RD Sharma Solutions Class 12 Mathematics Chapter 18 MCQ

RD Sharma Solutions Class 12 Mathematics Chapter 18 MCQ

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:30 PM IST

The class 12 RD Sharma chapter 18 exercise MCQ Indefinite Integrals course of action is particularly trusted and proposed by students and educators across the entire country The appropriate responses in the RD Sharma class 12th exercise MCQ are handpicked and made via prepared experts, making them exact and sensible enough for students In addition, in RD Sharma Solutions class 12 chapter 18 exercise MCQ, the experts offer response keys and some surprising tips in the book that the students presumably will not find elsewhere RD Sharma class 12 solutions MCQ Chapter 18 has around 43 questions

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter 18 MCQ Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise: MCQ
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter 18 MCQ Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise: MCQ

Indefinite Integrals Exercise Multiple Choice Questions Question 2

Answer:
\frac{1}{2} \log \left(\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)\right)+C
Given:
\int \frac{1}{\cos x+\sqrt{3} \sin x} d x
Hint:
You must know about the \int \cos e c x d x
Explanation:
Let I=\int \frac{1}{2\left(\sin x \cdot \frac{\sqrt{8}}{2}+\cos x \cdot \frac{1}{2}\right)} d x
=\frac{1}{2} \int \frac{d x}{\sin x \cos _{6}^{\pi}+\cos x \sin \frac{\pi}{6}} \left[\because \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} ; \sin \frac{\pi}{6}=\frac{1}{2}\right]
=\frac{1}{2} \int \frac{d x}{\sin \left(x+\frac{\pi}{6}\right)} [\sin (A+B)=\sin A \cos B+\cos A \sin B]
=\frac{1}{2} \int \operatorname{cosec}\left(x+\frac{\pi}{6}\right) d x \left[\because \sin x=\frac{1}{\cos \theta c x}\right]
=\frac{-1}{2} \log \left(\operatorname{cosec}\left(x+\frac{\pi}{6}\right)+\cot \left(x+\frac{\pi}{6}\right)\right)+C \left[\int \operatorname{cosec}(x) d x=-\log (\operatorname{cosec} x+\cot x)+c\right]
Now,
\begin{aligned} \cos e c x+\cot x &=\frac{1}{\sin x}+\frac{\cos x}{\sin x} \\ &=\frac{1+\cos x}{\sin x} \\ &=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos _{2}^{x}} \end{aligned} \left[\because 1+\cos 2 \theta=2 \cos ^{2} \theta ; \sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]
=\cot \frac{x}{2}
\therefore \text { From } E q \cdot(i)
\begin{aligned} &I=\frac{-1}{2} \log \left(\cot \left(\frac{x+\frac{\pi}{6}}{2}\right)\right)+C \\ &=\frac{1}{2} \log \left[\cot \left(\frac{x}{2}+\frac{\pi}{12}\right)\right]^{-1}+C \\ &=\frac{1}{2} \log \left(\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)\right)+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 4

Answer:
A=\frac{2}{3}, B=\frac{5}{3}
Given:
\int \frac{1}{5+4 \sin x} d x=A \tan ^{-1}\left(B \tan \frac{x}{2}+\frac{4}{3}\right)+C
Hint
Using \int \frac{1}{1+t^{2}} d t
Explanation:
Let\mathrm{I}=\int \frac{1}{5+4 \sin x} d x
\begin{aligned} &=\int \frac{1}{5+4.2 \sin \frac{x}{2} \cos \frac{x}{2}} d x \\ &=\int \frac{1}{5.1+8 \sin \frac{x}{2} \cos \frac{x}{2}} d x \end{aligned} [\because \sin 2 \theta=2 \sin \theta \cos \theta]
=\int \frac{1}{5\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x^{2}}{2}\right)+8 \sin \frac{x}{2} \cos _{2}^{x}} d x \left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]
=\int \frac{1}{5 \sin ^{2} \frac{x}{2}+5 \cos ^{2} \frac{x}{2}+8 \sin \frac{x}{2} \cos _{2}^{x}} d x
Divide num and den by \cos ^{2} \frac{x}{2}
\begin{aligned} &=\int \frac{\frac{1}{\cos ^{2} \frac{x}{2}}}{5 \tan ^{2} \frac{x}{2}+5+8 \tan _{2}^{x}} d x \\ &=\frac{1}{5} \int \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}+\frac{8}{5} \tan _{2}^{x}+1} d x \end{aligned} \left[\because \sec x=\frac{1}{\cos x}\right]
=\frac{1}{5} \int \frac{2}{t^{2}+\frac{8}{5} t+1} d t \left[\text { Put } \tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x=d t \Rightarrow \sec ^{2} \frac{x}{2} d x=2 d t\right]
\begin{aligned} &=\frac{2}{5} \int \frac{d t}{t^{2}+\frac{8 t}{5}+\left(\frac{4}{5}\right)^{2}-\left(\frac{4}{5}\right)^{2}+1} \\ &=\frac{2}{5} \int \frac{d t}{\left(t+\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}} \\ &=\frac{2}{5} \times \frac{1}{\frac{3}{5}} \tan ^{-1}\left(\frac{5 t+4}{3}\right)+C \quad \ldots \ldots \ldots \ldots \ldots\left\{\frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c\right\} \end{aligned}
\therefore I=\frac{2}{3} \tan ^{-1}\left(\frac{5}{3} \tan \frac{x}{2}+\frac{4}{3}\right)+C [E q \cdot(i)]
Acc to given,
\mathrm{I}=A \tan ^{-1}\left(B \tan \frac{x}{2}+\frac{4}{3}\right)+C [E q \cdot(i i)]

From Eq ( i ) and ( ii )

A \tan ^{-1}\left(B \tan \frac{x}{2}+\frac{4}{3}\right)+C=\frac{2}{3} \tan ^{-1}\left(\frac{5}{3} \tan \frac{x}{2}+\frac{4}{3}\right)+C
Comparing both sides, we get
A=\frac{2}{3}, B=\frac{5}{3}


