Careers360 Logo
RD Sharma Class 12 Exercise 18.10 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.10 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:05 PM IST

RD Sharma books are some of the oldest and renowned maths books of all time in India. They are the most detailed and exam-oriented books for maths. RD Sharma books are widely used all over the country by CBSE schools for studies and exam paper setting.

RD Sharma Class 12th Exercise 18.10 contains the chapter ‘Indefinite Integrals.’ This is a small exercise consisting of only ten questions, from which eight are Level 1, and two are Level 2. The level one questions are simple and easy to solve similarly, level two questions have less complexity but are somewhat lengthy and are based on integrating the functions w.r.t to x.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.10

Indefinite Integrals Exercise 18.10 Question 1

Answer:\frac{2}{7}(x+2)^{\frac{7}{2}}-\frac{8}{5}(x+2)^{\frac{5}{2}}+\frac{8}{3}(x+2)^{\frac{3}{2}}+c
Hint: To solve this type of problem, we use substitution method. Let x+2=t then solve the integral by general method.
Given:\int x^{2} \sqrt{x+2} d x
Solution:
Let I=\int x^{2} \sqrt{x+2} d x
Substitute x+2=t \Rightarrow d x=d t
\begin{aligned} I &=\int(t-2)^{2} \sqrt{t} d t \qquad\qquad(\because x=t-2) \\ & \end{aligned}
=\int\left(t^{2}+4-4 t\right) t^{\frac{1}{2}} d t \qquad\qquad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right] \\
=\int\left(t^{2} \cdot t^{\frac{1}{2}}+4 t^{\frac{1}{2}}-4 t . t^{\frac{1}{2}}\right) d t \\
=\int\left(t^{\frac{5}{2}}+4 t^{\frac{1}{2}}-4 t^{\frac{3}{2}}\right) d t \qquad\qquad\left(\because a^{m} \cdot a^{n}=a^{m+n}\right)
\begin{array}{r} =\int t^{\frac{5}{2}} d t+4 \int t^{\frac{1}{2}} d t-4 \int t^{\frac{3}{2}} d t \\ \end{array}
\quad\left[\because \int\{f(x) \pm a g(x)\} d x=\int f(x) d x \pm a \int g(x) d x\right]
=\frac{t^{\frac{5}{2}+1}}{\frac{5}{2}+1}+4 \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}-4 \frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}+c \qquad\qquad\left[\because \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &=\frac{t^{\frac{7}{2}}}{\frac{7}{2}}+4 \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-4 \frac{t^{\frac{5}{2}}}{\frac{5}{2}}+c \\ & \end{aligned}
=\frac{2}{7}(t)^{\frac{7}{2}}-4 \cdot \frac{2}{5}(t)^{\frac{5}{2}}+4 \frac{2}{3}(t)^{\frac{3}{2}}+c \\
=\frac{2}{7}(x+2)^{\frac{7}{2}}-\frac{8}{5}(x+2)^{\frac{5}{2}}+\frac{8}{3}(x+2)^{\frac{3}{2}}+c \qquad \qquad[\because x+2=t]

Indefinite Integrals Exercise 18.10 Question 2

Answer:\frac{2}{5}(x-1)^{\frac{5}{2}}+2(x-1)^{\frac{1}{2}}+\frac{4}{3}(x-1)^{\frac{3}{2}}+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{x^{2}}{\sqrt{x-1}} d x
Solution:
Let I=\int \frac{x^{2}}{\sqrt{x-1}} d x
Substitute x-1=t \Rightarrow d x=d t then
\begin{aligned} I &=\int \frac{(t+1)^{2}}{\sqrt{t}} d t \qquad(\because x=t+1) \\ & \end{aligned}
=\int \frac{t^{2}+1+2 t}{\sqrt{t}} d t \qquad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\
=\int\left(\frac{t^{2}}{\sqrt{t}}+\frac{1}{\sqrt{t}}+2 \frac{t}{\sqrt{t}}\right) d t \\
=\int\left(t^{2-\frac{1}{2}}+t^{-\frac{1}{2}}+2 t^{1-\frac{1}{2}}\right) d t
\begin{aligned} &=\int\left(t^{\frac{3}{2}}+t^{-\frac{1}{2}}+2 t^{\frac{1}{2}}\right) d t \\ & \end{aligned}
=\int t^{\frac{3}{2}} d t+\int t^{-\frac{1}{2}} d t+2 \int t^{\frac{1}{2}} d t
\begin{aligned} &=\frac{t^{\frac{3}{2}}{2}}{\frac{3}{2}+1}+\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+2 \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c \qquad\left[\because f^{n} d t=\frac{t^{n+1}}{n+1}+c\right] \\ & \end{aligned}
=\frac{t^{\frac{5}{2}}}{\frac{5}{2}}+\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+2 \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+c
\begin{aligned} &=\frac{2}{5}(t)^{\frac{5}{2}}+2(t)^{\frac{1}{2}}+2 \cdot \frac{2}{3}(t)^{\frac{3}{2}}+c \\ & \end{aligned}
=\frac{2}{5}(x-1)^{\frac{5}{2}}+2(x-1)^{\frac{1}{2}}+\frac{4}{3}(x-1)^{\frac{3}{2}}+c \qquad[\because x-1=t]

Indefinite Integrals Exercise 18.10 Question 3

Answer:\frac{2}{135}(3 x+4)^{\frac{5}{2}}-\frac{16}{81}(3 x+4)^{\frac{3}{2}}+\frac{32}{27}(3 x+4)^{\frac{1}{2}}+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{x^{2}}{\sqrt{3 x+4}} d x
Solution:
I=\int \frac{x^{2}}{\sqrt{3 x+4}} d x
Put 3 x+4=t \Rightarrow 3 d x=d t \Rightarrow d x=\frac{d t}{3} then
\begin{aligned} &I=\int \frac{\frac{1}{3^{2}}(t-4)^{2}}{\sqrt{t}} \frac{d t}{3} \qquad\left(\because x=\frac{t-4}{3}\right) \\ & \end{aligned}
\Rightarrow I=\frac{1}{3 \times 3^{2}} \int \frac{t^{2}+16-8 t}{\sqrt{t}} d t \qquad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]
\begin{aligned} &\Rightarrow I=\frac{1}{27} \int\left\{\frac{t^{2}}{\sqrt{t}}+16 \frac{1}{\sqrt{t}}-8 \cdot \frac{t}{\sqrt{t}}\right\} d t \\ & \end{aligned}
\Rightarrow I=\frac{1}{27} \int\left\{t^{2-\frac{1}{2}}+16 t^{-\frac{1}{2}}-8 t^{1-\frac{1}{2}}\right\} d t
\begin{aligned} &\Rightarrow I=\frac{1}{27} \int\left(t^{\frac{3}{2}}-8 t^{\frac{1}{2}}+16 t^{-\frac{1}{2}}\right) d t \\ & \end{aligned}
\Rightarrow I=\frac{1}{27}\left[\int t^{\frac{3}{2}} d t-8 \int t^{\frac{1}{2}} d t+16 \int t^{-\frac{1}{2}} d t\right]
\Rightarrow I=\frac{1}{27}\left[\frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}-8 \cdot \frac{t^{\frac{1}{2}}{2}+1} + 16 \cdot \frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+c\right] \qquad\left[\because f t^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &\Rightarrow I=\frac{1}{27}\left[\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-8 \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+16 \frac{t^{\frac{1}{2}}}{\frac{1}{2}}+c\right] \\ & \end{aligned}
\Rightarrow I=\frac{1}{27}\left[\frac{2}{5}(t)^{\frac{5}{2}}-8 \cdot \frac{2}{3}(t)^{\frac{3}{2}}+16.2(t)^{\frac{1}{2}}+c\right] \\
\Rightarrow I=\frac{2}{135}(3 x+4)^{\frac{5}{2}}-\frac{16}{81}(3 x+4)^{\frac{3}{2}}+\frac{32}{27}(3 x+4)^{\frac{1}{2}}+c

Indefinite Integrals exercise 18.10 question 4

Answer: 2 \log |(x-1)|-\frac{1}{x-1}+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{2 x-1}{(x-1)^{2}} d x
Solution:
Let I=\int \frac{2 x-1}{(x-1)^{2}} d x
Put x-1=t \Rightarrow d x=d t then
I=\int \frac{2(t+1)-1}{(t)^{2}} d t
\begin{aligned} &\Rightarrow I=\int \frac{2 t+2-1}{t^{2}} d t=\int \frac{2 t+1}{t^{2}} d t \\ & \end{aligned}
\Rightarrow I=\int \frac{2 t}{t^{2}}+\frac{1}{t^{2}} d t=\int\left\{2 t^{1-2}+t^{-2}\right\} d t \\
\Rightarrow I=\int\left(2 t^{-1}+t^{-2}\right) d t=\int\left\{\frac{2}{t}+t^{-2}\right\} d t \\
\Rightarrow I=2 \int \frac{1}{t} d t+\int t^{-2} d t
\Rightarrow I=2 \log |t|+\frac{t^{-2+1}}{-2+1}+c \qquad\left[\int \frac{1}{t} d t=\log |t|+c \& \int f^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &\Rightarrow I=2 \log |t|+\frac{t^{-1}}{-1}+c \\ & \end{aligned}
\Rightarrow I=2 \log |(x-1)|-(x-1)^{-1}+c \\
\therefore I=2 \log |(x-1)|-\frac{1}{x-1}+c

Indefinite Integrals exercise 18.10 question 5

Answer:\frac{4}{7}(x+2)^{\frac{7}{2}}-\frac{16}{5}(x+2)^{\frac{5}{2}}+\frac{22}{3}(x+2)^{\frac{3}{2}}+c
Hint: Use substitution method to solve this type of integral
Given:\int\left(2 x^{2}+3\right) \sqrt{x+2} d x
Solution: Let I=\int\left(2 x^{2}+3\right) \sqrt{x+2} d x
Put x+2=t \Rightarrow d x=d t
\begin{aligned} &I=\int\left\{2(t-2)^{2}+3\right\} \sqrt{t} d t \qquad(\because x=t-2) \\ & \end{aligned}
\Rightarrow I=\int\left\{2\left(t^{2}-4 t+4\right)+3\right\} \sqrt{t} d t \qquad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]
\begin{aligned} &\Rightarrow I=\int\left\{2 t^{2}-8 t+8+3\right\} \sqrt{t} d t \\ & \end{aligned}
\Rightarrow I=\int\left(2 t^{2}-8 t+11\right) \sqrt{t} d t \\
\Rightarrow I=\int\left(2 t^{2} \sqrt{t}-8 t \cdot \sqrt{t}+11 \sqrt{t}\right) d t
\begin{aligned} &\Rightarrow I=\int\left(2 t^{2+\frac{1}{2}}-8 t^{1+\frac{1}{2}}+11 t^{\frac{1}{2}}\right) d t \\ & \end{aligned}
\Rightarrow I=\left[2 \int t^{\frac{5}{2}} d t-8 \int t^{\frac{3}{2}} d t+11 \int t^{\frac{1}{2}} d t\right]
\Rightarrow I=\left[2 \cdot \frac{t^{\frac{5}{2}+1}}{\frac{5}{2}+1}-8 \cdot \frac{t^{\frac{3}{2}}{ } \frac{1}{2}+1} + 11 \cdot \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c\right] \qquad\left[\because \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &\Rightarrow I=\left[2 \cdot \frac{t^{\frac{7}{2}}}{\frac{7}{2}}-8 \cdot \frac{t^{\frac{5}{2}}}{\frac{5}{2}}+11 \cdot \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+c\right] \\ & \end{aligned}
\Rightarrow I=2 \cdot \frac{2}{7} t^{\frac{7}{2}}-8 \cdot \frac{2}{5} t^{\frac{5}{2}}+11 \cdot \frac{2}{3} t^{\frac{3}{2}}+c \\
\Rightarrow I=\frac{4}{7}(x+2)^{\frac{7}{2}}-\frac{16}{5}(x+2)^{\frac{5}{2}}+\frac{22}{3}(x+2)^{\frac{3}{2}}+c

Indefinite Integrals exercise 18.10 question 6

Answer:(x+1)+\log |(x+1)|+\frac{1}{x+1}+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{x^{2}+3 x+1}{(x+1)^{2}} d x
Solution: let I=\int \frac{x^{2}+3 x+1}{(x+1)^{2}} d x
Substitute x+1=t \Rightarrow d x=d t then
\Rightarrow I=\int \frac{(t-1)^{2}+3(t-1)+1}{t^{2}} d t \qquad(\because x=t-2)
\begin{aligned} &\Rightarrow I=\int \frac{t^{2}-2 t+1+3 t-3+1}{t^{2}} d t \qquad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right] \\ & \end{aligned}
\Rightarrow I=\int \frac{t^{2}+t-1}{t^{2}} d t \\
\Rightarrow I=\int \frac{t^{2}}{t^{2}}+\frac{t}{t^{2}}-\frac{1}{t^{2}} d t
\begin{aligned} &\Rightarrow I=\int\left(1+\frac{1}{t}-t^{-2}\right) d t \\ & \end{aligned}
\Rightarrow I=\int t^{0} d t+\int \frac{1}{t} d t-\int t^{-2} d t
\Rightarrow I=\frac{t^{0+1}}{0+1}+\log |t|-\frac{t^{-2+1}}{-2+1}+c \qquad\left[\int \frac{1}{t} d t=\log |t|+c \& \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &\Rightarrow I=t+\log |t|-\frac{t^{-1}}{-1}+c \\ & \end{aligned}
\Rightarrow I=t+\log |t|+\frac{1}{t}+c \\
\therefore I=(x+1)+\log |(x+1)|+\frac{1}{x+1}+c

Indefinite Integrals Excercise 18.10 Question 7

Answer:-\frac{2}{5}(1-x)^{\frac{5}{2}}+\frac{4}{3}(1-x)^{\frac{3}{2}}+-2(1-x)^{\frac{1}{2}}+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{x^{2}}{\sqrt{1-x}} d x
Solution: Let I=\int \frac{x^{2}}{\sqrt{1-x}} d x
Substitute 1-x=t \Rightarrow d x=-d t then
\begin{aligned} &I=\int \frac{(1-t)^{2}}{\sqrt{t}}(-d t) \qquad(\because x=1-t) \\ & \end{aligned}
\Rightarrow I=-\int\left(\frac{1+t^{2}-2 t}{\sqrt{t}}\right) d t \qquad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]
\begin{aligned} &\Rightarrow I=-\int\left\{\frac{1}{\sqrt{t}}+\frac{t^{2}}{\sqrt{t}}-\frac{2 t}{\sqrt{t}}\right\} d t \\ & \end{aligned}
\Rightarrow I=-\int\left(t^{\frac{-1}{2}}+t^{2-\frac{1}{2}}-2 t^{1-\frac{1}{2}}\right) d t \\
\Rightarrow I=-\left[\int t^{-\frac{1}{2}} d t+\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t\right.
\Rightarrow I=-\left[\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+\frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}-2 \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c\right] \qquad\left[\because \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &\Rightarrow I=-\left[\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2 \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+c\right] \\ & \end{aligned}
\Rightarrow I=-\left[2 . t^{\frac{1}{2}}+\frac{2}{5} t^{\frac{5}{2}}-2 \cdot \frac{2}{3} t^{\frac{3}{2}}\right]+c \\
\Rightarrow I=-2(1-x)^{\frac{1}{2}}-\frac{2}{5}(1-x)^{\frac{5}{2}}+\frac{4}{3}(1-x)^{\frac{3}{2}}+c \qquad[\because 1-x=t]
\therefore I=-\frac{2}{5}(1-x)^{\frac{5}{2}}+\frac{4}{3}(1-x)^{\frac{3}{2}}+-2(1-x)^{\frac{1}{2}}+c


Indefinite Integrals Excercise 18.10 Question 7

Answer:-\frac{2}{5}(1-x)^{\frac{5}{2}}+\frac{4}{3}(1-x)^{\frac{3}{2}}+-2(1-x)^{\frac{1}{2}}+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{x^{2}}{\sqrt{1-x}} d x
Solution: Let I=\int \frac{x^{2}}{\sqrt{1-x}} d x
Substitute 1-x=t \Rightarrow d x=-d t then
\begin{aligned} &I=\int \frac{(1-t)^{2}}{\sqrt{t}}(-d t) \qquad(\because x=1-t) \\ & \end{aligned}
\Rightarrow I=-\int\left(\frac{1+t^{2}-2 t}{\sqrt{t}}\right) d t \qquad\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]
\begin{aligned} &\Rightarrow I=-\int\left\{\frac{1}{\sqrt{t}}+\frac{t^{2}}{\sqrt{t}}-\frac{2 t}{\sqrt{t}}\right\} d t \\ & \end{aligned}
\Rightarrow I=-\int\left(t^{\frac{-1}{2}}+t^{2-\frac{1}{2}}-2 t^{1-\frac{1}{2}}\right) d t \\
\Rightarrow I=-\left[\int t^{-\frac{1}{2}} d t+\int t^{\frac{3}{2}} d t-2 \int t^{\frac{1}{2}} d t\right.
\Rightarrow I=-\left[\frac{t^{-\frac{1}{2}+1}}{-\frac{1}{2}+1}+\frac{t^{\frac{3}{2}+1}}{\frac{3}{2}+1}-2 \frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c\right] \qquad\left[\because \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right]
\begin{aligned} &\Rightarrow I=-\left[\frac{t^{\frac{1}{2}}}{\frac{1}{2}}+\frac{t^{\frac{5}{2}}}{\frac{5}{2}}-2 \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+c\right] \\ & \end{aligned}
\Rightarrow I=-\left[2 . t^{\frac{1}{2}}+\frac{2}{5} t^{\frac{5}{2}}-2 \cdot \frac{2}{3} t^{\frac{3}{2}}\right]+c \\
\Rightarrow I=-2(1-x)^{\frac{1}{2}}-\frac{2}{5}(1-x)^{\frac{5}{2}}+\frac{4}{3}(1-x)^{\frac{3}{2}}+c \qquad[\because 1-x=t]
\therefore I=-\frac{2}{5}(1-x)^{\frac{5}{2}}+\frac{4}{3}(1-x)^{\frac{3}{2}}+-2(1-x)^{\frac{1}{2}}+c

Indefinite Integrals Excercise 18.10 Question 8

Answer:\frac{(1-x)^{25}}{25}-\frac{(1-x)^{24}}{24}+c
Hint: Use substitution method to solve this type of integral
Given:\int x(1-x)^{23} d x
Solution: let I=\int x(1-x)^{23} d x
Substitute 1-x=t \Rightarrow-d x=d t then
\begin{aligned} &I=\int(1-t) \cdot t^{23}(-d t) \qquad(\because x=1-t) \\ & \end{aligned}
\Rightarrow I=-\int(1-t) \cdot t^{23} d t=-\int t^{23}-t . t^{23} d t \\
\Rightarrow I=-\int\left(t^{23}-t^{24}\right) d t=-\int t^{23} d t+\int t^{24} d t
\begin{aligned} &\Rightarrow I=-\frac{t^{23+1}}{23+1}+\frac{t^{24+1}}{24+1}+c \qquad\left[\because \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right] \\ & \end{aligned}
\Rightarrow I=\frac{t^{25}}{25}-\frac{t^{24}}{24}+c \\
\therefore I=\frac{(1-x)^{25}}{25}-\frac{(1-x)^{24}}{24}+c

Indefinite Integrals Excercise 18.10 Question 9

Answer:2 \sqrt{x}-4 x^{\frac{1}{4}}+4 \log \left|1+x^{\frac{1}{4}}\right|+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{1}{\sqrt{x}+\sqrt[4]{x}} d x
Solution:
Let I=\int \frac{1}{\sqrt{x}+\sqrt[4]{x}} d x
In the given integral, the exponent of x \text { are } \frac{1}{2} \& \frac{1}{4} and the LCM of denominators is 4
Substitute x=t^{4} \Rightarrow d x=4 t^{3} d t then
\begin{aligned} &\Rightarrow I=\int \frac{1}{t^{2}+t}\left(4 t^{3}\right) d t \qquad\left(\because x=t^{4}\right) \\ & \end{aligned}
\Rightarrow I=4 \int \frac{t^{3}}{t^{2}+t} d t \\
\Rightarrow I=\int \frac{t^{3}+t^{2}-t^{2}}{t^{2}+t} d t\qquad\left[\text { we can write } t^{3}=t^{3}+t^{2}-t^{2}\right]
\begin{aligned} &\Rightarrow I=4 \int \frac{t\left(t^{2}+t\right)-t^{2}}{\left(t^{2}+t\right)} d t \\ & \end{aligned}
\Rightarrow I=4 \int\left(t-\frac{t^{2}}{t^{2}+t}\right) d t \\
\Rightarrow I=4 \int\left\{t-\frac{t^{2}+t}{t^{2}+t}-\frac{t}{t^{2}+t}\right\} d t
\begin{aligned} &\Rightarrow I=4 \int\left\{t-1-\frac{t}{t(t+1)}\right\} d t=4 \int\left\{t-1-\frac{1}{(t+1)}\right\} d t \\ & \end{aligned}
\Rightarrow I=4 \int t d t-4 \int t^{0} d t-4 \int \frac{1}{t+1} d t
\begin{aligned} &\Rightarrow I=4 \frac{t^{1+1}}{1+1}-4 \log |t+1|-4 t+c \\ & \end{aligned}
\Rightarrow I=4 \frac{t^{2}}{2}-4 t-4 \log |t+1|+c \\
\therefore I=2 \sqrt{x}-4 x^{\frac{1}{4}}+4 \log \left|1+x^{\frac{1}{4}}\right|+c

Indefinite Integrals Excercise 18.10 Question 10

Answer:3 x^{\frac{1}{3}}+3 \log \left|x^{\frac{1}{3}}-1\right|+c
Hint: Use substitution method to solve this type of integral
Given:\int \frac{1}{x^{\frac{1}{3}}\left(x^{\frac{1}{3}}-1\right)} d x
Solution: let I=\int \frac{1}{x^{\frac{1}{3}}\left(x^{\frac{1}{3}}-1\right)} d x
Substitute x=t^{3} \Rightarrow d x=3 t^{2} d t then
\begin{aligned} I &=I=\int \frac{1}{t(t-1)} 3 t^{2} d t \quad\left(\because x^{\frac{1}{3}}=t\right) \\ & \end{aligned}
=3 \int \frac{t^{2}}{t(t-1)} d t=3 \int \frac{t}{t-1} d t \\
=3 \int \frac{t+1-1}{t-1} d t=3 \int\left(\frac{t-1}{t-1}+\frac{1}{t-1}\right)dt
\begin{aligned} &=3 \frac{t^{0+1}}{0+1}+3 \log |t-1|+c \qquad\left[\int \frac{1}{t} d t=\log |t|+c \& \int t^{n} d t=\frac{t^{n+1}}{n+1}+c\right] \\ & \end{aligned}
=3 t+3 \log |t-1|+c \\
\therefore I=3 x^{\frac{1}{3}}+3 \log \left|x^{\frac{1}{3}}-1\right|+c

RD Sharma Class 12th Exercise 18.10 solved material provided by Career360 helps students get answers for all important topics from the chapter. As the solutions are expert-created, students need not worry about the accuracy of these answers. In addition, every solution from this material goes through rigorous testing to ensure that only the best quality answers reach the students.

As RD Sharma Class 12th Exercise 18.10 material complies with the CBSE syllabus, students can refer to it to stay in line with their classes. They can refer to the solutions for homework questions as well as exam preparation. RD Sharma Class 12th Exercise 18.10 solutions contain step-by-step answers that are easy to understand and have good use of concepts. They can be understood by all sorts of students no matter how strong or weak their academics are.

Students can divide up their work as there are hundreds of sums in this chapter. They can complete a fixed amount of questions per day to efficiently complete the chapter in minimum time. As these solutions are available on Career360’s website, they can be accessed through any device with an internet connection. RD Sharma Solution Students can prepare from RD Sharma Class 12th Exercise 18.10 solutions from the comfort of their homes. This is the most convenient and efficient mode of preparation available for students.

Students who find it challenging to study RD Sharma's book can refer to RD Sharma Class 12 Chapter 18 Exercise 18.10 solutions to better understand. As these solutions cover the entire syllabus, there is nothing else that students will need after preparing this material. Additionally, as RD Sharma books are widely used, questions from these solutions could also appear in the exams.

Thousands of students have already started preparing using this material, which is available for free on Career360’s website. Students can refer to Class 12 RD Sharma Chapter 18 Exercise 18.10 Solutions anytime using their devices, making it convenient and accessible to everyone. Studying maths has never been more convenient with the help of this material.

RD Sharma Chapter wise Solutions

Frequently Asked Question (FAQs)

1. Does this material contain correct answers?

RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.10 material provided by Career360 is prepared by experts and contains the most accurate answers for RD Sharma books.

2. Does this material follow the 2021-2022 version of RD Sharma's book?

Yes, this material is updated to the latest version and contains all the relevant concepts and questions.

3. Can I prepare only using this material?

Once students practice using RD Sharma Class 12 solutions Chapter 18 Ex 18.10 material, they need not follow other materials as this covers all the concepts, and the answers are exam-oriented.

4. What is integration by parts?

The process of dividing the function into different parts and then separately integrating is called integration by parts.

5. Are there additional costs?

No, this material is available for free on Career360's website. Students can access them on any device with an internet connection.

Articles

Get answers from students and experts
Back to top