − 1 ) − 2 + 1 − 2 + 1 − 1 2 ( x − 1 ) 2 + c = log | x − 1 | − 2 ( x − 1 ) − 1 2 ( x − 1 ) 2 + c Indefinite Integrals Exercise Revision Exercise Question 34
Answer: I = ( 2 x + 3 ) 2 8 − 3 ( 2 x + 3 ) 1 4 + c Given: ∫ x 2 x + 3 d x Hint To solve the statement we have to put root statement to t : 2 x + 3 = t Solution: 2 x + 3 = t p u t 2 x + 3 = t 2 => x = t 2 − 3 2 2 d x = 2 t d t d x = t d t I = ∫ t 2 − 3 2 t d t I = 1 2 ∫ ( t 2 − 3 ) t d t I = 1 2 ∫ ( t 3 − 3 t ) d t I = 1 2 ( t 4 4 − 3 t 2 2 ) I = t 4 8 − 3 t 2 4 + c I = ( 2 x + 3 ) 2 8 − 3 ( 2 x + 3 ) 4 4 + c Indefinite Integrals Exercise Revision Exercise Question 35
Answer: 1 2 | log ( 1 + x 2 ) | + 1 2 ( 1 + x 2 ) + c Given: ∫ x 3 ( 1 + x 2 ) 2 d x Hint:
To solve the statement we will suppose x in term of t.
Solution: ∫ x 2 x ( 1 + x 2 ) 2 d x L e t 1 + x 2 = t 2 x = d t d x x d x = d t 2 I = 1 2 ∫ t − 1 t 2 d t I = 1 2 ∫ t t 2 d t − ∫ 1 t 2 d t I = 1 2 ∫ 1 t d t − ∫ t − 2 d t I = 1 2 log t − 1 2 ( t − 2 + 1 ) − 2 + 1 + c I = 1 2 | log ( 1 + x 2 ) | + 1 2 ( 1 + x 2 ) + c Indefinite Integrals Exercise Revision Exercise Question 36
Answer: sin 6 x 2 12 + c Given: ∫ x sin 5 x 2 cos x 2 d x Hint:
To solve this statement we have to suppose or assume sin x and cos x as v and dv.
Solution: I = ∫ x sin 5 x 2 cos x 2 d x I = 1 2 ∫ sin 5 t c o s t d t [ ∵ x 2 = t , 2 x d x = d t , x d x = d t 2 ] I = 1 2 ∫ v 5 d v [ ∵ sin t = v , cos t d t = d v ] I = 1 2 v 6 6 + c I = 1 2 ( sin 6 t ) 6 + c I = sin 6 x 2 12 + c Indefinite Integrals Exercise Revision Exercise Question 37
Answer: cos 5 x 5 − cos 7 x 7 + C Given: ∫ sin 3 x cos 4 x d x Hint:
To solve the statement we will convert cos into sin and use some formula of 2sin(A+B) and 2sin(A-B)
Solution: ∫ sin 3 x cos 4 x d x put
∫ sin x ⋅ sin 2 x ⋅ cos 4 x d x p u t cos x = t , sin x d x = d t ∫ sin x ( 1 − cos 2 x ) ⋅ cos 4 x d x [ sin 2 x = 1 − cos 2 x ] ∫ ( 1 − t 2 ) t 4 d t ∫ t 4 − t 6 d t ∫ t 4 d t − ∫ t 6 d t ∫ t 5 5 − t 7 7 t = cos x cos 5 x 5 − cos 7 x 7 + C Indefinite Integrals Exercise Revision Exercise Question 38
Answer: 2 3 cos 3 x − 1 5 cos 5 x − cos x + c Given: ∫ sin 5 x d x Hint:
To solve the statement we have to convert sin x into cos x.
Solution: ∫ sin x ( sin x ) 4 d x ∫ sin x ( sin 2 x ) 2 d x [ ∵ sin 2 θ + cos 2 θ = 1 , sin 2 θ = 1 − cos 2 θ ] ∫ sin x ( 1 − cos 2 x ) 2 d x Let cosx= t
− sin x d x = d t sin x d x = − d t I = − ∫ ( 1 − t 2 ) 2 d t I = − ∫ ( 1 + t 4 − 2 t 2 ) d t I = ∫ ( 2 t 2 − t 4 − 1 ) d t [ ∵ ∫ x n d x = x n + 1 n + 1 ] I = 2 t 3 3 − t 5 5 − t + c I = 2 3 cos 3 x − 1 5 cos 5 x − cos x + c Indefinite Integrals Exercise Revision Exercise Question 39
Answer: sin x + sin 5 x 5 − 2 sin 8 x 3 + c Given: ∫ cos 5 x d x Hint:
To solve the statement we have to convert cos term in sin
Solution: ∫ cos 4 x cos x d x I = ( cos 2 x ) 2 cos x d x [ ∵ cos 2 x = 1 − sin 2 x ] I = ∫ ( 1 − sin 2 x ) 2 cos x d x sin x = t , cos x d x = d t I = ∫ ( 1 − t 2 ) 2 d t I = ∫ ( 1 + t 4 − 2 t 2 ) d t I = t + t 5 5 − 2 t 3 3 + c I = sin x + sin 5 x 5 − 2 sin 3 x 3 + c Indefinite Integral Exercise Rivision Exercise Question 66
Answer :
I = + 1 2 ln | 1 + cos x | − 1 10 ln | 1 − cos x | − 3 5 ln | 3 cos x + 2 | + c Hint: To solve the given solution we multiply and divide the given statement with sin x.
Given :
∫ 1 sin x ( 2 + 3 cos x ) d x Solution :
I = ∫ 1 sin x ( 2 + 3 cos x ) d x I = ∫ sin x sin 2 x ( 2 + 3 cos x ) d x I = ∫ sin x d x ( 1 − cos 2 x ) ( 2 + 3 cos x ) t = cos x , d t = − sin x d x I = ∫ − d t ( 1 − t 2 ) ( 2 + 3 t ) I = ∫ − d t ( 1 + t ) ( 1 − t ) ( 2 + 3 t ) 1 ( 1 + t ) ( 1 − t ) ( 2 − 3 t ) = A 1 + t + B 1 − t + c 2 + 3 t = A ( 1 − t ) ( 2 + 3 t ) + B ( 1 + t ) ( 2 + 3 t ) + C ( 1 + t ) ( 1 − t ) A = 1 ( 1 − ( − 1 ) ) ( 2 − 3 ) = − 1 2 [ ∵ 1 + t = 0 , t = − 1 ] B = 1 ( 1 + 1 ) ( 2 + 3 ) = 1 10 [ ∵ 1 − t = 0 , t = 1 ] C = 1 1 − ( 4 9 ) = 9 5 [ ∵ 2 + 3 t = 0 , t = − 2 3 ] I = − ∫ d t ( A 1 + t + B 1 − t + C 2 + 3 t ) I = − [ A ∫ 1 1 + t d t + B ∫ 1 1 − t d t + C ∫ 1 2 + 3 t d t I = − [ − 1 2 ln | 1 + t | + 1 10 ln | 1 − t | + 9 5 × 1 3 ln | 2 + 3 t | + c I = + 1 2 ln | 1 + t | − 1 10 ln | 1 − t | − 3 5 ln | 3 t + 2 | + c I = + 1 2 ln | 1 + cos x | − 1 10 ln | 1 − cos x | − 3 5 ln | 3 cos x + 2 | + c Indefinite Integrals Exercise Revision Exercise Question 40
Answer: 2 ( sin x ) 3 2 3 − 2 7 ( sin x ) 7 2 + c Given: ∫ sin x cos 3 x d x Hint:
To solve this equation we have to suppose sin x in term of t and cos x into 2t.
Solution: I = ∫ sin x cos 3 x d x [ ∵ sin x = t , sin x = t 2 , cos x d x = 2 t d t I = ∫ sin x ( 1 − sin 2 x ) cos x d x I = ∫ t ( 1 − t 4 ) 2 t d t I = ∫ 2 t 2 d t − ∫ 2 t 6 d t I = 2 t 3 3 − 2 t 7 7 + c I = 2 ( sin x ) 3 2 3 − 2 7 ( sin x ) 7 2 + c Indefinite Integrals Exercise Revision Exercise Question 41
Answer: tan − 1 ( tan 2 x ) + c Given: ∫ sin 2 x sin 4 x + cos 4 x d x Hint:
In this statement we have to convert sin in term of tan.
Solution: I = 2 sin x cos x sin 4 x + cos 4 x d x I = 2 sin x cos x cos 4 x ( tan 4 x + 1 ) d x I = 2 ∫ tan x sec 2 x tan 4 x + 1 d x I = 2 ∫ tan x sec 2 x tan 4 x + 1 d x [ ∵ let tan x = t , sec 2 x d x = d t ] I = 2 ∫ t d t t 4 + 1 I = ∫ d y y 2 + 1 [ ∵ t 2 = y , 2 tdt = dy ] = tan − 1 y + c = tan − 1 ( t 2 ) + c = tan − 1 ( tan 2 x ) + c Indefinite Integral Exercise Rivision Exercise Question 67
Answer :
= 1 6 ln ( 1 − cos x ) + 1 2 ln ( 1 + cos x ) − 2 3 ln ( 1 + 2 cos x ) + c Hint : To solve the given statement we will use partial fraction rule.
Given :
∫ 1 sin x + sin 2 x d x Solution :
I = ∫ 1 sin x + 2 sin x cos x d x I = ∫ sin x sin 2 x ( 1 + 2 cos x ) d x I = ∫ sin x ( 1 − cos 2 x ) ( 1 + 2 cos x ) d x 1 ( 1 − t ) ( 1 + t ) ( 1 + 2 t ) = A 1 − t + B 1 + t + c 1 + 2 t = A ( 1 + t ) ( 1 + 2 t ) + B ( 1 − t ) ( 1 + 2 t ) + C ( 1 − t ) ( 1 + t ) 1 = A + 2 A t + A t + 2 A t 2 + B + 2 B t − B t − 2 B t 2 + C − C t 2 0 = 2 A − 2 B − C … … … . . ( 1 ) 0 = 3 A + B … … … … (2) B = − 3 A 1 = A + B + C … … … (3) On solving,
A = 1 6 , B = − 1 2 , C = 4 3 ∫ 1 ( 1 − t ) ( 1 + t ) ( 1 + 2 t ) d t = − ∫ 1 6 ( 1 − t ) + ∫ 1 2 ( 1 + t ) − ∫ 4 3 1 ( 1 + 2 t ) d t = − 1 6 − ln ( 1 − t ) + 1 2 ln ( 1 + t ) − 4 3 × 1 2 ln ( 1 + 2 t ) = 1 6 ln ( 1 − cos x ) + 1 2 ln ( 1 + cos x ) − 2 3 ln ( 1 + 2 cos x ) + c Indefinite Integrals Exercise Revision Exercise Question 42
Answer: ln | x + x 2 − a 2 | + C ′ where C ′ = C − ln a Given: ∫ 1 x 2 − a 2 d x Hint:
In this statement we have to assume x as asecθ.
Solution: I = ∫ 1 x 2 − a 2 d x putting x = a sec θ ⇒ d x = a sec θ tan θ d θ I = ∫ a sec θ tan θ d θ a 2 sec 2 θ − a 2 = ∫ a sec θ tan θ d θ a ⋅ tan θ = ∫ sec θ tan θ d θ = ln | sec θ + tan θ | + C = ln | sec θ + sec 2 θ − 1 | + C = ln | x a + ( x a ) 2 − 1 | + C = ln | x + x 2 − a 2 a | + C = ln | x + x 2 − a 2 | + C = ln | x + x 2 − a 2 | − ln a + C = ln | x + x 2 − a 2 | + C ′ where C ′ = C − ln a Indefinite Integrals Exercise Revision Exercise Question 46
Answer: I = 1 17 log | 8 x + 1 + 17 − 8 x − 1 + 17 | + c Given: ∫ 1 1 − x − 4 x 2 d x Hint:
To solve this statement we have to do whole square method.
Solution: ∫ 1 1 − 4 ( x 4 + x 2 ) d x I = ∫ 1 1 − 4 ( x + 1 8 ) 2 + 1 16 d x I = ∫ 1 17 6 − 4 ( x + 1 8 ) 2 d x I = 1 4 ∫ 1 ( 17 8 ) 2 − ( x + 1 8 ) 2 d x [ ∵ ∫ d x a 2 − x 2 = 1 2 a log | a + x a − x | + c ] I = 1 4 4 17 log | x + 1 8 + 17 8 17 8 − x − 1 8 | + c I = 1 17 log | 8 x + 1 + 17 − 8 x − 1 + 17 | + c Indefinite Integrals Exercise Revision Exercise Question 47
Answer: 1 17 log | x − 2 8 x + 5 | + c Given: ∫ 1 3 x 2 + 13 x − 10 d x Hint:
In this equation we have to make whole square statement from quadratic equation.
Solution: I = 1 3 ∫ 1 x 2 + 18 x 8 − 10 8 d x I = 1 3 ∫ 1 ( x + 18 6 ) 2 − 169 36 − 10 3 d x I = 1 3 ∫ d x ( x + 18 6 ) 2 − 169 + 120 36 I = 1 3 ∫ d x ( x + 18 6 ) 2 − 289 36 I = 1 3 ∫ d x ( x + 13 6 ) 2 − ( 17 6 ) 2 I = 1 3 1 2 × 17 6 log | x + 18 6 − 17 6 x + 13 6 + 17 6 | + c I = 1 17 + log | x − 4 6 x + 30 6 | + c I = 1 17 log | x − 2 8 x + 5 | + c Indefinite Integrals Exercise Revision Exercise Question 48
Answer: I = − ln | ( cos x − 1 ) + cos 2 x − 2 cos x + 3 | + c Given: ∫ sin x cos 2 x − 2 cos x − 3 d x Hint:
To solve this statement we have to use standard formula.