Indefinite Integrals Exercise Multiple Choice Questions Question 5

Answer:
x^{\sin x}+C
Given:
\int x^{\sin x}\left(\frac{\sin x}{x}+\cos x \cdot \log x\right) d x
Hint:
You must know about the derivation of x^{\sin x}
Explanation:
Let\mathrm{I}=\int x^{\sin x}\left(\frac{\sin x}{x}+\cos x \cdot \log x\right)
=\int t \cdot \frac{d t}{t} \text { [ Put } x^{\sin x}=t, \text { Taking log of both sides }
=\int 1 d t \sin x \cdot \log x=\log t
=t+CDiff w r t t,
=x^{\sin x}+C\left.\left(\log x \cos x+\frac{\sin x}{x}\right) \frac{d x}{d t}=\frac{1}{t} \Rightarrow\left(\log x \cos x+\frac{\sin x}{x}\right) d x=\frac{d t}{t}\right]


Indefinite Integrals Exercise Multiple Choice Questions Question 7

Answer:
\frac{1}{16}
Given:
\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=a \cos 8 x+C
Hint
Using \int \sin x d x
Explanation:
LetI=\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x
=\int \frac{2 \cos ^{2} 4 x-1+1}{\frac{\sin 2 x}{\cos 2 x}-\frac{\cos 2 x}{\sin 2 x}} d x \quad\left\[\because 2 \cos ^{2} x=1+\cos 2 x ; \tan x=\frac{\sin x}{\cos x} ; \cot x=\frac{\cos x}{\sin x}\right]
=\int \frac{2 \cos ^{2} 4 x \cdot \sin 2 x \cos 2 x}{\sin ^{2} 2 x-\cos ^{2} 2 x} d x
=\int \frac{\cos ^{2} 4 x \sin 4 x}{-\cos 4 x} d x \left[\because \cos ^{2} x-\sin ^{2} x=\cos 2 x\right]
=-\int \cos 4 x \sin 4 x d x
=-\frac{1}{2} \int \sin 8 x d x [\because \sin 2 x=2 \sin x \cos x]
=-\frac{1}{2} \int \sin 8 x d x [\because \sin 2 x=2 \sin x \cos x]
\begin{aligned} &=-\frac{1}{2}\left(-\frac{\cos 8 x}{8}\right)+C \\ &I=\frac{\cos 8 x}{16}+C \end{aligned}
According to given,
\begin{aligned} &I=a \cos 8 x+C \\ &\because a \cos 8 x+C=\frac{1}{16} \cos 8 x+C \\ &\therefore a=\frac{1}{16} \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 8

Answer:
-\frac{1}{2}
Given:
\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=a \sin 2 x+C
Hint:
Using identity \left(a^{2}-b^{2}\right) \& \int \cos x d x
Explanation:
LetI=\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x
=\int \frac{\left(\sin ^{4} x\right)^{2}-\left(\cos ^{4} x\right)^{2}}{\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x} d x \left[\because \sin ^{2} x+\cos ^{2} x=1\right]
\begin{aligned} &=\int \frac{\left(\sin ^{4} x-\cos ^{4} x\right)\left(\sin ^{4} x+\cos ^{4} x\right)}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x \\ &=\int\left(\sin ^{4} x-\cos ^{4} x\right) d x \\ &=-\int\left(\cos ^{4} x-\sin ^{4} x\right) d x \\ &=-\int\left(\cos ^{2} x-\sin ^{2} x\right)\left(\cos ^{2} x+\sin ^{2} x\right) d x \end{aligned} \left[\because a^{2}-b^{2}=(a+b)(a-b)\right]
=-1 \int \cos 2 x(1) d x \left[\because \sin ^{2} x+\cos ^{2} x=1\right]
According to given : I=a \sin 2 x+C
\therefore a \sin 2 x+C=-\frac{1}{2} \sin 2 x+C
Comparing both sides, we get
a=-\frac{1}{2}

Indefinite Integrals Exercise Multiple Choice Questions Question 9

Answer:
-x e^{-x}+C
Given:
\int(x-1) e^{-x} d x
Hint:
Using integration by parts & \int e^{-x} d x
Explanation:
LetI=\int(x-1) e^{-x} d x
\begin{aligned} &=\int x e^{-x} d x-\int e^{-x} d x \\ &=x \frac{e^{-x}}{-1}+\int(1) e^{-x} d x-\int e^{-x} d x \end{aligned} \left[\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right]
=-x e^{-x}+\int e^{-x} d x-\int e^{-x} d x \left[\because \int e^{x} d x=e^{x}+C\right]
=-x e^{-x}+C

Indefinite Integrals Exercise Multiple Choice Questions Question 10

Answer:
-\frac{1}{\log _{e} 2}
Given:
\int \frac{2^{\frac{1}{x}}}{x^{2}} d x=K 2^{\frac{1}{x}}+C
Hint
Using \int a^{x} d x
Explanation:
Let=\int \frac{2^{\frac{1}{x}}}{x^{2}} d x \text { [Put } \frac{1}{x}=t \Rightarrow-\frac{1}{x^{2}} d x=d t \Rightarrow \frac{d x}{x^{2}}=-d t
\begin{aligned} &=-\int 2^{t} d t \\ &=-\frac{2^{t}}{l o g_{e} 2}+2 \end{aligned}
=-\frac{2 \frac{1}{x}}{\log _{e} 2}+2 \left[\because \int a^{x} d x=\frac{a^{x}}{\log _{e} a}\right]
According to given:I=K 2^{\frac{1}{x}}+C
\therefore K 2^{\frac{1}{x}}+C=-\frac{1}{\log _{e} 2} \cdot 2^{\frac{1}{x}}+C

Comparing both sides,

K=\frac{-1}{\log _{e} 2}


Indefinite Integrals Exercise Multiple Choice Questions Question 11

Answer:
\frac{1}{2}[x+\log |(\sin x+\cos x)|]+C
Given:
\int \frac{1}{1+\tan x} d x
Hint:
You must know about the derivation of sin x and cos x and use \int \frac{d x}{x}
Explanation:
Let I=\int \frac{1}{1+\tan x} d x
=\frac{1}{1+\tan x}
=\frac{1}{1+\frac{\sin x}{\cos x}} \left[\because \tan x=\frac{\sin x}{\cos x}\right]
=\frac{\cos x}{\cos x+\sin x}
=\frac{2 \cos x}{2(\cos x+\sin x)}
=\frac{(\cos x+\sin x)+(\cos x-\sin x)}{2(\cos x+\sin x)} [Special step]
\begin{aligned} &\quad=\frac{1}{2}\left[1+\frac{\cos x-\sin x}{\cos x+\sin x}\right] \\ &\therefore I_{2}=\int \frac{1}{1+\tan x} d x \\ &\quad=\int \frac{1}{2} d x+\frac{1}{2} \int \frac{\cos x-\sin x}{\cos x+\sin x} d x \\ &\therefore I_{2}=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{d t}{t} \end{aligned} \left[\operatorname{Put} \cos x+\sin x=t \text { in } I_{2}\right]
[(-\sin x+\cos x) d x=d t \Rightarrow(\cos x-\sin x) d x=d t]
=\frac{1}{2} x+\frac{1}{2} \log |t|+C
=\frac{1}{2}[x+\log |(\cos x+\sin x)|]+C

Indefinite Integrals Exercise Multiple Choice Questions Question 12

Answer:
None of these
Given:
\int|x|^{3} d x
Hint:
Using\int x^{n} d x
Explanation:
LetI=\int|x|^{3} d x
Here two cases arise
\begin{aligned} &I=\left\{-x^{3}, x<0 ; x^{3}, x \geq 0\right.\\ &\therefore \text { Case I, when } x<0 \end{aligned}
\begin{aligned} &I=\int_{4}-x^{3} d x \\ &=\frac{-x^{4}}{4}+C \end{aligned} \left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]
\text { Case II, when } x \geq 0
\begin{aligned} &I=\int_{4} x^{3} d x \\ &=\frac{x^{4}}{4}+C \end{aligned} \left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]
Combining these two, we get
I=\pm \frac{x^{4}}{4}+C

Indefinite Integrals Exercise Multiple Choice Questions Question 14

Answer:
-e^{x} \cot x+C
Given:
\int e^{x}\left(1-\cot x+\cot ^{2} x\right) d x
Hint:
Using integration by parts
Explanation:
Let I=\int e^{x}\left(1-\cot x+\cot ^{2} x\right) d x
\begin{aligned} &=\int e^{x}\left[\left(1+\cot ^{2} x\right)-\cot x\right] d x \\ &=\int e^{x}\left(\operatorname{cosec}^{2} x-\cot x\right) d x \end{aligned} \left[\because 1+\cot ^{2} \theta=\cos e c^{2} \theta\right]
\begin{aligned} &=-\int e^{x}\left(\cot x-\cos e c^{2} x\right) d x \\ =&-\int e^{x} \cot x d x+\int e^{x} \operatorname{cosec}^{2} x d x \\ =&-\left[\cot x \cdot e^{x}-\int\left(-\cos e c^{2} x\right) e^{x} d x\right]+\int e^{x} \cos e c^{2} x d x \ldots .\left\{\int u \cdot v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ =&-\cot x \cdot e^{x}-\int e^{x} \cos e c^{2} x d x+\int e^{x} \cos e c^{2} x d x \\ =&-\cot x e^{x}+C \quad \text { [Using integration by parts ] } \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 16

Answer:
\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{1}{\sqrt{6}} \tan \frac{x}{2}\right)+C
Given:
\int\left(\frac{1}{7+5 \cos x}\right) d x
Hint:
You must know about the derivation of tan x and using \int \frac{1}{1+x^{2}} d x
Explanation:
Let \mathrm{I}=\int \frac{1}{7+5 \cos x} d x
\text { Put } \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}
\begin{aligned} \therefore I &=\int \frac{1}{7+5\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x \\ &=\int \frac{1+\tan ^{2} \frac{x}{2}}{7\left(1+\tan ^{2} \frac{x}{2}\right)+5-5 \tan ^{2} \frac{x}{2}} d x \\ &=\int \frac{\sec ^{2} \frac{x}{2}}{12+2 \tan ^{2} \frac{x}{2}} \\ &=\frac{1}{2} \int \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}+6} d x \\ &=\frac{1}{2} \int \frac{2 d t}{t^{2}+(\sqrt{6})^{2}} \end{aligned} \text { [ Put } \left.\tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x=d t \Rightarrow \sec ^{2} \frac{x}{2} d x=2 d t\right]
\begin{aligned} &=\int \frac{d t}{t^{2}+(\sqrt{6})^{2}} \\ &=\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{t}{\sqrt{6}}\right)+C \ldots \ldots \ldots \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c \\ &=\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{\tan \frac{x}{2}}{\sqrt{6}}\right)+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 17

Answer:
\log \left|1-\cot \frac{x}{2}\right|+C
Given:
\int \frac{1}{1-\cos x-\sin x} d x
Hint:
Using partial fraction and \int \frac{1}{x} d x
Explanation:
Let \mathrm{I}=\int \frac{1}{1-\cos x-\sin x} d x
\begin{aligned} &\text { Put } \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan \frac{x^{x}}{2}} ; \sin x=\frac{2 \tan _{2}^{x}}{1+\tan ^{\frac{x}{2}}}\\ &\therefore I=\int \frac{1}{1-\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)-\left(\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x \end{aligned}
\begin{aligned} &=\int \frac{1+\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}-1+\tan ^{2}-2 \tan \frac{x}{2}} d x \\ =& \int \frac{\sec ^{2} \frac{x}{2}}{2 \tan ^{2} \frac{x}{2}-2 \tan \frac{x}{2}} d x \\ =& \int \frac{\sec ^{2} \frac{x}{2} \cdot \frac{1}{2}}{\tan \frac{x}{2}\left(\tan _{2}^{x}-1\right)} d x \quad\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta\right] \end{aligned}
=\int \frac{d t}{t(t-1)} \text { [ Put } \left.\tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x=d t\right]
Now,
\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}
Multiplying by t (t - 1)\Rightarrow 1=A(t-1)+B(t)

Putting t = 1

\begin{aligned} &1=A(0-1)+B(0) \Rightarrow A=-1 \\ &\therefore \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1} \\ &\therefore \int \frac{1}{t(t-1)} d t=-\int \frac{1}{t} d t+\int \frac{1}{t-1} d t \end{aligned}
\begin{aligned} &=-\log |t|+\log |t-1|+C \\ &=-\log \left|\tan \frac{x}{2}\right|+\log \left|\tan \frac{x}{2}-1\right|+C \\ &=\log \left|\frac{\tan _{\frac{x}{2}}-1}{\tan _{2}^{\frac{x}{x}}}\right|+C \\ &=\log \left|1-\cot \frac{x}{2}\right|+C \end{aligned}\left[\because \cot x=\frac{1}{\tan x}\right]

Indefinite Integrals Exercise Multiple Choice Questions Question 19

Answer:
\frac{-1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C
Given:
\int \frac{\sin x}{3+4 \cos ^{2} x} d x
Hint:
You must know about the derivative of cos x and \int \frac{1}{1+x^{2}} d x
Explanation:
Let I=\int \frac{\sin x}{3+4 \cos ^{2} x} d x
=\int \frac{-d t}{3+4 t^{2}} [\text { Put } \cos x=t \Rightarrow-\sin x d x=d t \Rightarrow \sin x d x=-d t]
\begin{aligned} &=\frac{-1}{4} \int \frac{d t}{t^{2}+\frac{3}{4}} \\ =& \frac{-1}{4} \int \frac{d t}{(t)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\ =& \frac{-1}{4} \cdot \frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{t}{\frac{\sqrt{3}}{2}}\right)+c \ldots \ldots \int \frac{1}{x^{2}+a^{2}} d x=\tan ^{-1} \frac{x}{a}+c \\ =& \frac{-1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 t}{\sqrt{3}}\right)+C \\ =& \frac{-1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 20

Answer:
-e^{x} \cot \frac{x}{2}+C
Given:
\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x
Hint:
You must know about the derivation of cot x and \int e^{x} d x
Explanation:
Let \mathrm{I}=\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x
=\int e^{x}\left(\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos _{2}^{x}}{2 \sin ^{2} \frac{x}{2}}\right) d x \left[\begin{array}{l} \because \sin ^{2} \theta+\cos ^{2} \theta=1 ; \sin 2 \theta=2 \sin \theta \cos \theta ; \\ 1-\cos \theta=2 \sin ^{2} \frac{\theta}{2} \end{array}\right]
\begin{aligned} &=\frac{1}{2} \int e^{x}\left(\frac{\sin {\frac{x}{2}}-\cos \frac{x}{2}}{\sin \frac{x}{2}}\right)^{2} d x \\ &=\frac{1}{2} \int e^{x}\left(1-\cot \frac{x}{2}\right)^{2} d x \\ &=\frac{1}{2} \int e^{x}\left(\left(1+\cot ^{2} \frac{x}{2}\right)-2 \cot \frac{x}{2}\right) d x \end{aligned} \left[\because \cot x=\frac{\cos x}{\sin x}\right]
=\frac{1}{2} \int e^{x}\left(\operatorname{cosec}^{2} \frac{x}{2}-2 \cot \frac{x}{2}\right) d x \left[\because 1+\cot ^{2} \theta=\cos e^{2} \theta\right]
\begin{aligned} &=\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x-\int \cot \frac{x}{2} e^{x} d x \\ =&-\int \cot \frac{x}{2} \cdot e^{x} d x+\int \cos e c^{2} \frac{x}{2} e^{x} \cdot \frac{1}{2} d x \\ =&-\left[\cot \frac{x}{2} \cdot e^{x}-\int-\operatorname{cosec}^{2} \frac{x}{2} \cdot \frac{1}{2} \cdot e^{x} d x\right]+\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x \ldots . .\left[\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right] \\ =&-\cot \frac{x}{2} \cdot e^{x}-\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x+\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x \\ =&-\cot \frac{x}{2} \cdot e^{x}+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 21

Answer:
\frac{-e^{-x}}{e^{x}+e^{-x}}+C
Given:
\int \frac{2}{\left(e^{x}+e^{-x}\right)^{2}} d x
Hint:
You must know about the \int x^{n} d x
Explanation:
\begin{aligned} &I=\int \frac{2 d x}{\left(e^{x}+e^{-x}\right)^{2}} \\ &I=\int \frac{2 e^{x}}{e^{x}\left(e^{x}+e^{-x}\right)^{2}} d x \\ &\text { Put } e^{x}=t \Rightarrow e^{x} d x=d t \\ &I=\int \frac{2 d t}{t\left(t+\frac{1}{t}\right)^{2}} \\ &I=\int \frac{2 d t}{\frac{t\left(t^{2}+1\right)^{2}}{t^{2}}} \\ &=\int \frac{2 t d t}{\left(t^{2}+1\right)^{2}} \\ &\text { Put } z=t^{2}+1 \Rightarrow d z=2 t d t \end{aligned}
\begin{aligned} &I=\int \frac{d z}{z^{2}} \\ &=\int z^{-2} d z \\ &=\frac{z^{-2+1}}{-2+1}+C \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right] \\ &=-\frac{1}{z}+C \\ &=\frac{-1}{\left(t^{2}+1\right)}+C \quad\left[\because z=t^{2}+1\right] \\ &=\frac{-1}{e^{2 x}+1}+C \quad\left[\because t=e^{x}\right] \\ &=\frac{-1}{e^{x}\left(e^{x}+\frac{1}{e^{x}}\right)}+C \\ &=\frac{-e^{-x}}{\left(e^{x}+e^{-x}\right)}+C \end{aligned}
Hence I=\frac{-e^{-x}}{e^{x}+e^{-x}}+C
Option (a) is correct

Indefinite Integrals Exercise Multiple Choice Questions Question 22

Answer:
\tan \left(x e^{x}\right)+C
Given:
\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x
Hint:
You must know about the \int \sec ^{2} x d x
Explanation:
Let \mathrm{I}=\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x
=\int \frac{d t}{\cos ^{2} t} \text { [ Put } \left.x e^{x}=t \Rightarrow\left(x e^{x}+e^{x}(1)\right) d x=d t \Rightarrow e^{x}(x+1) d x=d t\right]
=\int \sec ^{2} t d t \left[\because \sec \theta=\frac{1}{\cos \theta}\right]
\begin{aligned} &=\tan t+C \\ &=\tan \left(x e^{x}\right)+C \end{aligned}
Hence,\int \frac{e^{x}(1+x) d x}{\cos ^{2}\left(x e^{x}\right)}=\tan \left(x e^{x}\right)+C

Indefinite Integrals Exercise Multiple Choice Questions Question 23

Answer:
\frac{1}{3} \tan ^{3} x+C
Given:
\int \frac{\sin ^{2} x}{\cos ^{4} x} d x
Hint:
You must know about the derivation of tan x and \int x^{n} d x
Explanation:
Let I=\int \frac{\sin ^{2} x}{\cos ^{4} x} d x
=\int \tan ^{2} x \sec ^{2} x d x \left[\because \frac{\sin x}{\cos x}=\tan x ; \frac{1}{\cos x}=\sec x\right]
Put \tan x=t, \sec ^{2} x d x=d t
\begin{aligned} &=\int t^{2} d t \\ &=\frac{(t)^{2+1}}{2+1}+C \\ &=\frac{1}{3} \tan ^{3} x+C \end{aligned}
Hence,\int \frac{\sin ^{2} x}{\cos ^{4} x}=\frac{1}{3} \tan ^{3} x+C .

Indefinite Integrals Exercise Multiple Choice Questions Question 24

Answer:
\frac{a^{x+\frac{1}{x}}}{\log _{e} a}
Given:
f(x)=\left(1-\frac{1}{x^{2}}\right) a^{x+\frac{1}{x}}, a>0
Hint:
You must know about the \int a^{x} d x
Explanation:
Let \mathrm{I}=\int\left(1-\frac{1}{x^{2}}\right) a^{x+\frac{1}{x}} d x
=\int a^{t} d t \text { [Put } \left.x+\frac{1}{x}=t \Rightarrow\left(1-\frac{1}{x^{2}}\right) d x=d t\right]
\begin{aligned} &=\frac{a^{t}}{\log _{e} a} \\ &=\frac{a^{x+\frac{1}{x}}}{\log _{e} a} \end{aligned} \left[\because \int a^{x} d x=\frac{a^{x}}{\log a}\right]
Hence primitive of f(x) \text { is } \frac{a^{x+\frac{1}{x}}}{\log _{e} a}

Indefinite Integrals Exercise Multiple Choice Questions Question 25

Answer:
\log |1+\log x|+C
Given:
\int \frac{1}{x+x \log x} d x
Hint:
Using \int \frac{1}{x} d x
Explanation:
Let I=\int \frac{1}{x+x \log x} d x
\begin{aligned} &=\int \frac{1}{x(1+\log x)} d x \\ &=\int \frac{\frac{1}{x}}{1+\log x} d x \\ &=\int \frac{d t}{t} \end{aligned} \text { [ Put } \left.1+\log x=t \Rightarrow \frac{1}{x} d x=d t\right]
\begin{aligned} &=\log |t|+C \\ &=\log |1+\log x|+C \end{aligned}
Hence, \int \frac{1}{x+x \log x} d x=\log |1+\log x|+C

Indefinite Integrals Exercise Multiple Choice Questions Question 26

Answer:
\sin ^{-1} \sqrt{x}-\sqrt{x(1-x)}+C
Given:
\int \sqrt{\frac{x}{1-x}} d x is equal to:
Hint:
You must know about the \int \sin ^{2} \theta d \theta \text { . }
Explanation:
Let I =\int \sqrt{\frac{x}{1-x}}
=\int \sqrt{\frac{\sin ^{2} \theta}{1-\sin ^{2} \theta} \times} 2 \sin \theta \cos \theta d \theta \text { [ Put } \left.x=\sin ^{2} \theta \Rightarrow d x=2 \sin \theta \cos \theta d \theta\right]
=\int \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \cdot 2 \sin \theta \cos \theta d \theta \left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]
\begin{aligned} &=\int \sqrt{\tan ^{2} \theta} \cdot 2 \sin \theta \cos \theta d \theta \\ &=\int \frac{\sin \theta}{\cos \theta} \times 2 \sin \theta \cos \theta d \theta \\ &=\int 2 \sin ^{2} \theta d \theta \\ &=\int(1-\cos 2 \theta) d \theta \end{aligned} \left[\because 2 \sin ^{2} \theta=1-\cos 2 \theta\right]
\begin{aligned} &=\int 1 d \theta-\int \cos 2 \theta d \theta \\ &=\theta-\frac{1}{2} \sin 2 \theta+C \\ &=\theta-\frac{1}{2} \times 2 \sin \theta \cos \theta+C \\ &=\theta-\sin \theta \cos \theta+C \\ &=\theta-\sin \theta \sqrt{1-\sin ^{2} \theta}+C \\ &=\sin ^{-1} \sqrt{x}-\sqrt{x} \sqrt{1-x}+C \\ &=\sin ^{-1} \sqrt{x}-\sqrt{x(1-x)}+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 27

Answer:
e^{x} f(x)+C
Given:
\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x
Hint:
You must know about the rule to integrate by parts
Explanation:
Let \mathrm{I}=\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x
\begin{aligned} &=\int e^{x} f(x) d x+\int e^{x} f^{\prime}(x) d x \\ &=f(x) e^{x}-\int e^{x} f^{\prime}(x) d x+\int e^{x} f^{\prime}(x) d x \ldots\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=f(x) e^{x}+C \end{aligned}
Hence,\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+C

Indefinite Integrals Exercise Multiple Choice Questions Question 28

Answer:
\pm \log (\sin x-\cos x)+C
Given:
\int \frac{\sin x+\cos x}{\sqrt{1-\sin 2 x}}
Hint:
You must know about the derivation of sin and cos function and \int \frac{1}{x} d x
Explanation:
Let I=\int \frac{\sin x+\cos x}{\sqrt{1-\sin 2 x}} d x
=\int \frac{\sin x+\cos x}{\sqrt{\sin ^{2} x+\cos ^{2} x-\sin 2 x}} d x \left[\because \sin ^{2} x+\cos ^{2} x=1\right]
=\int \frac{\sin x+\cos x}{\sqrt{(\cos x-\sin x)^{2}}} d x \left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]
\begin{aligned} &=\int \frac{\sin x+\cos x}{(\cos x-\sin x)} d x \\ &=\int \frac{d t}{ t} \end{aligned} [\text { Put } \cos x-\sin x=t \Rightarrow(\cos x+\sin x) d x=d t]
\begin{aligned} &= \log |t|+C \\ &= \log (\cos x-\sin x)+C \end{aligned}
Hence,\int \frac{\sin x+\cos x}{\sqrt{1-\sin 2 x}}= \log (\cos x-\sin x)+C .

Indefinite Integrals Exercise Multiple Choice Questions Question 29

Answer:
\sin x+C
Given:
\int x \sin x d x=-x \cos x+\alpha
Hint:
You must know the derivation of sin x and rule to integrate by parts
Explanation:
Let I=\int x \sin x d x
=x(-\cos x)+\int(1) \cos x d x \text { [ : :Integration by parts } \left.\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right]
=-x \cos x+\sin x+C
Acc to given
\begin{aligned} &I=-x \cos x+\alpha \\ &\Rightarrow-x \cos x+\sin x+C=-x \cos x+\alpha \end{aligned}
Comparing both sides
We get,\alpha=\sin x+C

Indefinite Integrals Exercise Multiple Choice Questions Question 30

Answer:
x-\tan x+C
Given:
\int \frac{\cos 2 x-1}{\cos 2 x+1} d x
Hint:
Using \int \tan ^{2} x d x
Explanation:
Let \mathrm{I}=\int \frac{\cos 2 x-1}{\cos 2 x+1} d x
=\int \frac{\cos ^{2} x-\sin ^{2} x-1}{\cos ^{2} x-\sin ^{2} x+1} d x \left[\because \cos 2 x=\cos ^{2} x-\sin ^{2} x\right]
\begin{aligned} &=\int \frac{\left(\cos ^{2} x-1\right)-\sin ^{2} x}{\cos ^{2} x+\left(1-\sin ^{2} x\right)} d x \\ &=\int \frac{-\sin ^{2} x-\sin ^{2} x}{\cos ^{2} x+\cos ^{2} x} d x \end{aligned} \left[\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \Rightarrow 1-\sin ^{2} x=\cos ^{2} x \end{array}\right]
\begin{aligned} &=\int \frac{-2 \sin ^{2} x}{2 \cos ^{2} x} d x \\ &=-\int \tan ^{2} x d x \end{aligned} \left[\because \tan x=\frac{\sin x}{\cos x}\right]
\begin{aligned} &=-\int\left(\sec ^{2} x-1\right) d x \\ &=\int\left(1-\sec ^{2} x\right) d x \\ &=\int 1 d x-\int \sec ^{2} x d x \\ &=x-\tan x+C \end{aligned}
Hence,\int \frac{\cos 2 x-1}{\cos 2 x+1} d x=x-\tan x+C

Indefinite Integrals Exercise Multiple Choice Questions Question 31

Answer:
2(\sin x+x \cos \theta)+C
Given:
\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x
Hint:
You must know about the integration of cos x
Explanation:
Let \mathrm{I}=\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x
=\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \theta-1\right)}{\cos x-\cos \theta} d x \left[\because \cos 2 \theta=2 \cos ^{2} \theta-1\right]
\begin{aligned} &=\int \frac{2 \cos ^{2} x-2 \cos ^{2} \theta+1-1}{\cos x-\cos \theta} d x \\ &=2 \int \frac{\cos ^{2} x-\cos ^{2} \theta}{\cos x-\cos \theta} d x \\ &=2 \int \frac{(\cos x-\cos \theta)(\cos x+\cos \theta)}{\cos x-\cos \theta} d x \end{aligned} \left[\because a^{2}-b^{2}=(a+b)(a-b)\right]
\begin{aligned} &=2 \int \cos x d x+2 \int \cos \theta d x \\ &=2 \int \cos x d x+2 \cos \theta \int 1 d x \\ &=2 \sin x+2 \cos \theta \cdot x+C \\ &=2(\sin x+x \cos \theta)+C \end{aligned}
Hence,\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x=2(\sin x+x \cos \theta)+C .

Indefinite Integrals Exercise Multiple Choice Questions Question 32

Answer:
\frac{1}{10}\left[4+\frac{1}{x^{2}}\right]^{-5}+C
Given:
\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x
Hint:
Using \int x^{n} d x
Explanation:
Let \mathrm{I}=\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x
=\int \frac{x^{9}}{x^{12}\left(4+\frac{1}{x^{2}}\right)^{6}} d x \ldots \ldots \ldots \text { taking } x^{2} \text { common from denominator }
\begin{aligned} &=\int \frac{1}{x^{3}\left(4+\frac{1}{x^{2}}\right)^{6}} d x \\ &=\int \frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}} d x \end{aligned} \text { [ Put } \left.4+\frac{1}{x^{2}}=t \Rightarrow \frac{-2}{x^{3}} d x=d t\right]
\begin{aligned} &=-\frac{1}{2} \int \frac{d t}{t^{6}} \\ &=-\frac{1}{2}\left[\frac{t^{-6+1}}{-6+1}\right]+C \\ &=-\frac{1}{2}\left[\frac{(t)^{-5}}{-5}\right]+C \\ &=\frac{1}{10} \times \frac{1}{t^{5}}+C \\ &=\frac{t^{-5}}{10}+C \\ &=\frac{1}{10}\left[4+\frac{1}{x^{2}}\right]^{-5}+C \end{aligned}
Hence,\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x=\frac{1}{10}\left[4+\frac{1}{x^{2}}\right]^{-5}+C

Indefinite Integrals Exercise Multiple Choice Questions Question 33

Answer:
a=\frac{1}{3} ; b=-1
Given:
\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C
Hint:
Using \int x^{n} d x
Explanation:
Let I=\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x
\begin{aligned} &=\int \frac{x^{2} x}{\sqrt{1+x^{2}}} d x \\ &=\int \frac{(t-1)}{\sqrt{t}} \cdot \frac{d t}{2} \end{aligned} \text { [ Put } \left.1+x^{2}=t \Rightarrow x^{2}=t-1 \Rightarrow 2 x d x=d t\right]
\begin{aligned} &=\frac{1}{2} \int \frac{t-1}{\sqrt{t}} d t \\ &=\frac{1}{2} \int \sqrt{t} d t-\frac{1}{2} \int \frac{1}{\sqrt{t}} d t \\ &=\frac{1}{2} \int(t)^{\frac{1}{2}} d t-\frac{1}{2} \int(t)^{\frac{-1}{2}} d t \\ &=\frac{1}{2}\left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]-\frac{1}{2}\left[\frac{(t)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}\right]+C \\ &=\frac{1}{2} \times \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{2} \times \frac{(t)^{\frac{1}{2}}}{\frac{1}{2}}+C \\ &=\frac{1}{3} t^{\frac{3}{2}}-t^{\frac{1}{2}}+C \end{aligned}
=\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\sqrt{1+x^{2}}+C
Acc to given I=a\left(1+x^{2}\right)^{\frac{8}{2}}+b \sqrt{1+x^{2}}+C
\Rightarrow \frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\sqrt{1+x^{2}}+C=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C
On comparing, we get
a=\frac{1}{3}, b=-1

Indefinite Integrals Exercise Multiple Choice Questions Question 34

Answer:
x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C
Given:
\int \frac{x^{3}}{x+1} d x
Hint:
You must know how to integrate \int x^{n} d xand \int \frac{1}{x} d x
Explanation:
Let \mathrm{I}=\int \frac{x^{3}}{x+1} d x
\begin{aligned} &=\int \frac{x^{3}+1-1}{x+1} d x \\ &=\int \frac{(x+1)\left(x^{2}+1-x\right)}{x+1} d x-\int \frac{1}{x+1} d x \end{aligned} \left[\because x^{3}+1=(x+1)\left(x^{2}+1-x\right)\right]
\begin{aligned} &=\int\left(x^{2}+1-x\right) d x-\int \frac{1}{1+x} d x \\ &=\frac{x^{3}}{3}+x-\frac{x^{2}}{2}-\log |1+x|+C \\ &=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 35

Answer:
a=\frac{-1}{10}, b=\frac{2}{5}
Given:
\int \frac{1}{(x+2)\left(x^{2}+1\right)} d x=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+C
Hint:
Using partial fraction and \int \frac{1}{x} d xand \int \frac{1}{1+x^{2}} d x
Explanation:
Let \mathrm{I}=\int \frac{1}{(x+2)\left(x^{2}+1\right)} d x
Let \frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{x+2}+\frac{B x+C}{x^{2}+1} \left [ Eq.(i)) \right ]
Multiplying by (x+2)\left(x^{2}+1\right), we get
I=A\left(x^{2}+1\right)+(B x+C)(x+2)
Putting x = -2
\begin{aligned} &1=A(5)+(-2 B+C)(-2+2) \\ &\Rightarrow 1=5 A+0 \\ &\Rightarrow A=\frac{1}{5} \end{aligned}
Putting x = 0\begin{aligned} &1=A(1)+(B(0)+C)(0+2) \\ &\Rightarrow 1=\frac{1}{5}+2 C \\ &\Rightarrow C=\frac{2}{5} \end{aligned}

Putting x = +1
\begin{aligned} &1=A(1+1)+(B+C)(1+2) \\ &\Rightarrow 1=2\left(\frac{1}{5}\right)+\left(B+\frac{2}{5}\right)(3) \\ &\Rightarrow 1=\frac{2}{5}+3 B+\frac{6}{5} \\ &\Rightarrow 3 B=1-\frac{8}{5} \\ &\Rightarrow 3 B=\frac{-3}{5} \\ &\Rightarrow B=\frac{-1}{5} \end{aligned}
\therefore \text { From }[E q \cdot(i)]
\begin{aligned} &\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{\frac{1}{5}}{x+2}+\frac{\left(\frac{-1}{5}\right) x+\left(\frac{2}{5}\right)}{x^{2}+1}\\ &\therefore \int \frac{1}{(x+2)\left(x^{2}+1\right)} d x=\frac{1}{5} \int \frac{1}{x+2} d x+\left(\frac{-1}{5}\right) \cdot \frac{1}{2} \int \frac{2 x}{x^{2}+1} d x+\frac{2}{5} \int \frac{1}{x^{2}+1} d x\\ &\therefore I=\frac{1}{5} \log |x+2|-\frac{1}{10} \log \left|1+x^{2}\right|+\frac{2}{5} \tan ^{-1} x+C \end{aligned}\left [ Eq.(ii)) \right ]
Acc to given
I=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2| \left [ Eq.(iii)) \right ]
\begin{aligned} &\therefore \text { From } E q \cdot(i i) \text { and } E q \cdot(\text { iii }) \text { we get }\\ &a=\frac{-1}{10}, b=\frac{2}{5} \end{aligned}



Indefinite Integrals Exercise Multiple Choice Questions Question 36

Answer:
e^{x} \cos x+C
Given:
\int e^{x}(\cos x-\sin x) d x
Hint:
You must know the rule to integrate by parts
Explanation:
Let I=\int e^{x}(\cos x-\sin x) d x
\begin{aligned} &=\int e^{x} \cos x d x-\int e^{x} \sin x d x \\ &=\cos x e^{x}+\int e^{x} \sin x d x-\int e^{x} \sin x d x \ldots . .\left\{\int u \cdot v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=\cos x e^{x}+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 37

Answer:
a=\frac{-1}{8}, b=\frac{+7}{8}
Given:
\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}} d x=a x+b \log _{e}\left|4 e^{x}+5 e^{-x}\right|+C
Hint:
Using \int e^{x} d x
Explanation:
We are given that
\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}} d x=a x+b \log _{e}\left|4 e^{x}+5 e^{-x}\right|+C
Differentiate both sides
\frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=a+b \cdot \frac{1}{\left(4 e^{x}+5 e^{-x}\right)}\left(4 e^{x}-5 e^{-x}\right) \left[\because \int e^{x} d x=e^{x}+C\right]
\begin{aligned} &\Rightarrow \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=\frac{a\left(4 e^{x}+5 e^{-x}\right)+b\left(4 e^{x}-5 e^{-x}\right)}{4 e^{x}+5 e^{-x}} \\ &\Rightarrow 3 e^{x}-5 e^{-x}=4 a e^{x}+5 a e^{-x}+4 b e^{x}-5 b e^{-x} \\ &\Rightarrow 3 e^{x}-5 e^{-x}=(4 a+4 b) e^{x}+(5 a-5 b) e^{-x} \end{aligned}
Comparing co eff of like terms, we get
\begin{aligned} &4 a+4 b=3 ; 5(a-b)=-5 \\ &\Rightarrow a-b=-1 \Rightarrow a=b-1 \\ &\Rightarrow 4(b-1)+4 b=3 \\ &\Rightarrow 8 b-4=3 \\ &\Rightarrow 8 b=7 \Rightarrow b=\frac{7}{8} \\ &\therefore a=\frac{7}{8}-1 \Rightarrow a=\frac{-1}{8} \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 38

Answer:
\frac{e^{x}}{\left(1+x^{2}\right)}+C
Given:
\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x
Hint:
Using integration by parts
Explanation:
Let I=\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x \left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right]
=\int \frac{e^{x}\left(1-2 x+x^{2}\right)}{\left(1+x^{2}\right)^{2}} d x
=\int \frac{e^{x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}} d x-\int \frac{e^{x} 2 x}{\left(1+x^{2}\right)^{2}} d x
\begin{aligned} &=\int \frac{e^{x}}{\left(1+x^{2}\right)} d x-\int \frac{e^{x} 2 x}{\left(1+x^{2}\right)^{2}} d x \\ &=\int e^{x} \cdot \frac{1}{1+x^{2}} d x-\int e^{x} \cdot \frac{2 x}{\left(1+x^{2}\right)^{2}} d x \end{aligned}
=\frac{1}{1+x^{2}} \cdot e^{x}-\int e^{x}\left(\frac{\left(1+x^{2}\right)(0)-(1)(2 x)}{\left(1+x^{2}\right)^{2}}\right) d x-\int e^{x} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\}
\begin{aligned} &=\frac{e^{x}}{1+x^{2}}+\int \frac{2 x e^{x}}{\left(1+x^{2}\right)^{2}} d x-\int \frac{2 x e^{x}}{\left(1+x^{2}\right)^{2}} d x \\ &=\frac{e^{x}}{1+x^{2}}+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 39

Answer:
x \tan \frac{x}{2}+C
Given:
\int \frac{x+\sin x}{1+\cos x} d x
Hint:
Using integration by parts and \int \sec ^{2} \theta d \theta
Explanation:
Let \mathrm{I}=\int \frac{x+\sin x}{1+\cos x} d x
\begin{aligned} &=\int \frac{x}{1+\cos x} d x+\int \frac{\sin x}{1+\cos x} d x \\ &=\int \frac{x}{2 \cos ^{2} \frac{x}{2}} d x+\int \frac{2 \sin \frac{x}{2} \cos ^{x}}{2 \cos ^{2} \frac{x}{2}} d x \end{aligned} \left[\because 1+\cos 2 \theta=2 \cos ^{2} \theta ; \sin 2 \theta=2 \sin \theta \cos \theta\right]
=\frac{1}{2} \int x \sec ^{2} \frac{x}{2} d x+\int \tan \frac{x}{2} d x \left[\text { Put } \frac{x}{2}=t \Rightarrow x=2 t \Rightarrow d x=2 d t\right]
\begin{aligned} &=\frac{1}{2} \int 2 t \sec ^{2} t .2 d t+\int \tan t \cdot 2 d t \\ &=2 \int t \sec ^{2} t d t+2 \int \tan t d t \\ &=2\left[t . t a n t-\int \tan t d t\right]+2 \int \tan t d t \ldots\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=2 t . \tan t-2 \int \tan t d t+2 \int \tan t d t \\ &=2 t \tan t+C \\ &=2\left(\frac{x}{2}\right) \tan \frac{x}{2}+C \\ &=x \tan \frac{x}{2}+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 40

Answer:
(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C
Given:
\int \tan ^{-1} \sqrt{x} d x
Hint:
Using integration by parts and \int \frac{1}{1+x^{2}} d x
Explanation:
Let I=\int \tan ^{-1} \sqrt{x} d x
\Rightarrow I=\int \tan ^{-1} t .2 t d t \left[\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \Rightarrow d x=2 \sqrt{x} d t \Rightarrow d x=2 t d t\right]
=2 \int \tan ^{-1} t \cdot t d t
=2\left[\tan ^{-1} t \cdot \frac{t^{2}}{2}-\int \frac{1}{1+t^{2}} \cdot \frac{t^{2}}{2} d t\right] \ldots\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\}
\begin{aligned} &=2 \tan ^{-1} t \cdot \frac{t^{2}}{2}-\int\left(\frac{t^{2}+1-1}{t^{2}+1}\right) d t \\ &=\tan ^{-1} t \cdot t^{2}-\int 1 d t+\int \frac{1}{1+t^{2}} d t \\ &=t^{2} \tan ^{-1} t-t+\tan ^{-1} t+C \\ &=x \tan ^{-1} \sqrt{x}-\sqrt{x}+\tan ^{-1} \sqrt{x}+C \\ &=(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C \end{aligned}

Indefinite Integrals Exercise Multiple Choice Questions Question 43

Answer:
e^{x} \log (x+1)+C
Given:
\int \frac{e^{x}}{x+1}[1+(x+1) \log (x+1)] d x
Hint:
Using integration by parts and \int e^{x} d x
Explanation:
Let \mathrm{I}=\int \frac{e^{x}}{x+1}[1+(x+1) \log (x+1)] d x
\begin{aligned} &=\int e^{x}\left[\frac{1}{x+1}+\log (x+1)\right] d x \\ &=\int e^{x} \log (x+1) d x+\int e^{x} \frac{1}{x+1} d x \end{aligned}
=\log (x+1) e^{x}-\int \frac{1}{x+1} e^{x} d x+\int \frac{1}{x+1} e^{x} d x \ldots\left\{\int u \cdot v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\}
=\log (x+1) e^{x}+C
Hence,\int \frac{e^{x}}{x+1}[1+(x+1) \log (x+1)] d x=\log (x+1) e^{x}+C

In this class 12 RD Sharma chapter 18 exercise MCQ. At Career360 Class 12 Maths, RD Sharma Class 12 Solutions Indefinite Integrals Ex MCQ helps students get a fair academic score in the exam.

This chapter of RD Sharma class 12th exercise MCQ Indefinite Integrals primary based on the possibility of soundness. Students can download the RD Sharma class 12 solutions MCQ Chapter 18 Indefinite Integrals to look into this theme.

Some important concepts like:-

  • Definition of primitive or antiderivative

  • Questions related to Fundamental integration formulae

  • Questions related to Integration of trigonometric functions

  • Geometrical interpretation of indefinite integral

  • Questions related to Comparison between differentiation and integration

  • