Careers360 Logo
RD Sharma Class 12 Exercise 18.8 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.8 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 11:58 AM IST

RD Sharma books are considered the gold standard for CBSE. They are informative, easy to understand, and exam-oriented, making them the best choice for students.

RD Sharma Class 12th Exercise 18.8 covers the chapter ‘Indefinite Integrals.’ The questions from this exercise are divided into two parts Level 1and Level 2, based on difficulty and weightage. This exercise contains 52 questions, of which 44 are Level 1, and 8 are Level 2.

RD Sharma Class 12th Exercise 18.8 covers concepts like indefinite integration of trigonometric and logarithmic values. The Level 1 questions are fundamental and easy to solve if students know the basic concepts. In contrast, Level 2 sums are lengthier and require an in-depth understanding of the theorems.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:18.8
  3. RD Sharma Chapter wise Solutions

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Background wave

Indefinite Integrals Excercise:18.8


Indefinite Integrals exercise 18.8 question 1

Answer:
12log|tanx2|+C
Hint:
cos2x=12sin2x
Given:
11cos2xdx
Explanation:
12sin2xdx=121sinxdx
=12cosecxdx [cosecx=log|tanx2|]
=12log|tanx2|+C

Indefinite Integrals exercise 18.8 question 2

Answer:
2log|tan(π4+x4)|+C
Hint:
cos2x=2cos2x1
Given:
11+cosxdx
Explanation:
12cos2x2dx [1+cos2x=2cos2x1+cosx=2cos2x2]
=121cosx2dx
=12secx2dx
Letx2=t
dx=2dt
=22sectdt=2sectdt
=2log|tan(π4+t2)|+C secxdx=log|tan(π4+x2)|
=2log|tan(π4+x2)|+C


Indefinite Integrals exercise 18.8 question 3
Answer:

log|sinx|+C
Hint:
cos2x=2cos2x1=12sin2x
Given:
1+cos2x1cos2xdx
Explanation:
2cos2x2sin2xdx [1+cos2x=2cos2x1cos2x=2sin2x]
=(cosxsinx)2dx
=cotxdx
=log|sinx|+C

Indefinite Integrals exercise 18.8 question 4

Answer:
2log|cosx2|+C
Hint:
cos2x=2cos2x1=12sin2x
Given:
1cosx1+cosxdx
Explanation:
2sin2x22cos2x2dx [cosx=2cos2x21or12sin2x2]
tanx2dx
Letx2=t
dx=2dt
2tantdt=2log|cost|+C
=2log|cosx2|+C

Indefinite Integrals exercise 18.8 question 5

Answer:
2sinxlog|secx+tanx|+C
Hint:
secx=1cosx
Given:
secxsec2xdx
Explanation:
(1cosx)(11cos2x)dx
=cos2xcosxdx
=2cos2x1cosxdx
=2cos2xcosxdx1cosxdx
=2cosxdxsecxdx
=2sinxlog|secx+tanx|+C

Indefinite Integrals exercise 18.8 question 6

Answer:
loglog|sinsinx+coscosx|+C
Hint:
cos2xsin2x=cos2x
Given:
cos2x(cosx+sinx)2dx
Explanation:
cos2sin2x(cosx+sinx)2dx
=(cosx+sinx)(cosxsinx)(cosx+sinx)2dx
=cosxsinxcosx+sinxdx
Letcosx+sinx=t
(sinx+cosx)dx=dt
=1tdt
=log|t|+C
=log|cosx+sinx|+C

Indefinite Integrals exercise 18.8 question 7

Answer:
xcos(ba)+sin(ba)log|sin(xb)|+C
Hint:
sin(A+B)=sinAcosB+cosAsinB
Given:
sin(xa)sin(xb)dx
Explanation:
sin(xa)sin(xb)dx
=sin(xa+bb)sin(xb)dx [addandsubtractbin(xa)]
=sin(xb+ba)sin(xb)dx
=sin(xb)cos(ba)+cos(xb)sin(ba)sin(xb))dx [sin(A+B)=sinAcosB+cosAsinB]
=sin(xb)cos(ba)sin(xb)dx+cos(xb)sin(ba)sin(xb)dx
=cos(ba)dx+cot(xb)sin(ba)dx
=cos(ba)dx+sin(ba)cot(xb)dx
=cos(ba)x+sin(ba)log|sin(xb)|+C
[cotxdx=log|sinx|+C]


Indefinite Integrals exercise 18.8 question 8

Answer:
xcoscos2asinsin2aloglog|sinsin(x+a)|+C
Hint:
sin(A+B)=sinAcosBcosAsinB
Given:
sin(xa)sin(x+a)dx
Explanation:
sin(xa+aa)sin(x+a)dx [Addandsubtractain(xa)]
=sin(x+a2a)sin(x+a)dx
=sin(x+a)cos2acos(x+a)sin2asin(x+a)dx
=sin(x+a)cos2asin(x+a)dxcos(x+a)sin2asin(x+a)dx
=cos2adxcot(x+a)sin2adx
=cos2adxsin2acot(x+a)dx
=cos2axsin2alog|sin(x+a)|+C
=xcos2asin2alog|sin(x+a)|+C

Indefinite Integrals exercise 18.8 question 9

Answer:
log|cosxsinx|+C
Hint:
tanx=sinxcosx
Given:
1+tanx1tanxdx
Explanation:
1+sinxcosx1sinxcosxdx=cosx+sinxcosxsinxdx
Let,
cosxsinx=t
(sinxcosx)dx=dt
=dtt
=log|t|
=log|cosxsinx|+C

Indefinite Integrals exercise 18.8 question 10

Answer:
(xa)cosasinalog|sec(xa)|+C
Hint:
cos(A+B)=cosAcosBsinAsinB
Given:
cosxcos(xa)dx
Explanation:
cos(xa+a)cos(xa)dx[Add and subtract a in x]
=cos(xa)cosasin(xa)sinacos(xa)dx
=cos(xa)cosacos(xa)dxsin(xa)sinacos(xa)dx
=cosadxtan(xa)sinadx
xcosasinalog|sec(xa)|+C


Indefinite Integrals exercise 18.8 question 11

Answer:
log|cos(π4x)|+C
Hint:
sin2x+cos2x=1andsin2x=2sinxcosx
Given:
1sin2x1+sin2xdx
Explanation:
sin2x+cos2x2sinxcosxsin2x+cos2x+2sinxcosxdx
=(sinxcosx)2(sinx+cosx)2dx
=(sinxcosxsinx+cosx)2dx
=sinxcosxsinx+cosxdx
=sinxcosxcosxcosxsinxcosx+cosxcosxdx
=tanx1tanx+1dx
=tanxtanπ41+tanxtanπ4dx [tanπ4=1]
=tan(xπ4)dx
=tan(π4x)dx
=[log|cos(π4x)|+C]
=log|cos(π4x)|+C

Indefinite Integrals exercise 18.8 question 12

Answer:
13log|e3x+1|+C
Hint:
exdx=ex+Cor1xdx=log|x|+C
Given:
e3xe3x+1dx
Explanation:
e3x+1=t
3e3xdx=dt
=13dtt
=13log|t|
=13log|e3x|+C

Indefinite Integrals exercise 18.8 question 13

Answer:
13log|3secx+5|C
Himt:
1xdx=log|x|+C
Given:
secxtanx3secx+5dx
Explanation:
Let,
3secx+5=t
3secxtanxdx=dt
=dt3t=13dtt
=13logt+C
=13log|3secx+5|+C

Indefinite Integrals exercise 18.8 question 14

Answer:
log|sinx+cosx|+C
Hint:
Cotx=cosxsinx
Given:
1cotx1+cotxdx
Explanation:
1cosxsinx1+cosxsinxdx =sinxcosxsinx+cosxdx
Let
sinx+cosx=t
(cosxsinx)dx=dt
=dtt=logt+C
=log|sinx+cosx|+C

Indefinite Integrals exercise 18.8 question 15

Answer:
log|log(tanx)|+C
Hint:
tanx=sinxcosx,secx=1cosx,cosecx=1sinx
Given:
secxcosecxlog(tanx)dx
Explanation:
Let
log(tanx)=t
1tanx(sec2x)dx=dt
secxsinxcosx×1cosxdx=dt
secxcosecxdx=dt
=dtt=logt+C
=log|log(tanx)|+C

Indefinite Integrals exercise 18.8 question 16

Answer:
log|3+logx|+C
Hint:
ddx(logx)=1x
Given:
1x(3+logx)dx
Explanation:
Let
(3+logx)=t
1xdx=dt
=dtt=logt+C
=log|3+logx|+C

Indefinite Integrals exercise 18.8 question 17

Answer:
log|ex+x|+C
Hint:
ddx(ex+x)=ex+1
Given:
ex+1ex+xdx
Explanation:
Let
ex+x=t
(ex+1)dx=dt
=dtt=logt+C
=log|ex+x|+C

Indefinite Integrals exercise 18.8 question 18

Answer:
log|logx|+C
Hint:
ddx(logx)=1x
Given:
1xlogxdx
Explanation:
Let
logx=t
1xdx=dt
=dtt
=logt+C
=log|logx|+C

Indefinite Integrals exercise 18.8 question 19

Answer:
1baIn|acos2x+bsin2x|+C
Hint:
dtt=log|t|+C
Given:
sin2xacos2x+bsin2xdx........(1)
Explanation:
Let
acos2x+bsin2x=t
(2acosx(sinx)+b(2sinx)(cosx))dx=dt
(ba)[2cosxsinx]dx=dt
(ba)sin2xdx=dt
sin2xdx=dtba
Put in (1)
1badtt
=1baIn|t|+C
=1baIn|acos2x+bsin2|+C

Indefinite Integrals exercise 18.8 question 20

Answer:
13log|2+3sinx|+C
Hint:
ddx(a+bsinx)=cosx
Given:
cosx2+3sinxdx.....(1)
Explanation:
Let
2+3sinx=t
3cosxdx=dt
cosxdx=dt3
Put in (1)
dt3t=13dtt
=13log|t|+C
=13log|2+3sinx|+C

Indefinite Integrals exercise 18.8 question 21

Answer:
log|x+cosx|+C
Hint:
ddx(x+cosx)=1sinx
Given:
1sinxx+cosxdx
Explanation:
Let
x+cosx=t
(1sinx)dx=dt
dtt=log|t|+C
=log|x+cosx|+C

Indefinite Integrals exercise 18.8 question 22

Answer:
ablog|bex+c|+C
Hint:
dtt=log|t|+C
Given:
ab+cexdx
Explanation:
aex(bex+c)dx.......(1)
=aexbex+cdx
Let
bex+c=t
ex(b)dx=dt
exdx=1bdt
Put in (1)
a(1b)dtt
=abdtt
=ablog|t|+C
=ablog|bex+c|+C

Indefinite Integrals exercise 18.8 question 23

Answer:
log|ex+1|+C
Hint:
1xdx=log|x|+C
Given:
1ex+1dx
Explanation:
1ex(1+1ex)dx=exex+1dx....(1)
Let
ex+1=t
exdx=dt
From (1)
dtt=log|t|+C
=log|ex+1|+C

Indefinite Integrals exercise 18.8 question 24

Answer:
log|logsinx|+C
Hint:
cotx=cosxsinx
Given:
cotxlogsinxdx ........(1)
Explanation:
Let
logsinx=t
1sinx(cosx)dx=dt
cotxdx=dt
Put in (1)
dtt=log|t|+C
=log|logsinx|+C

Indefinite Integrals exercise 18.8 question 25

Answer:
12log|e2x2|+C
Hint:
1tdt=log|t|+C
Given:
e2xe2x2dx .........(1)
Explanation:
Let
e2x2=t
2e2xdx=dt
e2xdx=dt2
Put (1) we get
dt2t=12dtt
=12log|t|+C
=12log|e2x2|+C

Indefinite Integrals exercise 18.8 question 26

Amswer:
12log|6cosx+4sinx|+C
Hint:
1tdt=log|t|+C
Given:
2cosx3sinx6cosx+4sinxdx......(1)
Explanation:
Let
6cosx+4sinx=t
(6sinx+4cosx)dx=dt
2(2cosx3sinx)dx=dt
Put in (1)
dt2t
12dtt=12log|t|+C
=12log|6cosx+4sinx|+C

Indefinite Integrals exercise 18.8 question 27

Answer:
12log|x2+sin2x+2x|+C
Hint:
1tdt=log|t|+C
Given:
cos2x+x+1x2+sin2x+2xdx.......(1)
Explanation:
Let
x2+sin2x+2x=t
(2x+2cos2x+2)dx=dt
2(x+cos2x+1)dx=dt
From (1)
12dtt=12log|t|+C
=12log|x2+sin2x+2x|+C

Indefinite Integrals exercise 18.8 question 28

Answer:
1sin(ba)[log(sec(x+b)sec(x+a))]+C
Hint:
Multiplyanddividebysin(ba)
Given:
1cos(x+a)cos(x+b)dx......(1)
Explanation:
Multiplyanddividebysin(ba)
From (1)
=1sin(ba)sin(ba)cos(x+a)cos(x+b)dx
=1sin(ba)sin[(x+b)(x+a)]cos(x+a)cos(x+b)dx Add and subtract x in ba
=1sin(ba)sin(x+b)cos(x+a)sin(x+a)cos(x+b)cos(x+a)cos(x+b)dx
=1sin(ba)[sin(x+b)cos(x+b)dxsin(x+a)cos(x+a)dx]
=1sin(ba)[tan(x+b)dxtan(xa)dx]
=1sin(ba)[log|sec(x+b)|log|sec(x+a)|]+C
=1sin(ba)[log|sec(x+b)sec(x+a)|]+C [logalogb=logab]

Indefinite Integrals exercise 18.8 question 29

Answer:
log|2sinx+cosx|+C
Hint:
dtt=log|t|+C
Given:
sinx+2cosx2sinx+cosxdx....(1)
Explanation:
Let
2sinx+cosx=t
(2cosxsinx)dx=dt
From (1)
dtt=log|t|+C
=log|2sinx+cosx|+C

Indefinite Integrals exercise 18.8 question 30

Answer:
13log|cos3x|+C
Hint:
UsecosAcosBandsinAsinBformula
Given:
cos4xcos2xsin4xsin2xdx
Explanation:
2sin(4x2x2)sin(4x+2x2)2cos(4x+2x2)sin(4x2x2)dx[cosAcosB=2sin(A+B2)sin(AB2)sinAsinB=2cos(A+B2)sin(AB2)]
=sin3xcos3xdx
=tan3xdx
=[log|cos3x|3]+C
=13log|cos3x|+C

Indefinite Integrals exercise 18.8 question 31

Answer:
log|log(secx+tanx)|+C
Hint:
dtt=log|t|+C
Given:
secxlog(secx+tanx)dx......(1)
Explanation:
Let
log(secx+tanx)=t
1secx+tanx(secxtanx+sec2x)dx=dt
sinxcos2x+1cos2xsinxcosx+1cosxdx=dt
1+sinxcos2x1+sinxcosxdx=dt
=secxdx=dt
Put in (1)
dtt=log|t|+C
=log|log(secx+tanx)|+C

Indefinite Integrals exercise 18.8 question 32

Answer:
log|logtanx2|+C
Hint:
sin2x=2sinxcosx
Given:
cosecxlogtanx2dx.....(1)
Explanation:
Let
logtanx2=t
1tanx2sec2x2(12)dx=dt
12cosx2sinx2dx=dt
1sin2×x2dx=dt
cosecxdx=dt
Put in (1)
dtt=log|t|+C
=log|logtanx2|+C

Indefinite Integrals exercise 18.8 question 33

Answer:
=log|log(logx)|+C
Hint:
log(logx)=t
1logx(x)dx=dt
Given:
1xlogxlog(logx)dx....(1)
Explanation:
Let
log(logx)=t
1logx×xdx=dt
dxxlogx=dt
From (1) we get
dtt=log|t|+C
=log|log(logx)|+C

Indefinite Integrals exercise 18.8 question 34

Answer:
log|1+cotx|+C
Hint:
ddxcotx=cosec2x
Given:
cosec2x1+cotxdx.....(1)
Explanation:
Let
1+cotx=t
cosec2xdx=dt
From (1)
dtt=log|t|+C
=log|1+cotx|+C

Indefinite Integrals exercise 18.8 question 35

Answer:
log|10x+x10|+C
Hint:
ddx(10x+x10)=10x9+10xloge10
Given:
10x9+10xloge1010x+x10dx.......(1)
Explanation:
Let
10x+x10=t
(10x9+10xloge10)dx=dt
From (1) we get
dtt=log|t|+C
=log|10x+x10|+C

Indefinite Integrals exercise 18.8 question 36

Answer:
log|x+cos2x|+C
Hint:
Put denominator=t
Given:
1sin2xx+cos2xdx.......(1)
Explanation:
Let
x+cos2x=t
[1+2cosx(sinx)]dx=dt
(12sinxcosx)dx=dt
(12sin2x)dx=dt
Put in (1) we get
dtt=log|t|+C
=log|x+cos2x|+C

Indefinite Integrals exercise 18.8 question 37

Answer:
log|x+logsecx|+C
Hint:
Put denominator = t
Given:
1+tanxx+logsecxdx......(1)
Explanation:
Let
x+logsecx=t
[1+1secx(secxtanx)]dx=dt
(1+tanx)dx=dt
Put in (1)
dtt=log|t|+C
=log|x+logsecx|+C

Indefinite Integrals exercise 18.8 question 38

Answer:
1b2log(a2+b2sin2x)+C
Hint:
Put denominator = t
Given:
sin2xa2+b2sin2xdx......(1)
Explanation:
Let
a2+b2sin2x=t
b2(2sinxcosx)dx=dt
b2sin2xdx=dt
sin2xdx=dtb2
Put in (1) we get
dtb2(t)
=1b2dtt
=1b2log|t|+C
=1b2log(a2+b2sin2x)+C

Indefinite Integrals exercise 18.8 question 39

Answer:
log|x+logx|+C
Hint:
Put
x+logx=t
(x+1x)dx=dt
x+1xdx=dt
Given:
x+1x(x+logx)dx....(1)
Explanation:
Let
x+logx=t
(x+1x)dx=dt
(x+1x)dx=dt
Put in (1) we get
dtt
=log|t|+C
=log|x+logx|+C

Indefinite Integrals exercise 18.8 question 40

Answer:
13log|2+3sin1x|+C
Hint:
ddxsin1x=11x2
Given:
11x2(2+3sin1x)dx......(1)
Explanation:
Let
2+3sin1x=t
31x2dx=dt
dx1x2=dt3
Put in (1) we get
13dtt=13log|t|+C
=13log|2+3sin1x|+C

Indefinite Integrals exercise 18.8 question 41

Answer:
log|tanx+2|+C
Hint:
ddx(tanx)=sec2x
Given:
sec2xtanx+2dx....(1)
Explanation:
Let
tanx+2=t
sec2xdx=dt
Put in (1)
dtt=log|t|+C
=log|tanx+2|+C

Indefinite Integrals exercise 18.8 question 42

Answer:
log|sin2x+tanx5|+C
Hint:
Put denominator=t
Given:
2cos2x+sec2xsin2x+tanx5dx.....(1)
Explanation:
Let
sin2x+tanx5=t
(2cos2x+sec2x)dx=dt
Put in (1) we get
dtt=log|t|+C
=log|sin2x+tanx5|+C

Indefinite Integrals exercise 18.8 question 43

Answer:
13log|sin3x|15log|sin5x|+C
Hint:
sin(AB)=sinAcosBcosAsinB
Given:
sin2xsin5xsin3xdx
Explanation:
sin(5x3x)sin5xsin3xdx
=sin5xcos3xcos5xsin3xsin5xsin3xdx
=cos3xsin3xdxcos5xsin5xdx
=cot3xdxcot5xdx
=13log|sin3x|15log|sin5x|+C

Indefinite Integrals exercise 18.8 question 44

Answer:
log|x+logsinx|+C
Hint:
Put denominator = t
Given:
1+cotxx+logsinxdx........(1)
Explanation:
Let
x+logsinx=t
(1+1sinx(cosx))dx=dt
(1+cotx)dx=dt
Put in (1) we get
dtt=log|t|+C
=log|x+logsinx|+C

Indefinite Integrals exercise 18.8 question 45

Answer:
cos(ab)log|sin(x+b)|xsin(ab)+C
Hint:
cos(A+B)=cosAcosBsinAsinB
Given:
cos(x+a)sin(x+b)dx
Explanation:
=cos(x+ab+b)sin(x+b)dx ...adding and subtracting b in numerator
=cos(x+b+ab)sin(x+b)dx
=cos(x+b)cos(ab)sin(x+b)sin(ab)sin(x+b)dx
=cot(x+b)cos(ab)dxsin(ab)dx
=cos(ab)cot(x+b)dxsin(ab)dx
=cos(ab)log|sin(x+b)|xsin(ab)+C

Indefinite Integrals exercise 18.8 question 46

Answer:
2log|x+1|+C
Hint:
Let x=t
Given:
1x(x+1)dx.......(1)
Explanation:
Let
x=t
12xdx=dt
dxx=2dt
From (1) we have
2dtt+1=21t+1dt
=2log|t+1|
=2log|x+1|+C

Indefinite Integrals exercise 18.8 question 47

Answer:
15log|cos5x|+12log|cos2x|+13log|cos3x|+C
Hint:
tan(A+B)=tanA+tanB1tanAtanB
Given:
tan2xtan3xtan5xdx.....(1)
Explanation:
tan5x=tan(2x+3x)=tan2x+tan3x1tan2xtan3x
Cross-multiplying
tan5xtan5xtan2xtan3x=tan2x+tan3x
tan5xtan2xtan3x=tan5xtan2xtan3x
Put in (1) we get
(tan5xtan2xtan3x)dx
=15log|cos5x|+12log|cos2x|+13log|cos3x|+C

Indefinite Integrals exercise 18.8 question 48

Answer:
cotθlog|cosxcos(x+θ)|+C
Hint:
tan2x=2tanx1tan2x
Given:
[1+tanxtan|x+θ|]dx...(1)
Explanation:
tanθ=tan[x+θx]=tan(x+θ)tanx1+tanxtan(x+θ)
1+tanxtan(x+θ)=cotθ[tan(x+θ)tanx]
Put in (1)
cotθ[tan(x+θ)tanx]dx
=cotθtan(x+θ)dxcotθtanxdx
=cotθ[log|cos(x+θ)|+log|cosx|]+C
=cotθlog|cosxcos(x+θ)|+C

Indefinite Integrals exercise 18.8 question 49

Answer:
log|sin(x+π6)sin(xπ6)|+C
Hint:
sin(A+B)=sinAcosB+cosAsinB
Given:
sin2xsin(xπ6)sin(x+π6)dx
Explanation:
sin[(xπ6+π6+x)]sin(xπ6)sin(x+π6)dx
sin[(xπ6)+(x+π6)]sin(xπ6)sin(x+π6)dx
=sin(xπ6)cos(x+π6)+cos(xπ6)sin(x+π6)sin(xπ6)sin(x+π6)
=cot(x+π6)dx+cot(xπ6)dx
=log|sin(x+π6)|+log|sin(xπ6)|+C
=log|sin(x+π6)sin(xπ6)|+C

Indefinite Integrals exercise 18.8 question 50

Answer:
1elog|ex+xe|+C
Hint:
Useformulaof1t=log(t)+c
Given:
ex1+xe1ex+xedx....(1)
Explanation:
Let
ex+xe=t
(ex+exe1)dx=dt
e(ex1+xe1)dx=dt
Put in (1)
1edtt=1elog|t|+C
=1elog|ex+xe|+C



Indefinite Integrals exercise 18.8 question 51

Answer:
secx+log|tanx2|+C
Hint:
sin2x+cos2x=1
Given:
1sinxcos2xdx
Explanation:
sin2x+cos2xsinxcos2xdx
=sin2xsinxcos2xdx+1sinxdx
=tanxsecxdx+cosecxdx
=secx+log|tanx2|+C

Indefinite Integrals exercise 18.8 question 52

Answer:
14[cosecxlog|secx+tanx|]+C
Hint:
Put1=sin2x+cos2x
Given:
1cos3xcosxdx
Explanation:
sin2x+cos2xcos3xcosxdx
=sin2x+cos2x4cos3x3cosxcosxdx cos3x=4cos3x3cosx
=sin2x+cos2x4cos3x4cosxdx
=sin2x+cos2x4cosx(cos2x1)dx
=sin2x+cos2x4cosx(sin2x)dx sin2x+cos2x=1
=sin2x4cosxsin2xdx+(cos2x4cosxsin2xdx)
=141cosxdx14cosxsin2xdx
=14secxdx14cotxcosecxdx
=14log|secx+tanx|14(cosecx)+C
=14[cosecxlog|secx+tanx|]+C

Indefinite Integrals exercise 18.9 question 62

Answer: sec32x6sec2x2+c
Hint: Use substitution method to solve this integral

Given: tan32xsec2xdx
Solution:
 Let I=tan32xsec2xdx
I=tan22xtan2xsec2xdx
=(sec22x1)tan2xsec2xdx=(sec22xtan2xsec2xtan2xsec2x)dx=sec22xtan2xsec2xdxtan2xsec2xdx
I=sec22xtan2xsec2xdxtan2xsec2xdx Put sec2x=tsec2x.tan2x2dx=dt
dx=dt2sec2xtan2x then the Ist integral becomes 
I=t2tan2xsec2xdt2sec2xtan2xsec2xtan2xdx
=t22dtsec2xtan2xdx=12t2dtsec2xtan2xdx=12t2+12+1sec2x2+c
=12t33sec2x2+c[xndx=xn+1n+1+c,secaxtanaxdx=secaxa+c]
=16sec32xsec2x2+c[t=sec2x]


RD Sharma Class 12th Exercise 18.8 material is offered by carrier 360 to help students prepare well for their exams. However, as the chapter ‘Indefinite integrals’ contains hundreds of sums, it gets confusing for students to solve all of them. This is why Career360 has provided solutions for students to refer to and complete their syllabus efficiently. This way, they can ensure that no concept is left behind and every part of the syllabus is covered.

As RD Sharma Class 12th Exercise 18.8 material complies with the CBSE syllabus and is updated to the latest version of the book, students can directly refer to it and stay in line with their classes to mark their progress. They can also complete the portion well ahead of time with the help of this material.

Every solution from RD Sharma Class 12th Exercise 18.8 material is passed through various quality tests to ensure that the material provided has the most accurate and easy-to-understand answers. Moreover, as experts prepare this material, students can rest assured that they have the best solutions available.

RD Sharma Class 12 Chapter 18 Exercise 18.8 material is available on the Career360 website free of cost, which means that students can access this material using any device with a browser and internet connection. RD Sharma solutions This material will also help students for revision purposes as the RD Sharma textbook is vast and it does not contain answers for exercise questions.

As teachers can't cover every question in their lectures, students have the extra load of solving the remaining ones. This material will help you get a head start in your preparation and complete homework as well. Thousands of students have already adopted this method of preparation as it is efficient and productive.

RD Sharma Chapter wise Solutions

Frequently Asked Questions (FAQs)

1. Does this material cover all concepts of Indefinite Integrals?

Yes, Class 12 RD Sharma Chapter 18 Exercise 18.8 Solutions contain the best solutions that cover the entire syllabus. You can find all the concepts and the solutions related to them in this material.

2. Do I have to pay any extra charges?

Students can access RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.8 material from the Career360 website for absolutely free without any hidden costs.

3. Can I score good marks through this material?

Preparing from this material will help students better understand the subject with the help of the solutions. This will ensure that they cover all concepts and score good marks in exams.

4. What is Indefinite Integration?

Indefinite Integration is the process of calculating the integral of a function without using any limits. For more information, check RD Sharma Class 12 Solutions Chapter 18 Ex 18.8.

5. How are RD Sharma books better than NCERT for maths?

NCERT books are meant for a basic understanding of the subject, whereas RD Sharma books contain in-depth knowledge about the concepts. This is why RD Sharma books are exam-oriented and more detailed when compared to NCERT books.

Articles

Upcoming School Exams

Application Date:24 March,2025 - 23 April,2025

Admit Card Date:25 March,2025 - 21 April,2025

Admit Card Date:25 March,2025 - 17 April,2025

View All School Exams
Back to top