Solution: I = ∫ sin x cos 2 x − 2 cos x − 3 d x [ ∵ cos x = t , d t = − sin x d x => sin x d x = − d t ] I = − ∫ d t t 2 − 2 t − 3 I = − ∫ d t ( t − 1 ) 2 − 1 − 3 I = − ∫ d t ( t − 1 ) 2 − 4 I = − ∫ d t ( t − 1 ) 2 − ( 2 ) 2 [ ∵ ∫ d x x 2 − a 2 = ln | x + x 2 − a 2 | + c I = − ln ∣ ( t − 1 ) + ( t − 1 ) 2 − ( 2 ) 2 ∣ + c I = − ln | ( t − 1 ) + t 2 − 2 t − 3 | + c I = − ln | ( cos x − 1 ) + cos 2 x − 2 cos x + 3 | + c Indefinite Integrals Exercise Revision Exercise Question 49
Answer: I = ln | sin x + 1 2 + sin 2 x + sin x | + c Given: ∫ cosec x − 1 d x Hint:
To solve this statement we have to convert cosec into sin and then we apply standard formula.
Solution: ∫ cosec x − 1 d x I = ∫ 1 sin x − 1 d x I = ∫ 1 − sin x sin x − d x I = ∫ 1 − sin x 1 + sin x sin x 1 + sin x d x I = ∫ 1 − sin 2 x sin x ( 1 + sin x ) d x I = ∫ cos 2 x sin x ( 1 + sin x ) d x I = ∫ cos x sin x ( 1 + sin x ) d x sin x = t ,
dt = cos x dx
∴ I = ∫ d t t ( t + 1 ) = ∫ d t t 2 + t = ∫ d t ( t + 1 2 ) 2 − 1 4 = ∫ d t ( t + 1 2 ) 2 − ( 1 2 ) 2 I = ln | t + 1 2 + t 2 + t | + c [ ∵ ∫ d x x 2 + a 2 = ln | x + x 2 + a 2 | + c ] I = ln | sin x + 1 2 + sin 2 x + sin x | + c
Indefinite Integrals Exercise Revision Exercise Question 52
Answer: I = 5 x 2 − 9 x + 20 + 59 2 log | ( x − 9 2 ) + x 2 − 9 x + 20 | + c Given: ∫ 5 x + 7 ( x − 5 ) ( x − 4 ) d x Hint:
To solve this equation we have to do differentiation method.
Solution: I = ∫ 5 x + 7 ( x − 5 ) ( x − 4 ) d x I = ∫ 5 x + 7 x 2 − 9 x + 20 d x Take 5/2 common from numerator and add and subtract 9,
I = 5 2 ∫ 2 x + 14 5 − 9 + 9 x 2 − 9 x + 20 d x I = 5 2 ∫ ( 2 x − 9 ) + 14 5 + 9 x 2 − 9 x + 20 d x I = 5 2 ∫ ( 2 x − 9 ) x 2 − 9 x + 20 d x + 5 2 ∫ 59 5 x 2 − 9 x + 20 d x put x 2 − 9 x + 20 = t d t d x = 1 2 x 2 − 9 x + 20 × ( 2 x − 9 ) d x = d t × 2 2 x − 9 x 2 − 9 x + 20 I 1 = 5 2 ∫ 2 x − 9 x 2 − 9 x + 20 × d t ( 2 x 2 − 9 x + 20 ) 2 x − 9 I 1 = 5 ∫ d t I 1 = 5 t I 1 = 5 x 2 − 9 x + 20 I 2 = 59 2 ∫ 1 x 2 − 9 x + 20 d x = 59 2 ∫ 1 x 2 − 9 x + 81 4 − 81 4 + 20 d x = 59 2 ∫ 1 x 2 − 9 x + 81 4 + ( 20 − 81 4 ) d x = 59 2 ∫ 1 ( x − 9 2 ) 2 − ( 1 2 ) 2 d x = [ ∵ ∫ d x x 2 − a 2 = log | x + x 2 − a 2 | + c let x − 9 2 = u d x = d u I = 59 2 ∫ d u u 2 − ( 1 2 ) 2 = 59 2 log | u + u 2 − ( 1 2 ) 2 | + c = 59 2 log | u + u 2 − ( 1 2 ) 2 | + c Adding I 1 and I 2 I = 5 x 2 − 9 x + 20 + 59 2 log | ( x − 9 2 ) + x 2 − 9 x + 20 | + c Indefinite Integrals Exercise Revision Exercise Question 53
Answer: I = [ x 2 + x + ln ( x + x + 1 ) ] + c ùTo solve this equation we have to take x = u².
Solution: I = ∫ ( x + 1 ) x dx Let x = u 2 d x = 2 u d u I = ∫ ( u 2 + 1 ) u 2 2 udu I = ∫ 2 u 2 + 1 d u [ ∵ ∫ x 2 + a 2 = x 2 x 2 + a 2 + a 2 2 ln x + x 2 + a 2 + c ] I = 2 [ u 2 u 2 + 1 + 1 2 ln ( u + u 2 + 1 ) ] + c I = 2 [ x 2 x + 1 + 1 2 ln ( x + x + 1 ) ] + c I = [ x 2 + x + ln ( x + x + 1 ) ] + c Indefinite Integrals Exercise Revision Exercise Question 54
Answer: I = sin − 1 x + 1 2 sin 2 sin − 1 x + c Given: ∫ 1 − x x d x Hint:
To solve this question we have to assume that x as sin²θ
Solution: I = ∫ 1 − x x d x x = sin 2 θ d x = 2 sin θ cos θ d θ I = ∫ 1 − sin 2 θ sin 2 θ d θ ( 2 sin θ cos θ ) I = ∫ cos 2 θ sin 2 θ ( 2 sin θ cos θ ) d θ I = ∫ cos θ 2 cos θ d θ I = ∫ 2 cos 2 θ d θ I = ∫ ( 1 + cos 2 θ ) d θ I = ∫ 1 d θ + ∫ cos 2 θ d θ I = θ + 1 2 sin 2 θ + c I = sin − 1 x + 1 2 sin 2 sin − 1 x + c Indefinite Integrals Exercise Revision Exercise Question 55
Answer: I = 2 a 3 2 [ ( a − 2 ) ( 1 − a x ) 2 + ( 1 − a x ) 2 2 + ( 1 − a ) ln | ( 1 − a x ) | ] + c Given: ∫ a − x 1 − a x d x Hint:
To solve this equation we have to suppose denominator as t.
Solution: I = ∫ a − x 1 − a x d x 1 − a x = t − a x = t − 1 − a 2 a x d x = d t d x = − 2 a x a d t d x = 2 ( t − 1 ) a d t I = 1 a ∫ a − a x 1 − a x d x I = 1 a ∫ a + ( t − 1 ) t ( 2 ( t − 1 ) a ) d t I = 2 a 3 2 ∫ ( t − 1 ) ( a + t − 1 ) t d t I = 2 a 3 2 ∫ a t + t 2 − t − a − t + 1 t d t I = 2 a 3 2 t ( a − 2 ) + t 2 + ( 1 − a ) t d t I = 2 a 3 2 ∫ ( a − 2 + t + 1 − a t ) d t I = 2 a 3 2 [ ( a − 2 ) t + t 2 2 + ( 1 − a ) ln | t | ] + c I = 2 a 3 2 [ ( a − 2 ) ( 1 − a x ) 2 + ( 1 − a x ) 2 2 + ( 1 − a ) ln | ( 1 − a x ) | ] + c Indefinite Integrals Exercise Revision Exercise Question 56
Answer: 1 5 log | tan x − 2 2 tan x + 1 | + c Given: ∫ 1 ( sin x − 2 cos x ) ( 2 sin x + cos x ) d x Hint:
To solve this statement we have to evaluate the team by partial fraction.
Solution: ∫ d x ( sin x − 2 cos x ) ( 2 sin x + cos x ) Dividing cos²x with numerator and denominator.
I = 1 cos 2 x sin x − 2 cos x cos x × 2 sin x + cos x cos x I = ∫ sec 2 x ( tan x − 2 ) ( 2 tan x + 1 ) d x I = ∫ d t ( t − 2 ) ( 2 t + 1 ) [ ∵ t = tan x , d t = sec 2 x d x ] 1 ( t − 1 ) ( 2 t + 1 ) = a t − 2 + b 2 t + 1 = ( 2 a + b ) t + ( a − 2 b ) ( t − 2 ) ( 2 t + 1 ) 2 a + b = 0 … … … … (1) a − 2 b = 1 … … … … ( 2 ) -------------------- 1 × 2 + ( 2 ) = 4 a + a = 1 , a = 1 5 b = − 2 5 I = ∫ [ 1 5 × 1 t − 2 − 2 5 × 1 2 t + 1 ] d t I = 1 5 log | t − 2 | − 2 5 × 1 2 log ( 2 t + 1 ) + c I = 1 5 log | t − 2 2 t + 1 | + c I = 1 5 log | tan x − 2 2 tan x + 1 | + c Indefinite Integrals Exercise Revision Exercise Question 57
Answer: I = 1 4 tan − 1 ( 2 tan x + 1 ) 2 + c Given: ∫ d x 4 sin 2 x + 4 sin x cos x + 5 cos 2 x Hint:
To solve this statement we have to divide numerator and denominator by cos²θ.
Solution: I = ∫ 1 4 sin 2 x + 4 sin x cos x + 5 cos 2 x d x Dividing numerator and denominator by cos²x.
I = ∫ sec 2 x 4 tan 2 x + 4 sin x cos x 1 cos 2 x + 5 cos 2 x cos 2 x d x I = ∫ sec 2 x 4 tan 2 x + 4 tan x + 5 d x I = ∫ sec 2 x ( 2 tan x + 1 ) 2 + 4 d x [ ∵ 2 tan x + 1 = t , d t = 2 sec 2 x d x , sec 2 x d x = d t 2 I = ∫ d t ( 1 2 ) t 2 + 2 2 = 1 4 ∫ d t t 2 + 2 2 I = 1 2 × 1 2 tan − 1 t 2 + c I = 1 4 tan − 1 ( 2 tan x + 1 ) 2 + c Indefinite Integrals Exercise Revision Exercise Question 58
Answer: | = b a 2 + b 2 ln | cos x + b sin x ∣ + a a 2 + b 2 x + c Given: ∫ 1 a + btan x d x Hint:
To solve this equation, we have to use standard method form.
Solution: I = ∫ 1 a + b tan x d x I = ∫ 1 a + b sin x cos x d x = ∫ cos x a cos x + ssin x d x Let cos x = A d d x ( a cos x + b sin x ) + B ( a cos x + b sin x ) = A ( − asin x + b cos x ) + B ( acos x + b sin x ) = ( A b + B a ) cos x + ( B b − A a ) sin x = A b + B a = 1 … … . . ( 1 ) B b − A a = 0 . … ( 2 ) On solving (1) and (2),
B = a a 2 + b 2 A = b a 2 + b 2 I = ∫ A ( − a sin x + b cos x ) + B ( acos x + b sin x ) a cos x + b sin x d x I = ∫ A ( − a sin x + b cos x ) a cos x + bsin x + B d x I = ∫ A ( − a sin x + b cos x ) acos x + bsin x d x + ∫ B d x I = A ∫ ( − a sin x + b cos x ) a cos x + b sin x d x + B ∫ d x [ ∵ d t = − a sin x + b cos x ] I = A ∫ d t t + B x I = b a 2 + b 2 ln | t | + a a 2 + b 2 x c I = b a 2 + b 2 ln | a cos x + b sin x | + a a 2 + b 2 x + c Indefinite Integrals Exercise Revision Exercise Question 59
Answer: I = − 1 2 log | 1 + 2 cot x | + c Given: ∫ 1 sin 2 x + sin 2 x d x Hint:
To solve this equation we have to take sin²x common and also use sin2x formula.
Solution: I = ∫ 1 sin 2 x + sin 2 x d x I = ∫ d x sin 2 x + 2 sin x cos x I = ∫ d x sin 2 x ( 1 + 2 cos x sin x ) I = ∫ cosec 2 x d x 1 + 2 cot x Let cot x = t => − cosec 2 x d x = d t I = − ∫ d t 1 + 2 t I = − 1 2 log | 1 + 2 t | + c [ ∫ d x x = log | x | + c ] [ ∫ d x a x + b = log ( ax + b ) a + c ] I = − 1 2 log | 1 + 2 cot x | + c Indefinite Integrals Exercise Revision Exercise Question 60
Answer: I = 4 5 x + 3 5 log ( 2 sin x + cos x ) + c Given: ∫ sin x + 2 cos x 2 sin x + cos x d x Hint:
To solve this statement we have to use formula of sin θ+ 2cos θ and also substitute method.
Solution: sin x + 2 cos x = A d d x ( D ) + B ( D ) sin x + 2 cos x = A ( 2 cos x − sin x ) + B ( 2 sin x + cos x ) sin x => 1 = 2 B − A … . . ( 1 ) cos x => 2 = 2 A + B … … . ( 2 ) On solving (1) \& (2), A = 3 5 & B = 4 5 I = 3 5 ∫ 2 cos x − sin x 2 sin x + cos x + 4 5 ∫ 2 sin x + cos x 2 sin x + cos x d x I = 3 5 ∫ d t t + 4 5 ∫ d x I = 3 5 log t + 4 5 x + c I = 4 5 x + 3 5 log ( 2 sin x + cos x ) + c Indefinite Integrals Exercise Revision Exercise Question 61
Answer: I = 1 4 ln | x 4 + x 8 + 4 | + c Hint :
To solve this given statement split the x? term to (x?)² then put x? equal to t.
Given: ∫ x 8 x 8 + 4 d x Solution: I = ∫ x 8 x 8 + 4 d x I = ∫ x 3 ( x 4 ) 2 + 4 d x I = ∫ 1 4 d t t 2 + 4 [ ∵ x 4 = t , d t = 4 x 3 d x , x 3 d x = d t 4 ] I = 1 4 ∫ d t t 2 + 2 2 I = 1 4 ln | t + t 2 + 4 | + c I = 1 4 ln | x 4 + x 8 + 4 | + c Indefinite Integrals Exercise Revision Exercise Question 62
Answer: 1 2 5 ln | tan x − ( 1 5 ) tan x + ( 1 5 ) | + C Hint:
To solve the given statement we will take
cos 2 x as ( 1 − tan 2 x 1 + tan 2 x ) Given: ∫ 1 2 − 3 cos 2 x d x Solution: I = ∫ 1 2 − 3 ( 1 − tan 2 x 1 + tan 2 x ) d x I = ∫ 1 + tan 2 x 2 ( 1 + tan 2 x ) − 3 ( 1 − tan 2 x ) d x I = ∫ sec 2 x − 1 + stan 2 x d x I = ∫ sec 2 x 5 ( tan 2 x − 1 5 ) d x I = ∫ 1 5 d t t 2 − 1 5 [ ∵ tan x = t , d t = sec 2 x d x ] I = 1 5 ∫ d t t 2 − ( 1 5 ) 2 I = 1 5 1 2 ( 1 5 ) ln | t − ( 1 5 ) t + ( 1 5 ) | + c I = 1 2 5 ln | tan x − ( 1 5 ) tan x + ( 1 5 ) | + C Indefinite Integrals Exercise Revision Exercise Question 63
Answer: 1 3 ln | sin x − ( 3 2 ) sin x + ( 3 2 ) | + c Hint:
To solve this given statement we will write cos²x in terms of sin²x
Given: ∫ cos x 1 4 − cos 2 x d x Solution: ∫ cos x 1 4 − cos 2 x d x I = ∫ cos x 1 4 − ( 1 − sin 2 x ) d x I = ∫ cos x − 3 4 + sin 2 x d x sin x = t d t = cos x d x ∴ I = ∫ d t t 2 − 3 4 I = ∫ d t t 2 − ( 3 2 ) 2 I = 1 2 ( 3 2 ) ln | t − ( 3 2 ) t + ( 3 2 ) | + c I = 1 3 ln | sin x − ( 8 2 ) sin x + ( 8 2 ) | + c Indefinite Integrals Exercise Revision Exercise Question 64
Answer: I = 1 3 ln | 3 + tan ( x 2 ) 3 − tan ( x 2 ) | + c Hint We will write
cos x as ( 1 − tan 2 x λ 2 1 + tan 2 x 2 ) Given: ∫ 1 1 + 2 cos x d x Solution: I = ∫ 1 1 + 2 cos x d x I = ∫ 1 1 + 2 ( 1 − tan 2 x 2 1 + tan 2 x 2 ) d x I = ∫ 1 + tan 2 x 2 1 + tan 2 x 2 + 2 − 2 tan 2 x 2 d x I = ∫ sec 2 x 2 3 − tan 2 x 2 d x I = ∫ 2 d t 3 − t 2 [ ∵ tan x 2 = t , d t = sec 2 ( x 2 ) ( 1 2 ) d x ] I = 2 ∫ d t ( 3 ) 2 − t 2 [ ∵ sec 2 ( x 2 ) d x = 2 d t ] I = 2 ( 1 2 3 ) ln | 3 − t 3 + t | + c I = 1 3 ln | 3 + t 3 − t | + c I = 1 3 ln | 3 + tan ( x 2 ) 3 − tan ( x 2 ) | + c Indefinite Integrals Exercise Revision Exercise Question 65
Answer: I = 1 3 log | tan ( x 2 ) − 2 − 3 tan ( x 2 ) − 2 + 3 | + c Hint:
To solve the above equation we will write sin x as 2 tan ( x 2 ) 1 + tan 2 ( x 2 ) Given: ∫ 1 1 − 2 sin x d x Solution: I = ∫ 1 1 − 2 sin x d x I = ∫ 1 1 − 4 tan ( x 2 ) 1 + tan 2 ( x 2 ) d x I = ∫ 1 + tan 2 ( x 2 ) 1 + tan 2 ( x 2 ) − 4 tan ( x 2 ) d x [ ∵ sin x = 2 tan ( x 2 ) 1 + tan 2 ( x 2 ) I = ∫ sec 2 ( x 2 ) 1 + tan 2 ( x 2 ) − 4 tan ( x 2 ) d x I = ∫ 2 2 sec 2 ( x 2 ) 1 + tan 2 ( x 2 ) − 4 tan ( x 2 ) d x I = 2 ∫ d t 1 + t 2 − 4 t [ ∵ t = tan ( x 2 ) , d t d x = 1 2 sec 2 ( x 2 ) , d t = 1 2 sec 2 ( x 2 ) d x ] I = 2 ∫ d t ( t 2 − 2 ⋅ 2 ⋅ t + 2 2 ) − 2 2 + 1 I = 2 ∫ d t ( t − 2 ) 2 − 3 I = 2 ∫ d u u 2 − ( 3 ) 2 [ ∵ t − 2 = u , d t = d u ] [ ∫ d x x 2 − a 2 = 1 2 a log | x − a x + a | + c I = 2 × 1 2 3 log | u − 3 u + 3 | + c I = 1 3 log | t − 2 − 3 t − 2 + 3 | + c I = 1 3 log | tan ( x 2 ) − 2 − 3 tan ( x 2 ) − 2 + 3 | + c
Indefinite Integrals Exercise Revision Exercise Question 69
Answer: 2 3 tan − 1 5 tan ( x 2 ) − 4 3 + c Hint:
To solve the given statement write sin 2 ( x 2 ) + cos 2 ( x 2 ) and sin as 2 sin ( x 2 ) cos ( x 2 ) Given: ∫ 1 5 − 4 sin x d x Solution: I = ∫ 1 5 − 4 sin x d x = ∫ 1 5 ( sin 2 ( x 2 ) + cos 2 ( x 2 ) − 4 5 ( 2 sin x 2 cos ( x 2 ) ) d x = ∫ d x 5 sin 2 ( x 2 ) + 5 cos 2 ( x 2 ) − 8 sin ( x 2 ) cos ( x 2 ) Divide numerator and denominator by cos 2 ( x 2 ) = ∫ sec 2 ( x 2 ) stan 2 ( x 2 ) + 5 − 8 tan ( x 2 ) d x let tan ( x 2 ) = t sec 2 ( x 2 ) 2 d x = d t = 2 ∫ 1 5 t 2 + 5 − 8 t d t = 2 × 1 5 ∫ 1 t 2 ( − 8 t ) 5 + 1 d t = 2 5 ∫ 1 t 2 − 8 t 5 + ( 4 5 ) 2 − ( 4 5 ) 2 + 1 d t = 2 5 ∫ d t ( t − ( 4 5 ) 2 ) + ( 3 5 ) 2 = 2 5 × 1 3 5 tan − 1 ( t − ( 4 5 ) 3 5 ) + c = 2 3 tan − 1 ( 5 t − 4 ) 3 + c = 2 3 tan − 1 5 tan ( x 2 ) − 4 3 + c
Indefinite Integrals Exercise Revision Exercise Question 70
Answer: tan x + ( tan x ) 3 3 + c Hint:
To solve the given statement split the sec? x into sec² x sec²x then apply the formula.
Given: ∫ sec 4 x d x Solution: I = ∫ sec 4 x d x 1 + tan 2 x = sec 2 x = ∫ ( 1 + tan 2 x ) sec 2 x d x = ∫ ( 1 + t 2 ) d t [ ∵ tan x = t , sec 2 x d x = d t , ∫ x n d x = x n + 1 n + 1 + c ] = t + t 3 3 + c = tan x + ( tan x ) 3 3 + c Indefinite Integrals Exercise Revision Exercise Question 71
Answer: − cot 2 x 2 − cot 8 2 x 6 + c Hint:
To solve the given question we will split the cosec? 2x into cosec² 2x cosec² 2x.
Given: ∫ cosec 4 2 x d x Solution: = ∫ cosec 4 2 x d x = ∫ cosec 2 2 x cosec 2 2 x d x = ∫ ( 1 + cot 2 2 x ) cosec 2 2 x d x p u t cot 2 x = t => − cosec 2 2 x ⋅ 2 d x = d t = − 1 2 ∫ ( 1 + t 2 ) ⋅ d t = − 1 2 t − t 3 6 + c = − cot 2 x 2 − cot 3 2 x 6 + c Indefinite Integrals Exercise Revision Exercise Question 72
Answer: 1 2 ln | tan x 2 | + 1 4 tan 2 x 2 + tan x 2 + C Hint:
To solve the given statement multiply and divide the equation by sin x.
Given: ∫ 1 + sin x sin x ( 1 + cos x ) d x Solution: I = ∫ ( 1 + sin x ) sin x ( 1 + cos x ) d x putting sin x = 2 tan x 2 1 + tan 2 x 2 cos x = 1 − tan 2 x 2 1 + tan 2 x 2 I = ∫ ( 1 + 2 tan x 2 1 + tan 2 x 2 ) ( 2 tan x 2 ) ( 1 + tan 2 x 2 ) ( 1 + 1 − tan 2 x 2 1 + tan 2 x 2 ) d x I = ∫ ( 1 + tan 2 x 2 + 2 tan x 2 ) ( 1 + tan 2 x 2 ) ( 2 tan x 2 ) ( 1 + tan 2 x 2 + 1 − tan 2 x 2 ) d x = 1 4 ∫ ( 1 + tan 2 x 2 + 2 tan x 2 ) sec 2 x 2 tan x 2 d x putting tan x 2 = t ⇒ 1 2 sec 2 ( x 2 ) d x = d t ⇒ sec 2 ( x 2 ) d x = 2 d t I = 1 4 ∫ ( 1 + t 2 + 2 t ) ⋅ ( 2 d t ) t = 1 2 ∫ ( 1 t + t + 2 ) d t = 1 2 [ ln | t | + t 2 2 + 2 t ] + C = 1 2 [ ln | tan x 2 | + tan 2 ( x 2 ) 2 + 2 tan ( x 2 ) ] + C [ ∵ t = tan x 2 ] = 1 2 ln | tan x 2 | + 1 4 tan 2 x 2 + tan x 2 + C Indefinite Integrals Exercise Revision Exercise Question 73
Answer: 2 ( 1 3 ) tan − 1 ( tan ( x 2 ) ) 3 Hint:
To solve the given statement we will write
cos x as 1 − tan 2 ( x 2 ) 1 + tan 2 ( x 2 ) Given: ∫ 1 2 + cos x d x Solution: cos x = 1 − tan 2 ( x 2 ) 1 + tan 2 ( x 2 ) I = ∫ 1 2 + 1 − tan 2 ( x 2 ) 1 + tan 2 ( x 2 ) d x I = ∫ sec 2 ( x 2 ) tan 2 ( x 2 ) + 3 d x [ ∵ tan ( x 2 ) = t , 1 2 sec 2 ( x 2 ) 1 d x = d t ] I = 2 ∫ d t t 2 + ( 3 ) 2 = 2 ( 1 3 ) tan − 1 ( tan ( x 2 ) ) 3 Indefinite Integrals Exercise Revision Exercise Question 74
Answer: x 2 + a x + a 2 log | ( x + a 2 ) + x 2 + a x | + c Hint:
To solve the given statement multiply and divide the equation by a +x.
Given: ∫ a + x x d x Solution: = ∫ a + x x ( a + x ) d x = 1 2 ∫ 2 ( a + x ) x 2 + a x d x = 1 2 [ ∫ 2 x + a x 2 + a x d x + ∫ a x 2 + a x d x ] [ d ( x 2 + a x ) = − 1 2 x 2 + a x ( 2 x + a ) ] [ d ( x 2 + a x ) = a x 2 + a x + ( a 2 4 ) − ( a 2 4 ) ] [ d ( x 2 + a x ) = a ( x + a 2 ) 2 − ( a 2 ) 2 ] = 1 2 ⋅ 2 x 2 + a x + ∫ a ( x + a 2 ) 2 − ( a 2 ) d x = x 2 + a x + a log | ( x + a 2 ) + x 2 + a x | = x 2 + a x + a 2 log | ( x + a 2 ) + x 2 + a x | + c Indefinite Integrals Exercise Revision Exercise Question 75
Answer: − 3 6 + x − 2 x 2 + 13 2 2 sin − 1 ( 4 x − 1 7 ) + c Hint:
To solve the given solution we will use the partial fraction.
Given: ∫ 6 x + 5 6 + x − 2 x 2 Solution: ∫ 6 x + 5 6 + x − 2 x 2 = ∫ − 8 2 ( − 4 x + 1 ) + ( 13 2 ) 6 + x − 2 x 2 d x = − 3 2 [ ∫ 1 − 4 x 6 + x − 2 x 2 d x + 13 2 ∫ 1 6 + x − 2 x 2 d x = − 3 2 [ ∫ d t t + 13 2 2 ∫ 1 3 + ( x 2 ) − x 2 d x = − 3 2 × 2 t + 13 2 2 ∫ 1 3 − ( x 2 − ( x 2 ) + 1 16 − 1 16 ) = − 3 6 + x − 2 x 2 + 13 2 2 ∫ 1 3 + ( 1 16 ) − ( x − ( 1 4 ) ) 2 = − 3 6 + x − 2 x 2 + 13 2 2 ∫ 1 ( 7 4 ) 2 − ( x − ( 1 4 ) ) 2 d x = − 3 6 + x − 2 x 2 + 13 2 2 sin − 1 ( x − ( 1 4 ) 7 4 ) + c = − 3 6 + x − 2 x 2 + 13 2 2 sin − 1 ( 4 x − 1 7 ) + c Indefinite Integrals Exercise Revision Exercise Question 76
Answer: − 1 3 cos 8 x − cos x − 2 cos x + c Hint:
To solve the given statement we will split sin 5x into sin? x sin x.
Given: ∫ sin 5 x cos 4 x d x Solution: = ∫ sin 4 x sin x cos 4 x d x = ∫ ( 1 − cos 2 x ) 2 sin x cos 4 x d x [ put cos x = t , − sin x d x = d t ] = ∫ ( 1 − t 2 ) 2 ( − d t ) t 4 = ∫ ( 1 + t 4 − 2 t 2 ) ( − d t ) t 4 = ∫ ( 1 t 4 + 1 − ( 2 t 2 ) ) ( − d t ) = − ∫ 1 t 4 d t − ∫ d t + 2 ∫ 1 t 2 d t = − t − 8 − 3 − t + 2 ( − t t ) + c = − 1 3 cos 8 x − cos x − 2 cos x + c Indefinite Integrals Exercise Revision Exercise Question 77
Answer: I = log ( sin x ) − sin 2 x + sin 4 x 4 + c Hint:
to solve the given statement we will split cos? x into cos? x cos x then put cos? x = (1-sin²x)².
Given :
∫ cos 5 x sin x d x Solution: I = cos 5 x sin x d x = ∫ cos x ( cos 4 x ) sin x d x I = ∫ cos x ( 1 − sin 2 x ) 2 sin x d x [ ∵ sin x = t , d t d x = cos x , d x = d t cos x ] I = ∫ ( 1 − t 2 ) 2 t d t I = ∫ ( 1 − 2 t 2 + t 4 ) t d t I = ∫ 1 t d t − ∫ 2 t d t + ∫ t 3 d t I = log t − t 2 + t 4 4 + c I = log ( sin x ) − sin 2 x + sin 4 x 4 + c Indefinite Integrals Exercise Revision Exercise Question 78
Answer: ln | sec x + tan x | − sin x − sin 3 x 3 − sin 5 x 5 + c Hint:
To solve the given equation we have to split the sin? x term in sin? x.sin² x.
Given: ∫ sin 6 x cos x d x Solution: I = ∫ sin 6 x cos x d x = ∫ sin 4 x sin 2 x cos x d x = ∫ sin 4 x cos x ( 1 − cos 2 x ) d x = ∫ sin 4 x cos x d x − ∫ sin 4 x cos 2 x cos x d x = ∫ sin 4 x cos x d x − ∫ sin 4 x cos x d x = ∫ sin 2 x ( 1 − cos 2 x ) cos x d x − ∫ t 4 d t = ∫ sin 2 x cos x d x − ∫ sin 2 x cos x d x − t 5 5 = ∫ ( 1 − cos 2 x ) cos x d x − ∫ t 2 d t − sin 5 x 5 = ∫ 1 cos x d x − ∫ cos x d x − t 8 3 − sin 5 x 5 = ∫ sec x d x − sin x − sin 3 x 3 − sin 5 x 5 = ln | sec x + tan x | + ( − sin x − sin 3 x 3 − sin 5 x 5 ) + c = ln | sec x + tan x | − sin x − sin 3 x 3 − sin 5 x 5 + c Indefinite Integrals Exercise Revision Exercise Question 79
Answer: tan 8 x 3 + tan 5 x 5 + c Hint:
To solve the given statement divide the numerator and denominator by cos²x.
Given: = ∫ sin 2 x cos 6 x d x Solution: = ∫ sin 2 x cos 2 x cos 6 x cos 2 x d x = ∫ tan 2 x sec 4 x d x = ∫ tan 2 x sec 2 x ( sec 2 x d x ) = ∫ t 2 ( 1 + t 2 ) d t = ∫ t 2 d t + ∫ t 4 d t = t 3 3 + t 5 5 + c = tan 8 x 3 + tan 5 x 5 + c Indefinite Integrals Exercise Revision Exercise Question 80
Answer: I = tan 5 x 5 + 2 tan 8 x 3 + tan x + c Hint:
To solve the given equation we have to split sec? x into sec? x sec² x.
Given: ∫ sec 6 x d x Solution: I = ∫ sec 6 x d x = ∫ sec 4 x sec 2 x d x = ∫ ( sec 2 x ) 2 sec 2 x d x sec 2 x = tan 2 x + 1 I = ∫ ( tan 2 x + 1 ) 2 sec 2 x d x [ ∵ tan x = t , sec 2 x d x = d t I = ∫ ( t 2 + 1 ) 2 d t I = ∫ ( t 4 + 2 t 2 + 1 ) d t I = t 5 5 + 2 t 3 3 + t + c I = tan 5 x 5 + 2 tan 3 x 3 + tan x + c Indefinite Integrals Exercise Revision Exercise Question 81
Answer: sec 7 x 7 − 2 sec 5 x 5 + sec 3 x 3 + c Hint:
You must know about integration of tan x & sec x.
Given: ∫ tan 5 x sec 3 x d x Solution: let sec x = t sec x tan x d x = d t Now, ∫ tan 4 x sec 2 x ( sec x tan x d x ) … … … . (1) ∫ tan 4 x sec 2 x d t put the value of sec x = tin ( 1 ) ∫ tan 2 x ⋅ tan 2 x ⋅ sec 2 x d t ∫ ( ( sec 2 x − 1 ) ( sec 2 x − 1 ) ⋅ sec 2 x ) d t ∫ ( t 2 − 1 ) ( t 2 − 1 ) ⋅ t 2 d t ∫ [ t 4 + ( 1 ) 2 − 2 ( t 2 ) ( 1 ) . ] t 2 d t ∫ ( t 4 + 1 − 2 t 2 ) t 2 d t ∫ t 6 d t − ∫ 2 t 4 d t + ∫ t 2 d t = t 7 7 − 2 t 5 5 + t 3 3 + c = sec 7 x 7 − 2 sec 5 x 5 + sec 3 x 3 + c Indefinite Integrals Exercise Revision Exercise Question 82
Answer: tan 4 x 4 + tan 6 x 6 + c Hint:
You must know about the integration of tan x & sec x.
Given : ∫ tan 3 x sec 4 x d x Solution: let tan x = t , sec 2 x d x = d t now, ∫ tan 3 x ⋅ sec 2 x ⋅ sec 2 x d x … … … . . (1) put value of tan x = t (1) = ∫ t 3 ( 1 + tan 2 x ) ⋅ sec 2 x d x = ∫ t 3 ( 1 + t 2 ) d t = ∫ t 3 d t + ∫ t 5 d t = t 4 4 + t 6 6 + c = tan 4 x 4 + tan 6 x 6 + c Indefinite Integrals Exercise Revision Exercise Question 83
Answer: − 1 2 cos x + 1 2 sin x − 1 2 2 log ( cosec ( x + π 4 ) − cot ( x + π 4 ) ) + c Hint:
You must know about integration of sec x & cosec x.
Given: ∫ 1 sec x + cosec x d x Soltuion: now , ∫ 1 1 cos x + 1 sin x d x [ ∵ sec x = 1 cos x , cosec x = 1 sin x ] = ∫ d x ( cos x sin x ) sin x + cos x = 1 2 ∫ 2 ( cos x sin x ) sin x + cos x d x [ ∵ ( 1 + 2 sin x cos x ) = ( sin x + cos x ) 2 = 1 2 ∫ 1 + 2 sin x cos x − 1 sin x + cos x d x = 1 2 ∫ ( sin x + cos x ) 2 − 1 sin x + cos x d x = 1 2 ∫ ( sin x + cos x ) = d x − ∫ 1 sin x + cos x d x = 1 2 [ ∫ sin x d x + ∫ cos x d x − ∫ d x 2 ( 1 2 sin x + 1 2 cos x ) ] = 1 2 [ − cos x + sin x − 1 2 ∫ d x sin ( x + ( π 4 ) ] = 1 2 [ − cos x + sin x − 1 2 ∫ cosec ( x + π 4 ) d x ] = − 1 2 cos x + 1 2 sin x − 1 2 2 log ( cosec ( x + π 4 ) − cot ( x + π 4 ) ) = − 1 2 cos x + 1 2 sin x − 1 2 2 log ( cosec ( x + π 4 ) − cot ( x + π 4 ) ) + c Indefinite Integrals Exercise Revision Exercise Question 84
Answer: x 2 a 2 + x 2 + a 2 2 ln | x + x 2 + a 2 | + C Hint:
You must know about integration of
∫ a 2 + x 2 Given: ∫ a 2 + x 2 d x Solution: I = ∫ 1 I I ⋅ a 1 2 + x 2 d x = a 2 + x 2 ∫ 1 d x − ∫ ( d d x ( a 2 + x 2 ) ∫ 1 d x ) d x = a 2 + x 2 ⋅ x − ∫ 1 × 2 x 2 a 2 + x 2 ⋅ x d x = a 2 + x 2 ⋅ x − ∫ ( x 2 + a 2 − a 2 a 2 + x 2 ) d x = x a 2 + x 2 − ∫ a 2 + x 2 d x + a 2 ∫ 1 a 2 + x 2 d x = x a 2 + x 2 − I + a 2 ∫ 1 a 2 + x 2 d x ∴ 2 I = x a 2 + x 2 + a 2 ln | x + x 2 + a 2 | ⇒ I = x 2 a 2 + x 2 + a 2 2 ln | x + x 2 + a 2 | + C Indefinite Integrals Exercise Revision Exercise Question 86
Answer: a 2 ( 1 2 sin − 1 ( x a ) + ( x a ) ⋅ a 2 − x 2 ) + c Hint:
You must know about how to solve integration.
Given: ∫ a 2 − x 2 d x Solution: let x = a sin θ d x = a cos θ d θ I = ∫ a 2 − a 2 sin 2 θ d θ I = a 2 ∫ 1 − sin 2 θ ⋅ cos θ d θ 1 − sin 2 θ = cos 2 θ I = a 2 ( θ 2 + 1 2 ( sin 2 θ ) 2 ) + c [ let θ = sin − 1 ( x a ) , cos θ = 1 − ( x 2 a 2 ) I = a 2 ( 1 2 sin − 1 ( x a ) + 1 2 2 ( sin 2 θ ) cos θ 2 ) + c I = a 2 ( 1 2 sin − 1 ( x a ) + 1 2 ( x a ) ⋅ 1 a a 2 − x 2 ) + c I = a 2 ( 1 2 sin − 1 ( x a ) + ( x a ) ⋅ a 2 − x 2 ) + c Indefinite Integrals Exercise Revision Exercise Question 88
Answer: ( 3 2 ) [ ( 3 x − 1 3 ) 1 3 + 2 x 3 − x 2 + 4 sin − 1 ( 3 x − 1 ) 9 ] + c Hint:
You must know about formula of
a 2 − x 2 , x 2 + a 2 , x 2 − a 2 Given: ∫ 1 + 2 x − 3 x 2 d x Solution: ∫ 3 1 3 + 2 3 x − x 2 d x 3 ∫ 1 3 + 1 9 − 1 9 + 2 x 3 − x 2 d x ∫ 3 4 9 − 1 9 − 2 3 x + x 2 d x ∫ 3 ( 2 3 ) 2 − ( x − 1 3 ) 2 d x [ ∵ ( a 2 − x 2 d x = 1 2 ( x a 2 − x 2 ) + a 2 sin − 1 ( x a ) ] 3 ⋅ ( 1 2 ) [ ( x − 1 3 ) ( 2 3 ) 2 − ( x − 1 3 ) 2 + ( 2 3 ) 2 sin − 1 ( x − 1 8 ) 2 3 ] I = ( 3 2 ) [ ( 3 x − 1 3 ) 1 3 + 2 x 3 − x 2 + 4 9 sin − 1 ( 3 x − 1 ) 2 ] + c Indefinite Integrals Exercise Revision Exercise Question 89
Answer: \dpi 100 − 1 3 t 3 2 − 1 3 ( 1 + x − x 2 ) 3 2 + 1 2 [ 2 x − 1 4 5 4 − ( x − 1 2 ) 2 + 5 8 sin − 1 ( 2 x − 1 5 ) ] + c Hint:
You have to find value of A & B.
Given: ∫ x 1 + x − x 2 d x Solution: let x = A ( ( d d x ) ( 1 + x − x 2 ) ) + B x = A ( 1 − 2 x ) + B x = A + B − 2 A x A + B = 0 , -2A = 1 B = 1 2 A = − 1 2 I = ∫ [ − 1 2 ( 1 − 2 x ) + 1 2 ) 1 + x − x 2 d x = − 1 2 ∫ ( 1 − 2 x ) 1 + x − x 2 d x + 1 2 1 + x − x 2 d x I = − 1 2 ∫ t d t … . ( 1 + x − x 2 = t ) = − 1 3 t 3 2 = − 1 3 ( 1 + x − x 2 ) 3 2 + c I I = 1 2 ∫ 1 + x − x 2 d x = 1 2 ∫ 5 4 − ( x − 1 2 ) 2 d x [ ∵ x − 1 2 = z , d x = d z ] = 1 2 ∫ ( 5 2 ) 2 − ( z ) 2 d z = 1 2 [ 1 2 z 5 4 − z 2 + 1 2 ⋅ 5 4 sin − 1 ( 2 z 5 ) + c ] = 1 2 [ 2 x − 1 4 5 4 − ( x − 1 2 ) 2 + 5 8 sin − 1 ( 2 x − 1 5 ) + c ] ∫ x 1 + x − x 2 = I + I I I = − 1 3 t 3 2 − 1 3 ( 1 + x − x 2 ) 3 2 + c + 1 2 [ 2 x − 1 4 5 4 − ( x − 1 2 ) 2 + 5 8 sin − 1 ( 2 x − 1 5 ) + c ] I = − 1 3 t 3 2 − 1 3 ( 1 + x − x 2 ) 3 2 + 1 2 [ 2 x − 1 4 5 4 − ( x − 1 2 ) 2 + 5 8 sin − 1 ( 2 x − 1 5 ) ] + C Indefinite Integrals Exercise Revision Exercise Question 90
Answer: ( 4 x 2 + 5 x + 6 ) 3 2 6 + 7 8 ∫ x 2 4 x 2 + 5 x + 6 − 1 8 ln | 2 x + 4 x 2 + 5 x + 6 | + c Hint:
You must have to know about integration method.
Given: ∫ ( 2 x + 3 ) 4 x 2 + 5 x + 6 d x Solution: ∫ ( 2 x + 3 ) 4 x 2 + 5 x + 6 d x 1 4 ∫ ( 8 x + 5 + 7 ) 4 x 2 + 5 x + 6 d x 1 4 ∫ ( 8 x + 5 ) 4 x 2 + 5 x + 6 d x + 7 ∫ 4 x 2 + 5 x + 6 d x Let 4 x 2 + 5 x + 6 = t 1 4 ( t 1 2 + 1 ) 3 2 + 7 ∫ ( 2 x + 5 2 ) 2 + ( 6 − 25 4 ) d x 1 4 ( 2 ( 4 x 2 + 5 x + 6 ) 3 ⋅ ( 4 x 2 + 5 x + 6 ) + 7 ∫ ( 2 x + 5 2 ) 2 + 1 4 d x ∫ ( 4 x 2 + 5 x + 6 ) 3 2 6 + 7 4 ( 2 x + 5 2 ) 2 + ( 1 2 ) 2 d x ∫ ( 4 x 2 + 5 x + 6 ) 3 2 6 + 7 4 ( 2 x + 5 2 ) 2 + ( 1 2 ) 2 d x ( 4 x 2 + 5 x + 6 ) 3 2 6 + 7 4 ( 2 x + 5 2 ) 2 ( − 1 2 ) 2 − 1 4 × 1 2 ln | 2 x + 4 x 2 + 5 x + 6 | + c ( 4 x 2 + 5 x + 6 ) 3 2 6 + 7 8 ∫ x 2 4 x 2 + 5 x + 6 − 1 8 ln | 2 x + 4 x 2 + 5 x + 6 | + c Indefinite Integrals Exercise Revision Exercise Question 91
Answer: sin 2 x 2 ( x 2 + 1 2 ) + x cos 2 x 2 + c Hint:
You must know about integration of cos2x.
Given: ∫ ( 1 + x ) 2 cos 2 x d x Solution: ∫ ( 1 + x ) 2 cos 2 x d x ∫ cos 2 x d x + ∫ x 2 cos 2 x d x sin 2 x 2 + [ x 2 sin 2 x 2 − ∫ 2 x ( sin 2 x 2 ) d x [ 1 . I 1 d x = I ∫ I I d x − [ ( d d x ) I ∫ I I d x ] sin 2 x 2 + [ x 2 sin 2 x 2 − [ x − cos 2 x 2 + − 1 2 ∫ cos 2 x d x sin 2 x 2 + x 2 sin 2 x 2 + x cos 2 x 2 − 1 2 ∫ cos 2 x d x sin 2 x 2 ( 1 + x 2 ) + x cos 2 x 2 − 1 2 sin 2 x 2 + c sin 2 x ( 1 + x 2 − 1 2 ) + x cos 2 x 2 + c sin 2 x 2 ( x 2 + 1 2 ) + x cos 2 x 2 + c Indefinite Integrals Exercise Revision Exercise Question 94
Answer: x tan 2 x 2 − 1 4 log | sec 2 x | + c Hint:
You must know about integration of sec x & tan x.
Given: ∫ x sec 2 2 x d x Solution: ∫ x sec 2 2 x d x ( ∫ 1.11 d x = I ∫ I 1 d x − d d x 1 . ∫ I I d x ) x ( tan 2 x 2 ) − 1 2 ∫ tan 2 x d x x tan 2 x 2 − 1 2 ∫ tan 2 x d x ( ∫ tan 2 x = log | sec 2 x 2 | ) x tan 2 x 2 − 1 2 log | sec 2 x 2 | + c x tan 2 x 2 − 1 4 log | sec 2 x | + c Indefinite Integrals Exercise Revision Exercise Question 97
Answer: x ⋅ log ( x + x 2 + a 2 ) − x 2 − a 2 + C [ ∵ t = x 2 + a 2 ] Hint Put x = a tan θ Given: ∫ log ( x + x 2 + a 2 ) d x Solution: I = ∫ 1 I I ⋅ log ( x + x I 2 + a 2 ) d x = log ( x + x 2 + a 2 ) ∫ 1 d x − ∫ [ d d x { log ( x + x 2 + a 2 ) } ∫ 1 d x ] = log ( x + x 2 + a 2 ) ⋅ x − ∫ ( 1 x + x 2 + a 2 ) × ( 1 + 1 × 2 x 2 x 2 + a 2 ) ⋅ x ⋅ d x = log ( x + x 2 + a 2 ) ⋅ x − ∫ x x 2 + a 2 d x putting x 2 + a 2 = tinthe sec o nd inte gral ⇒ 2 x d x = d t ⇒ x d x = d t 2 I = x ⋅ log ( x + x 2 + a 2 ) − 1 2 ∫ 1 t d t = x ⋅ log ( x + x 2 + a 2 ) − 1 2 ∫ t − 1 2 d t = x ⋅ log ( x + x 2 + a 2 ) − 1 2 [ t − 1 2 + 1 − 1 2 + 1 ] + C = x ⋅ log ( x + x 2 + a 2 ) − t + C = x ⋅ log ( x + x 2 + a 2 ) − x 2 − a 2 + C [ ∵ t = x 2 + a 2 ] Indefinite Integrals Exercise Revision Exercise Question 98
Answer: − 1 2 e − 2 log x ( 2 log x + 1 ) + C Hint:
You must know about integration of e?
Given: ∫ log x x 3 d x Solution: ∫ log x x 2 ⋅ 1 x d x ( p u t log x = t , 1 x d x = d t ) ∫ t e 2 t d t ( log x = t , x = e t ) ∫ t e − 2 t d t t ( e − 2 t − 2 ) − ∫ 1 × e − 2 t − 2 d t … using Byparts ( − t e − 2 t 2 ) + 1 2 ( e − 2 t − 2 ) − 1 2 e − 2 t ( t + 1 2 ) + c − 1 4 e − 2 t ( 2 t + 1 ) + C Resubs. t=logx,
− 1 2 e − 2 log x ( 2 log x + 1 ) + C Indefinite Integrals Exercise Revision Exercise Question 99
Answer: − log ( 1 − x ) x − log | x | + log | 1 − x | + c Hint:
You must know about ILATE
Given: ∫ ( log ( 1 − x ) ) x 2 d x Solution: ∫ ( log ( 1 − x ) ) x 2 d x ( 1 x 2 ) log ∫ ( 1 − x ) d x (ILATE) log ( 1 − x ) ( − 1 x ) ( − 1 1 − x ) ( − 1 x ) d x − log ( 1 − x ) x − ∫ 1 ( 1 − x ) x d x − log ( 1 − x ) x − ( ∫ 1 x + 1 ( 1 − x ) ) d x − log ( 1 − x ) x − log | x | + log | 1 − x | + c Indefinite Integrals Exercise Revision Exercise Question 100
Answer: ( log x ) 2 × x 4 4 − log x ⋅ x 4 8 + x 4 32 + C Hint:
You must know about the log formula of integration.
Given: ∫ x 3 ( log x ) 2 d x Solution: ∫ x 3 11 ⋅ ( log 1 x ) 2 ⋅ d x = ( log x 2 ) ∫ x 3 d x − ∫ 2 log x x × x 4 4 d x = ( log x ) 2 × x 4 4 − 1 2 ∫ log 1 x ⋅ x 3 I I d x = ( log x ) 2 × x 4 4 − 1 2 [ log x ∫ x 3 d x − ∫ { d d x ( log x ) ∫ x 3 d x } d x ] = ( log x ) 2 × x 4 4 − 1 2 [ log x ⋅ x 4 4 − ∫ 1 x × x 4 4 d x ] = ( log x ) 2 × x 4 4 − 1 2 [ log x ⋅ x 4 4 − 1 4 ∫ x 3 d x ] = ( log x ) 2 × x 4 4 − 1 2 [ log x ⋅ x 4 4 − x 4 16 ] + C = ( log x ) 2 × x 4 4 − log x ⋅ x 4 8 + x 4 32 + C Indefinite Integrals Exercise Revision Exercise Question 101
Answer: 1 n log | 1 + x n − 1 1 + x n + 1 | + C Hint Given :
∫ 1 x 1 + x n d x Solution: I = ∫ d x x 1 + x n = ∫ x n − 1 d x x n − 1 x 1 1 + x n = ∫ x n − 1 d x x n 1 + x n putting x n = t ⇒ n x n − 1 d x = d t ⇒ x n − 1 d x = d t n I = 1 n ∫ d t t 1 + t let 1 + t = p 2 d t = 2 p d p I = 1 n ∫ 2 p d p ( p 2 − 1 ) p = 2 n ∫ d p p 2 − 1 2 = 2 n × 1 2 log | p − 1 p + 1 | + C = 1 n log | 1 + t − 1 1 + t + 1 | + C = 1 n log | 1 + x n − 1 1 + x n + 1 | + C Indefinite Integrals Exercise Revision Exercise Question 102
Answer:− 2 1 − x − 2 5 ( 1 − x ) 5 / 2 + 4 3 ( 1 − x ) 3 / 2 + c Hint: to solve this question we have to use differentiate method
Given: ∫ x 2 1 − x d x Solution: Let 1 − x = t x = 1 − t differentiating on both sides, − d x = d t d x = − d t I = − ∫ ( 1 − t ) 2 t d t I = − ∫ 1 + t 2 − 2 t t d t I = − ∫ 1 t d t − ∫ t 2 t d t + ∫ 2 t t d t I = − ∫ t − 1 / 2 d t − ∫ t t t t d t + 2 ∫ t d t I = − ( t 1 / 2 1 / 2 ) − ∫ t 3 / 2 d t + 2 t 3 / 2 3 / 2 I = − 2 t − t 3 / 2 + 1 3 / 2 + 1 + 2 x 2 3 − t 3 / 2 + c I = − 2 t − t 5 / 2 5 / 2 + 4 3 t 3 / 2 + c I = − 2 1 − x − 2 5 ( 1 − x ) 5 / 2 + 4 3 ( 1 − x ) 3 / 2 + c Indefinite Integrals Exercise Revision Exercise Question 103
Answer: 2 9 ( 1 + x 3 ) 3 / 2 − 2 3 1 + x 3 + c Hint: to solve this question we have to use substitute method
Given: ∫ x 5 1 + x 3 d x Solution: Let I = ∫ x 3 ⋅ x 2 1 + x 3 d x put 1 + x 3 = t 2 , differentiate on both sides, 3 x 2 d x = 2 t d t I = ∫ ( t 2 − 1 ) t ⋅ 2 t d t 3 I = 2 3 ∫ ( t 2 − 1 ) d t I = 2 3 ∫ t 2 d t − 2 3 ∫ d t I = 2 3 t 3 3 − 2 3 t + c I = 2 9 ( 1 + x 3 ) 3 − 2 3 1 + x 3 + c I = 2 9 ( 1 + x 3 ) 3 / 2 − 2 3 1 + x 3 + c Indefinite Integrals Exercise Revision Exercise Question 104
Answer: 3 2 sin − 1 x − x 2 1 − x 2 + c Hint: to solve this equation we have to solve this by splitting the team
Given: I = ∫ 1 + x 2 1 − x 2 d x Solution: Let I = ∫ 2 − ( 1 − x 2 ) 1 − x 2 d x I = ∫ 2 1 − x 2 d x − ∫ 1 − x 2 1 − x 2 d x I = ∫ 2 1 − x 2 d x − ∫ 1 − x 2 d x I = 2 sin − 1 x − [ x 2 1 − x 2 + 1 2 sin − 1 x ] + c . { ∫ 1 a 2 − x 2 d x = 1 a sin − 1 x a & ∫ a 2 − x 2 d x = a 2 a 2 − x 2 + 1 2 sin − 1 ( x a ) } I = 2 sin − 1 x − x 2 1 − x 2 − 1 2 sin − 1 x + c I = 3 2 sin − 1 x − x 2 1 − x 2 + c Indefinite Integrals Exercise Revision Exercise Question 105
Answer: 1 − x 2 ( x 2 − 1 ) − 1 2 sin − 1 ( x ) + C Hint: to solve this equation, we have to assume u as
cos Θ Given: ∫ x 1 − x 1 + x d x Solution: I = ∫ x 1 − x 1 + x d x I = ∫ x ( 1 − x ) ( 1 − x ) ( 1 + x ) ( 1 − x ) d x I = ∫ x ( 1 − x ) 1 − x 2 d x I = ∫ x − x 2 1 − x 2 d x I = ∫ x − x 2 − 1 + 1 1 − x 2 d x I = ∫ − x 2 + 1 1 − x 2 d x + ∫ x − 1 1 − x 2 d x I = ∫ 1 − x 2 d x + ∫ x 1 − x 2 d x − ∫ 1 1 − x 2 d x I = x 2 1 − x 2 + 1 2 sin − 1 ( x ) + C 1 − 1 − x 2 + C 2 − sin − 1 ( x ) + C 3 [ ∵ ∫ x 1 − x 2 d x = − 1 − x 2 + C 2 ] I = 1 − x 2 ( x 2 − 1 ) − 1 2 sin − 1 ( x ) + C Indefinite Integrals Exercise Revision Exercise Question 106
Answer: I = 1 3 log | 1 + x 8 − 1 1 + x 8 + 1 | + c Hint: to solve this equation we have to do with differentiate method.
Given: ∫ 1 x 1 + x 3 d x Solution: x 3 = t 3 x 2 d x = d t x 2 d x = 1 3 d t I = ∫ x 2 x 3 1 + x 3 d x I = 1 3 ∫ d t t 1 + t Let 1 + t = p 2 , dt = 2 pdp I = 1 3 ∫ 2 p d p p 2 − 1 ) p I = 2 3 ∫ d p ( p 2 − 1 ) 2 3 × 1 3 × 1 2 log [ p − 1 p + 1 ] + C [ d x x 2 − a 2 = 1 2 a log [ x − a x + a ] + C ] I = 1 3 log | 1 + x 3 − 1 1 + x 3 + 1 | + c Indefinite Integrals Exercise Revision Exercise Question 107
Answer:1 2 [ 1 2 2 + 1 log | 2 + 1 + t 2 + 1 − t | + 1 2 + 1 tan − 1 t 2 + 1 ] + C wheret = sin x − cos x Hint: to solve this we have to put
sin x + cos u in team of t
Given: ∫ sin x + cos x sin 4 x + cos 4 x d x Solution: I = ∫ sin x + cos x sin 4 x + cos 4 x d x = ∫ sin x + cos x ( sin 2 x + cos 2 x ) 2 − 2 sin 2 x cos 2 x d x = ∫ sin x + cos x 1 − 2 sin 2 cos 2 x d x = ∫ sin x + cos x 1 − 1 2 ( 2 sin x cos x ) 2 d x = ∫ sin x + cos x 1 − 1 2 sin 2 2 x d x putting sin x − cos x = t ( i ) ⇒ ( sin x − cos x ) 2 = t 2 sin 2 x + cos 2 x − 2 sin x cos x = t 2 1 − 2 sin x cos x = t 2 sin 2 x = 1 − t 2 Differentiating ( i ) , weget ( cos x + sin x ) d x = d t I = ∫ 1 1 − 1 2 ( 1 − t 2 ) 2 d t = ∫ 2 2 − ( 1 − t 2 ) 2 d t = ∫ 2 ( 2 ) 2 − ( 1 − t 2 ) 2 d t = 2 ∫ 1 ( 2 + 1 − t 2 ) ( 2 − 1 + t 2 ) d t = 2 2 2 ∫ [ 1 2 + 1 − t 2 + 1 2 − 1 + t 2 ] d t = 1 2 ∫ 1 2 + 1 − t 2 d t + 1 2 ∫ 1 2 − 1 + t 2 d t = 1 2 ∫ 1 ( 2 + 1 ) 2 − t 2 d t + 1 2 ∫ 1 ( 2 − 1 ) 2 + t 2 d t = 1 2 × 1 2 2 + 1 log | 2 + 1 + t 2 + 1 − t | + 1 2 × 1 2 + 1 tan − 1 t 2 + 1 + C = 1 2 [ 1 2 2 + 1 log | 2 + 1 + t 2 + 1 − t | + 1 2 + 1 tan − 1 t 2 + 1 ] + C wheret = sin x − cos x Indefinite Integrals Exercise Revision Exercise Question 108
Answer:x 3 3 tan − 1 x − x 3 6 + 1 6 log | 1 + x 2 | + c Hint: in this equation we will us ILATE method and then differentiate the terms
Given: x 2 tan − 1 x d x Solution : Considering
tan − 1 x as first function and
x 2 as second
tan − 1 x ∫ x 2 d x − ∫ ( d d x tan − 1 x ∫ x 2 d x ) = x 3 3 tan − 1 x − 1 3 ∫ x ⋅ x 3 1 + u 2 − x d u = x 3 3 tan − 1 x − 1 3 ∫ x ( 1 + x 2 ) 1 + x 2 d x + 1 6 ∫ 2 x 1 + x 2 d x = x 3 3 tan − 1 x − x 2 6 + 1 6 log | 1 + x 2 | + c Indefinite Integrals Exercise Revision Exercise Question 109
Answer:tan − 1 x ( 1 + x ) − x + c Hint: to solve this equation we have to use Byparts method
Given:∫ tan − 1 x d x Solution: let x = t 1 2 x d x = d t d x = 2 t d t I = ∫ tan − 1 t .2 t d t I = tan − 1 t . t 2 − ∫ t 2 + 1 − 1 1 + t 2 d t … . using Byparts I = tan − 1 t ⋅ t 2 − ∫ d t + ∫ 1 1 + t 2 I = tan − 1 t ⋅ t 2 − t + tan − 1 t + C I = tan − 1 t ( 1 + t 2 ) − t + C I = tan − 1 x ( 1 + x ) − x + C Indefinite Integrals Exercise Revision Exercise Question 110
Answer: x 1 − x 2 − sin − 1 x ( 1 − 2 x ) 2 + C Hint: to solve the question we have to use ILATE method
Given: ∫ sin − 1 x d x Solution: I = ∫ sin − 1 x d x Let x = sin t x = sin 2 t … squaring on both sides d x = sin t cos t d t I = ∫ sin − 1 ( sin t ) sin t cos t d t I = 1 2 ∫ t sin 2 t d t [ ∫ ( u . v ) d x = u ∫ v d x − ∫ [ d d x u ⋅ ∫ u d x ] ] d x I = 1 2 { t cos 2 t 2 + ∫ cos 2 t 2 d t } I = 1 2 { − t cos 2 t 2 + sin 2 t 4 } + C x = sin t t = sin x cos t = 1 − sin 2 t cos t = 1 − x I = − sin − 1 x ( 1 − 2 x ) 2 + 2 x 1 − x 4 + C I = x 1 − x 2 − sin − 1 x ( 1 − 2 x ) 2 + C Indefinite Integrals Exercise Revision Exercise Question 111
Answer:I = x sec − 1 x − x − 1 + C Hint: to solve this equation we have to useByparts equation;
Given: I = ∫ sec − 1 x d x Solution: Let
sec − 1 x be the first function and 1 as the second function I = sec − 1 x ⋅ x − ∫ 1 x x − 1 ⋅ 2 x … . . Using Byparts I = x sec − 1 x − 1 2 ∫ ( x − 1 ) − 1 / 2 d x I = x sec − 1 x − x − 1 + C Indefinite Integrals Exercise Revision Exercise Question 112
Answer:1 2 [ x cos − 1 x − 1 − x 2 ] + C Hint: to solve this question we will presume x as cos θ Given: ∫ tan − 1 1 − x 1 + x d x Solution: I = ∫ tan − 1 1 − x 1 + x d x let x = cos 2 θ d x d θ = − 2 sin 2 θ d x = − 2 sin 2 θ d θ I = ∫ tan − 1 1 − cos 2 θ 1 + cos 2 θ − 2 sin 2 θ d θ cos 2 θ = 2 cos 2 θ − 1 cos 2 θ = 1 − 2 sin 2 θ I = ∫ tan − 1 1 − 1 + 2 sin 2 θ 1 + 2 cos 2 θ − 1 × − 2 sin 2 θ d θ I = ∫ tan − 1 tan 2 θ × − 2 sin 2 θ d θ I = − 2 ∫ θ sin 2 θ d θ I = − 2 [ θ ∫ sin 2 θ d θ − ∫ d θ d θ ∫ sin 2 θ d θ ] d x . .applying Byparts I = − 2 [ θ × − cos 2 θ 2 − ( − 1 ) ∫ cos 2 θ 2 ] d θ I = − 2 [ − θ cos 2 θ 2 − ( − 1 ) ∫ cos 2 θ 2 ] d θ I = − 2 [ − θ cos 20 2 + ∫ cos 20 2 ] d θ I = − 2 [ − cos 2 θ 2 + sin 2 θ 4 ] + C I = − 2 [ ( − 1 2 cos − 1 x ) x 2 + sin ( cos − 1 x ) 4 + C ] I = − 2 [ − x 4 cos − 1 x + sin ( sin − 1 1 − x 2 ) 4 ] + C I = − 2 4 [ − x cos − 1 x + 1 − x 2 ] + C I = 1 2 [ x cos − 1 x − 1 − x 2 ] + C Indefinite Integrals Exercise Revision Exercise Question 115
Answer:( sin − 1 x ) 3 ⋅ x + 3 ( sin − 1 x ) 2 1 − x 2 + 6 sin − 1 x − 6 1 − x 2 + C Hint: to solve this equation, we have to convert equation into trigonometric formulaes
Given: ∫ ( sin − 1 x ) 3 d x Solution: Let sin − 1 x = θ x = sin θ => d x = cos θ d θ I = ∫ θ 3 ⋅ cos θ d θ I = θ 3 sin θ − 3 ∫ θ 2 sin θ d θ I = θ 3 sin θ + 3 θ 2 cos θ − ( 60 ( − sin θ ) − ∫ 6 ( − sin θ ) I = θ 3 sin θ + 3 θ 2 cos θ + 60 sin θ − 6 cos θ + C I = ( sin − 1 x ) 3 ⋅ x + 3 ( sin − 1 x ) 2 1 − x 2 + 6 sin − 1 x − 6 1 − x 2 + C Indefinite Integrals Exercise Revision Exercise Question 113
Answer:a [ x a tan − 1 x a + tan − 1 x a − x a ] + C Hint: to solve this statement we will assume sin as tan
Given: ∫ sin − 1 x a + x d x Solution: I = ∫ sin − 1 x a + x d x Put x = a tan 2 t => tan t = x a d x = a ( 2 tan ( t ) sec 2 t d t I = ∫ sin − 1 atan 2 t a + atan 2 t a ( 2 tan ( t ) sec 2 t d t I = 2 a ∫ ttan ( t ) sec 2 t d t Let t be the first function and tan ( t ) sec 2 t d t be the e second, applying Byparts I = a ( ttan 2 t − tan t + t ) + C I = a ( tan 2 t + t − tan t ) + C I = a [ x a tan − 1 x a + tan − 1 x a − x a ] + C Indefinite Integrals Exercise Revision Exercise Question 114
Answer: 3 x sin − 1 x + 3 1 − x 2 + C To solve this question we will use ILATE Method
Given:∫ sin − 1 ( 3 x − 4 x 3 ) d x Solution: ∫ 3 sin − 1 x d x I = 3 ∫ 1 ⋅ sin − 1 x d x I = 3 ∫ 1 ⋅ sin − 1 x d x I = 3 [ x sin − 1 x − ∫ − d t 2 t ] … applying byparts I = 3 [ x sin − 1 x + 1 2 ∫ t − 1 2 d t ] I = 3 [ x sin − 1 x + 1 2 t − 1 2 + 1 − 1 2 + 1 + C ) I = 3 [ x sin − 1 x + 1 2 t 1 2 + C ] I = [ 3 x sin − 1 x + 3 1 − x 2 + C ] Indefinite Integrals Exercise Revision Exercise Question 116
Answer: 2 [ x sin − 1 x + 1 − x 2 ] + C Hint: to solve this statement we will suppose x as
sin θ Given: ∫ cos − 1 ( 1 − 2 x ) 2 d x Solution: ∫ cos − 1 ( 1 − 2 x ) 2 d x let x = sin θ , d x = cos θ d θ I = ∫ cos − 1 ( 1 − 2 sin 2 θ ) 2 cos θ d θ I = ∫ cos − 1 ( cos 2 θ ) cos θ d θ I = ∫ 2 θ cos θ d θ ∫ u v d x = u ∫ v d x − ∫ [ d u d v ∫ v d x ] d x I = 2 [ θ sin θ − ∫ sin θ d θ ] I = 2 [ θ sin θ + cos θ ] + c I = 2 [ x sin − 1 x + 1 − x 2 ] + C Indefinite Integrals Exercise Revision Exercise Question 117
Answer: ( sin − 1 x ) ⋅ 1 1 − x 2 − 1 2 log 1 + x 1 − x + C Hint: to solve this equation, we have to assume x as sin θ and then do byparts method Given: ∫ x sin − 1 x ( 1 − x 2 ) 3 / 2 d x Soluton: Let x = sin θ d x = cos θ d θ I = ∫ sin θ ( θ cos θ d θ ) ( 1 − sin 2 θ ) 3 2 ∫ ( sin θ ) ( θ ) cos θ d θ cos 3 θ ∫ sin θ cos 2 θ θ d θ I = ∫ θ ⋅ sec θ tan θ d θ [ ∫ sec θ tan θ d θ = ∫ d sec θ = sec θ ] I = θ sec θ ∫ 1 ⋅ sec θ d θ I = θ sec θ − ln | sec θ + tan θ | + C I = ( sin − 1 x ) ⋅ 1 1 − x 2 − 1 2 log 1 + x 1 − x + C
Indefinite Integrals Exercise Revision Exercise Question 118
Answer:e 2 x tan x 2 + C Hint: to solve this equation, we have to assume 2x as t
Given:∫ e 2 x ( 1 + sin 2 x 1 + cos 2 x ) d x Solution: ∫ e 2 x ( 1 + sin 2 x 1 + cos 2 x ) d x ∫ e x f ( x ) + f ′ ( x ) d x = e x ( x ) + C 2 x = t 2 d x = d t d x = d t 2 [ cos 2 θ = 2 cos 2 θ − 1 1 + cos 2 θ = 2 cos 2 θ 1 + cos 2 x = 2 cos 2 x sin 2 x = 2 sin x cos x ] I = ∫ e t ( 1 + sin t 1 + cos t ) d t 2 = ∫ e t ( 1 + sin t 1 + cos t ) ⋅ d t 2 = 1 2 ∫ e t ( 1 + 2 sin t 2 ⋅ cos t 2 2 cos 2 t 2 ) d t = 1 2 ∫ e t ( 1 2 sec 2 t 2 + 2 sin t 2 cos t 2 2 cos 2 t 2 ) d t = 1 2 ∫ e t ( 1 2 sec 2 t 2 + tan t 2 ) d t = 1 2 e t tan t 2 + C = e t tan t 2 2 + C = e 2 x tan x 2 + C . resubs. t = 2 x Indefinite Integrals Exercise Revision Exercise Question 119
Answer: − e − x / 2 sec x 2 + C Hint : To solve this equation we have to use differentiation method
Given: ∫ 1 − sin x 1 + cos x e − x / 2 d x Solution: ∫ e − x ( f ′ ( x ) − f ( x ) d x = e − x f ( x ) + C Let x 2 = t x = 2 t d x = 2 d t I = ∫ 1 − sin 2 t 1 + cos 2 t ⋅ e − t ⋅ 2 d t I = 2 ∫ e − t ⋅ 1 − sin 2 t 1 + cos 2 t ⋅ d t 1 − sin 2 t 1 + cos 2 t = sin 2 t + cos 2 t − 2 sin t ⋅ cos t 2 cos 2 t I = ( sin t − cos t ) 2 2 cos 2 t = sin t − cos t 2 cos 2 t = 1 2 ( sin t cos 2 t − cos t cos 2 t ) = 1 2 ( tan t cos t − 1 cos t ) = 1 2 ( tan t ⋅ sec t − sec t ) f ( t ) = 1 2 sec t ; f ′ ( t ) = 1 2 tan t sec t 1 − sin 2 t 1 + cos 2 t = f ′ ( t ) − f ( t ) I = − 2 e − t f ( t ) + C I = − 2 e − t ⋅ 1 2 sec t + C I = − e − x / 2 sec x 2 + C Indefinite Integrals Exercise Revision Exercise Question 121
Answer:e m tan − 1 x m 2 + 1 ( m cos ( tan − 1 x ) + sin ( tan − 1 x ) + C Given: ∫ e m tan − 1 x ( 1 + x 2 ) 3 / 2 d x Hint: using integration by parts
Explanation
Let I = ∫ e m tan − 1 x ( 1 + x 2 ) 3 / 2 d x I = ∫ e m θ ( 1 + tan 2 θ ) 3 / 2 ⋅ sec 2 θ d θ x = tan θ ⋅ θ = tan − 1 x Put
d x = sec 2 θ d θ I = ∫ e m θ ( sec 2 θ ) 3 / 2 ⋅ sec 2 θ d θ I = ∫ e m θ sec 3 θ sec 2 θ d θ I = ∫ e m θ d θ sec θ = ∫ e m θ cos θ d θ [ ∵ 1 cos θ = sec θ ] I = cos θ e m θ m − ∫ ( − sin θ ) e m θ m d θ … u s i n g Byparts I = 1 m cos θ e m θ + 1 m ∫ sin θ e m θ d θ I = 1 m cos θ e m θ + 1 m [ sin θ e m θ m − ∫ cos θ e m θ m d θ ] I = 1 m cos θ e m θ + 1 m 2 sin θ e m θ − 1 m 2 ∫ cos θ e m θ d θ I = 1 m cos θ ⋅ e m θ + 1 m 2 ∫ sin θ e m θ − 1 m 2 I … w?ere I = ∫ cos θ ⋅ e m θ d θ ( 1 + 1 m 2 ) I = 1 m cos θ ⋅ e m θ + 1 m sin θ e m θ + C ( m 2 + 1 m 2 ) I = e m θ ( cos θ m + sin θ m 2 ) + C ( m 2 + 1 ) m 2 I = e m θ ( m cos θ + sin θ m 2 ) + m 2 C ( m 2 + 1 ) I = e m θ ( m cos θ + sin θ ) + m 2 C I = e m θ m 2 + 1 ( m cos θ + sin θ ) + m 2 C = e m tan − 1 x m 2 + 1 ( m cos ( tan − 1 x ) + sin ( tan − 1 x ) + C Indefinite Integrals Exercise Revision Exercise Question 122
Answer: 1 8 log | x − 1 x + 1 | − ( 3 x − 4 4 ( x − 1 ) 2 ) + C Given:∫ x 2 ( x − 1 ) 3 ( x + 1 ) d x Hint: you must know the steps to integrate by partial function
Explanation: let
I = ∫ x 2 ( x − 1 ) 3 ( x + 1 ) d x x 2 ( x − 1 ) 3 ( x + 1 ) = A ( x − 1 ) + B ( x − 1 ) 2 + C ( x − 1 ) 3 + D ( x + 1 ) Multiplying by
( x − 1 ) 3 ( x + 1 ) x 2 = A ( x − 1 ) 3 ( x + 1 ) + B ( x − 1 ) ( x + 1 ) + C ( x + 1 ) + D ( x − 1 ) 3 Putting x=1
1 = A ( 0 ) + B ( 0 ) + C ( 2 ) + D ( 0 ) ⇒ c = 1 2 Putting x=-11 = A ( 0 ) + B ( 0 ) + C ( 2 ) + D ( − 8 ) ⇒ c = − 1 8
Putting x=0
1 = A ( 1 ) + B ( − 1 ) + C ( 1 ) + D ( − 1 ) A − B + C − D = 0 A − B + 1 2 − ( − 1 8 ) = 0 ⇒ A − B + 1 2 + 1 8 = 0 A − B + 5 8 = 0 ⇒ A − B = − 5 8 Putting x=24 = A ( 1 ) ( 3 ) + B ( 1 ) ( 3 ) + C ( 3 ) + D ( 1 ) 4 = 3 A + 3 B + 3 ( 1 2 ) + ( − 1 8 ) ⇒ 3 A + 3 B = 4 − 3 2 + 1 8 => 3 ( A + B ) = 32 − 12 + 1 8 = 21 8 A + B = 3 8
Adding (i) and (ii)
A + B = − 5 8 + 7 8 = 2 8 2 A − 2 8 ⇒ A = 1 8 Put in (1)1 8 − B = 5 8 ⇒ B = 1 8 + 5 8 = 6 8 => B = 3 4 x 2 ( x − 1 ) 3 = 1 8 ( x − 1 ) + 3 4 ( x − 1 ) 2 = 1 2 ( x − 1 ) 3 = 1 8 ( x + 1 ) 1 8 ∫ d x x − 1 + 3 4 ∫ ( x − 1 ) − 2 + 1 − 2 + 1 + 1 2 ( x − 1 ) − 3 + 1 − 3 + 1 − 1 8 log | x + 1 | + C = 1 8 log | x − 1 x + 1 | − 3 x − 4 4 ( x + 1 ) 2 + C
Indefinite Integrals Exercise Revision Exercise Question 123
Answer:= 1 3 log | x + 1 | − 1 6 log | x 2 + x + 1 | + 1 3 tan − 1 2 x + 1 3 + C Given: ∫ x x 3 − 1 d x Hint: using partial function
Explanation let
I = ∫ x x 3 − 1 d x x x 3 − 1 = x ( x − 1 ) ( x 2 + x + 1 ) = A x − 1 + B x + c x 2 + x + 1 Multiplying by
( x − 1 ) ( x 2 + x + 1 ) x = A ( x 2 + x + 1 ) + ( B x + C ) ( x − 1 ) Putting x=1
1 = A ( 1 + 1 + 1 ) + ( B ( 1 ) + C ) ( 1 − 1 ) 1 = 3 A + 0 ⇒ A = 1 3 Putting x=-1
− 1 = A + ( − 2 ) ( − B + C ) − 1 = 1 3 + 2 B − 2 C 2 ( B − C ) = − 1 − 1 3 ⇒ B − C = − 2 3 B − C => − 2 3 Putting x=00 = A ( 0 + 0 + 1 ) + ( 0 + C ) ( 0 − 1 ) 0 = A ( 1 ) + C ( − 1 ) 0 = 1 3 − C => C = 1 3 Put in (1)B − 1 3 = − 2 3 => B = 1 3 − 2 3 => B = − 1 3 x ( x − 1 ) ( x 2 + x + 1 ) = 1 3 ( x − 1 ) + − 1 3 x + 1 3 x 2 + x + 1 ∫ x d x ( x − 1 ) ( x 2 + x + 1 ) = 1 3 ∫ 1 x − 1 d x − 1 3 ∫ x − 1 x 2 + x + 1 d x = 1 3 log | x − 1 | − 1 3 I 1 (2) Where I 1 = ∫ x − 1 x 2 + x + 1 d x = 1 2 ∫ 2 ( x − 1 ) + 3 − 3 x 2 + x + 1 d x = 1 2 ∫ 2 x + 1 x 2 + x + 1 d x − 3 2 ∫ 1 x 2 + x + 1 d x = 1 2 ∫ d t t − 3 2 ∫ 1 x 2 + x + ( 1 2 ) 2 − ( 1 2 ) 2 + 1 d x [ x 2 + x + 1 = t ( 2 x + 1 ) d x = d t ] = 1 2 ∫ d t t − 3 2 ∫ 1 ( x + 1 2 ) 2 + ( 3 2 ) 2 = 1 2 log | t | − 3 2 ⋅ 1 3 tan − 1 ( 2 x + 1 3 ) + C = 1 2 log | x 2 + x + 1 | − 3 tan − 1 ( 2 x + 1 3 ) + C
By (2), we get
= 1 3 log | x − 1 | − 1 3 [ 1 2 log | x 2 + x + 1 | − 3 tan − 1 ( 2 x + 1 3 ) ] + C = 1 3 log | x − 1 | − 1 6 log | x 2 + x + 1 | + 1 3 tan − 1 ( 2 x + 1 3 ) + C
Indefinite Integrals Exercise Revision Exercise Question 124
Answer: 1 2 log | 1 + x 1 + x 2 | + 1 2 tan − 1 x + C Given:∫ 1 1 + x + x 2 + x 3 d x Hint: using partial function
Explanation: let
I = ∫ 1 1 + x + x 2 + x 2 d x 1 1 + x + x 2 + x 3 = 1 ( 1 + x ) + x 2 ( 1 + x ) = 1 ( 1 + x 2 ) ( 1 + x ) 1 1 + x + x 2 + x 3 = 1 ( 1 + x 2 ) ( 1 + x ) 1 ( 1 + x ) ( 1 + x 2 ) = A ( 1 + x ) + B x + C ( 1 + x 2 ) Multiplying by
( 1 + x ) ( 1 + x 2 ) 1 = A ( 1 + x 2 ) + ( B x + C ) ( 1 + x ) put x = − 1 1 = A ( 1 + 1 ) + ( B ( − 1 ) + C ) ( 1 − 1 ) 1 = A ( 2 ) + 0 => A = 1 2 put x = 0 1 = A ( 1 + 0 ) + ( B ( 0 ) + C ) ( 1 + 0 ) 1 = A + C => 1 − 1 2 = C ⇒ 1 2 putting x = 1 1 = A ( 1 + 1 ) + ( B + C ) ( 1 + 1 ) 1 = 2 A + 2 B + 2 C 1 = 2 ( 1 2 ) + 2 B + 2 ( 1 2 ) 1 = 2 B + 1 => 2 B = 1 − 2 => B = − 1 2 1 ( 1 + x ) ( 1 + x 2 ) = 1 2 ( 1 + x ) + 1 2 ( − x + 1 ( 1 + x 2 ) ) ∫ 1 ( 1 + x ) ( 1 + x 2 ) d x = 1 2 ∫ 1 1 + x d x − 1 2 ∫ x − 1 1 + x 2 d x = 1 2 ∫ 1 1 + x 2 d x − 1 2 2 ∫ 2 x 1 + x 2 d x + 1 2 ∫ 1 1 + x 2 d x = 1 2 log | 1 + x | − 1 4 log | 1 + x 2 | + 1 2 tan − 1 x + C = 1 2 [ log | 1 + x | − log | 1 + x 2 | ] + 1 2 tan − 1 x + C = 1 2 log | 1 + x 1 + x 2 | + 1 2 tan − 1 x + C Indefinite Integrals Exercise Revision Exercise Question 125
Answer: 1 3 ( 1 2 tan − 1 x 2 − 1 5 tan − 1 x 5 ) + C Given: ∫ 1 ( x 2 + 2 ) ( x 2 + 5 ) d x Hint: Using ∫ 1 1 + x 2 d x Explanation : let I = ∫ 1 ( x 2 + 2 ) ( x 2 + 5 ) d x = 1 3 ∫ ( x 2 + 5 ) − ( x 2 + 2 ) ( x 2 + 5 ) ( x 2 + 2 ) d x = 1 3 ∫ ( 1 x 2 + 2 − 1 x 2 + 5 ) d x = 1 3 ∫ 1 x 2 + 2 d x − 1 3 ∫ 1 x 2 + 5 d x = 1 3 ∫ 1 x 2 + ( 2 ) 2 d x − 1 3 ∫ 1 x 2 + ( 5 ) 2 d x = 1 3 2 tan − 1 ( x 2 ) − 1 3 5 tan − 1 ( x 5 ) + C = 1 3 ( 1 2 tan − 1 x 2 − 1 5 tan − 1 x 5 ) + C Indefinite Integrals Exercise Revision Exercise Question 126
Answer:2 log | x | − 1 4 log | x + 1 | − 1 4 log | x − 1 | − 3 4 log | x 2 + 1 | + c Given: ∫ x 2 − 2 x 5 − x d x Hint: using partial fraction
Explanation let
I = ∫ x 2 − 2 x 5 − x d x = ∫ x 2 − 2 x ( x 4 − 1 ) d x = ∫ x 2 − 2 x ( x 2 − 1 ) ( x 2 + 1 ) I = ∫ x 2 − 2 x ( x + 1 ) ( x − 1 ) ( x 2 + 1 ) d x x 2 − 2 x ( x + 1 ) ( x − 1 ) ( x 2 + 1 ) = A x + B x + 1 + C x − 1 + D x + E x 2 + 1 Multiply by x ( x + 1 ) ( x − 1 ) ( x 2 + 1 ) x 2 − 2 = A ( x + 1 ) ( x − 1 ) ( x 2 + 1 ) + B ( u ) ( u − 1 ) ( x 2 + 1 ) + C ( x ) ( x + 1 ) ( x 2 + 1 ) + ( D x + E ) ( x ) ( x + 1 ) ( x − 1 ) putting x = 0 0 − 2 = A ( 1 ) ( − 1 ) ( 1 ) + B ( 0 ) + C ( 0 ) + ( D x + 6 ) ( 10 ) − 2 = − A ⇒ A = 2 putting x = 1 1 − 2 = A ( 2 ) ( 0 ) ( 2 ) + B ( 0 ) + C ( 1 ) ( 2 ) ( 2 ) + ( D x + 6 ) ( 0 ) − 1 = 4 C => C = − 1 4 putting x = − 1 1 − 2 = A ( 0 ) + B ( − 1 ) ( − 2 ) ( 2 ) + C ( 0 ) + D ( 0 ) − 1 => 4 B ⇒ B = − 1 4 On solving , D = − 3 2 & E = 0 ∫ x 2 − 2 x 5 − x d x = 2 ∫ 1 x d x − 1 4 ∫ 1 x + 1 d x − 1 4 ∫ 1 x − 1 d x − 3 2 ∫ x x 2 + 1 d x ∫ x 2 − 2 x 5 − x d x = 2 ∫ 1 x d x − 1 4 ∫ 1 x + 1 d x − 1 4 ∫ 1 x − 1 d x − 3 2 ∫ x x 2 + 1 d x = 2 ∫ 1 x d x − 1 4 ∫ 1 x + 1 d x − 1 4 ∫ 1 x − 1 − 3 4 ∫ 2 x d x x 2 + 1 = 2 log | x | − 1 4 log | x + 1 | − 1 4 log | x − 1 | − 3 4 log | x 2 + 1 | + c Indefinite Integrals Exercise Revision Exercise Question 127
Answer: − 2 1 − x + cos − 1 x + x ( 1 − x ) + C Given:1 − x 1 + x d x Hint: You must know the derivatives and integration of sinx and cosx
Explanation:
Let
I = ∫ 1 − x 1 + x d x = ∫ 1 − cos θ 1 + cos θ ( − 2 sin θ cos θ ) d θ = ∫ 2 sin 2 θ 2 2 cos 2 θ 2 × 2 sin θ cos θ d θ = − 2 ∫ tan θ 2 sin θ cos θ d θ [ put x = cos θ x = cos 2 θ d x = 2 cos θ ( − sin θ ) d θ d x = − 2 sin θ cos θ d θ ] = − 2 ∫ sin θ 2 cos θ 2 ⋅ 2 sin θ 2 cos θ 2 cos θ d θ = − 4 ∫ sin 2 θ 2 cos θ d θ [ ∵ 1 − cos 2 θ = 2 sin 2 θ 1 + cos 2 θ = 2 cos 2 θ sin 2 θ = 2 sin θ cos θ ] = − 4 ∫ ( 1 − cos θ 2 ) cos θ d θ = − 2 ∫ ( cos θ − cos 2 θ ) d θ = − 2 ∫ cos θ d θ + 2 ∫ cos 2 θ d θ = − 2 ∫ cos θ d θ + 2 ∫ 1 + cos 2 θ 2 d θ = − 2 ∫ cos θ d θ + ∫ 1 d θ + ∫ cos 2 θ d θ = − 2 sin θ + θ + sin 2 θ θ + C = − 2 sin θ + θ + 2 sin θ cos θ 2 + C = − 2 sin θ + θ + sin θ cos θ + C = − 2 1 − x + cos − 1 x + 1 − x ⋅ x + C [ ∵ cos θ = 1 − sin 2 θ ] = − 2 1 − x + cos − 1 x + x ( 1 − x ) + C Indefinite Integrals Exercise Revision Exercise Question 128
Answer:− 2 log | x + 1 | − 1 x + 1 + 3 log | x + 2 | + C Given: ∫ x 2 + x + 1 ( x + 1 ) 2 ( x + 2 ) d x Hint: using partial fraction
Explanation: let
I = ∫ x 2 + x + 1 ( x + 1 ) 2 ( x + 2 ) d x x 2 + x + 1 ( x + 1 ) 2 ( x + 2 ) = A ( x + 1 ) + B ( x + 1 ) 2 + C ( x + 2 ) Multiplying by : ( x + 1 ) 2 ( x + 2 ) x 2 + x + 1 = A ( x + 1 ) ( x + 2 ) + B ( x + 2 ) + C ( x + 1 ) 2 Putting x=-1
x 2 + x + 1 = A ( x + 1 ) ( u + 2 ) + B ( x + 2 ) + C ( x + 1 ) 2
putting x = − 1 1 − 1 + 1 = A ( 0 ) ( 1 ) + B ( 1 ) + C ( 0 ) = 0 + B + 0 => B = 1
putting x = − 2 4 + ( − 2 ) + 1 = A ( − 1 ) ( 0 ) + B ( 0 ) + C ( 1 ) 3 = 0 + 0 + C => 3
putting x = 0 0 + 0 + 1 = A ( 1 ) ( 2 ) + B ( 2 ) + C ( 1 ) 1 = 2 A + 2 B + C 1 = 2 A + 2 ( 1 ) + 3 2 A = − 4 ⇒ A = − 2
x 2 + x + 1 ( x + 1 ) 2 + x + 2 = − 2 x + 1 + 1 ( x + 1 ) 2 + 3 x + 2
∫ x 2 + x + 1 ( x + 1 ) 2 + x + 2 = − 2 ∫ 1 x + 1 d x + 1 ∫ 1 ( x + 1 ) 2 d x + 3 ∫ d x x + 2
= − 2 log | x + 1 | + 1 ∫ ( x + 1 ) − 2 d x + 3 log | x + 2 | + C
= − 2 log | x + 1 | + 1 [ ( x + 1 ) 2 + 1 − 2 + 1 ] + 3 log | x + 2 | + C
= − 2 log | x + 1 | − 1 x + 1 + 3 log | x + 2 | + C
Indefinite Integrals Exercise Revision Exercise Question 129
Answer: 1 2 cot 2 x ⋅ e 2 x + C Hint:Using ∫ e x ( f ( x ) − f ′ ( x ) ) d x Given: ∫ sin 4 x − 2 1 − cos 4 x ⋅ e 2 x d x Explanation: Let
I = ∫ sin 4 x − 2 1 − cos 4 x ⋅ e 2 x d x = 1 2 ∫ ( sin 2 t − 2 1 − cos 2 t ) e t d t = 1 2 ∫ e t ( sin t cos t − 1 sin 2 t ) d t [ put 2 x = t 2 d x = d t d x = 1 2 d t ] = 1 2 ∫ e t ( cos t sin t − 1 sin 2 t ) d t = 1 2 ∫ e t ( cot t − cos e c 2 t ) d t = 1 2 ∫ e t cot d t − 1 2 ∫ e t cos e c 2 t d t = 1 2 [ cot ⋅ e t − ∫ ( − cos e c 2 t ) ⋅ e t d t − 1 2 ∫ e t cos e c 2 t d t ] = 1 2 cot t ⋅ e t + 1 2 ∫ cos e c 2 t ⋅ e t d t − 1 2 ∫ e t cos e c 2 t d t = 1 2 cot t ⋅ e t + C = 1 2 cot 2 x e 2 x + C Indefinite Integrals Exercise Revision Exercise Question 130
Answer: 1 3 log | cot x + 1 | − 1 6 log | cot 2 x − cot x + 1 | − 1 3 tan − 1 ( 2 cot x − 1 3 ) + C Given: ∫ cot x + cot 3 x 1 + cot 3 x d x Hint: using partial fraction and
∫ 1 x d x , ∫ 1 1 + x 2 d x Explanation: I = ∫ cot x + cot 3 x 1 + cot 3 x d x = ∫ cot x ( 1 + cot 2 x ) 1 + cot 3 x d x = ∫ cot x cos e c 2 x 1 + cot 3 x d x = − ∫ t 1 + t 3 d t [ p u t cot x = t − cos e c 2 x = d t cos e c 2 x d x = − d t ] = − ∫ t ( 1 + t ) ( t 2 − t + 1 ) now: t ( 1 + t ) ( t 2 − t + 1 ) = A 1 + t + B t 2 − t + 1 multiplying by ( 1 + t ) ( t 2 − t + 1 ) t = A ( t 2 − t + 1 ) + ( B t + C ) ( t + 1 ) putting\: t = − 1 − 1 = A ( 1 + 1 + 1 ) + ( B ( − 1 ) + C ) ( 0 ) = 3 A ⇒ A = − 1 3 putting t = 0 0 = A ( 0 − 0 + 1 ) + ( B ( 0 ) + C ) ( 0 + 1 ) 0 = A ( 1 ) + C ( 1 ) 0 = A + C ⇒ 0 = − 1 3 + C ⇒ C = 1 3 putting t = + 1 1 = A ( 1 − 1 + 1 ) + ( B + C ) ( 2 ) 1 = A ( 1 ) + 2 B + 2 C 1 = − 1 3 + 2 B + 2 3 1 + 1 3 − 2 3 = 2 B 2 B = 3 + 1 − 2 3 2 B = 2 3 ⇒ B = 1 3 t ( 1 + t ) ( t 2 − t + 1 ) = − 1 3 t + 1 + 1 3 ( t + 1 ) t 2 − t + 1 ∫ t ( 1 + t ) ( t 2 − t + 1 ) = 1 3 ∫ 1 t + 1 d t − 1 3 ∫ t + 1 t 2 − t + 1 d t = 1 3 ∫ 1 t + 1 d t − 1 3 × 2 ∫ 2 t + 2 − 3 + 3 t 2 − t + 1 d t = 1 3 ∫ 1 t + 1 d t − 1 6 ∫ 2 t − 1 t 2 − t + 1 d t − 1 2 ∫ 1 t 2 − t + ( 1 2 ) 2 − ( 1 2 ) 2 + 1 = 1 3 ∫ 1 t + 1 d t − 1 6 ∫ 2 t − 1 t 2 − t + 1 d t − 1 2 ∫ 1 ( t − 1 2 ) 2 − ( 3 2 ) 2 = 1 3 log | t + 1 | − 1 6 log | t 2 − t + 1 | − 1 2 ⋅ 1 3 tan − 1 ( 2 t − 1 3 ) + C = 1 3 log | t + 1 | − 1 6 log | t 2 − t + 1 | − 1 3 tan − 1 ( 2 t − 1 3 ) + C = 1 3 log | cot x + 1 | − 1 6 log | cot 2 x − cot x + 1 | − 1 3 tan − 1 ( 2 cot x − 1 3 ) + C Revising the proper set of questions is essential. And class 12, mathematics chapter 18 consists of around 32 exercises. This brings to the point that students might forget what they have learned in the first exercise when they reach the 32nd one. Therefore, it becomes essential to revise the previous portion before jumping to the next chapter.
The RE portion consists of 130 questions with subparts to be answered. These questions come under the concept of evaluating the integrals, Solutions on indefinite integral, Integration by parts, Questions on Fundamental integration formulas, Integration of trigonometric functions.
The students will be required to work out all the sums to have a general idea of the entire chapter. RD Sharma Solution In such instances, recheck or searching for the correct answers become hectic. Hence, the RD Sharma Class 12 Chapter 18 RE solution book can help them out.
This solution book follows the NCERT pattern and can be used by the CBSE board students without hesitation. Instead of picking sums from every exercise separately, this combination of questions will benefit the students by making their work effortless. Hence, you can have a better practice method and an authorized material to refer to the accurate solutions when you have the RD Sharma Class 12th RE book.
Practicing the sums listed in the Revision exercise gives a general idea of all the concepts, formulas, and methods that you have learned in this chapter. You can use the Class 12 RD Sharma Chapter 18 RE Solution material to look out for clarifications or answers. Solving the sums in all the 32 exercises at once will give you a higher level of confidence to face any integration questions. Hence, the RD Sharma Class 12th RE book plays a significant role in making you exam-ready by all means.
The best part of the RD Sharma Class 12 Solutions Indefinite Integrals RE book is that you are not required to pay any money or other monetary charges. All the RD Sharma books are available for free of cost on the Career 360 website. In addition, many students of previous batches have benefitted by using the RD Sharma Class 12 Solutions Chapter 18 RE material for reference. Download your own set of RD Sharma solution books from the Career 360 website.
RD Sharma Chapter wise Solutions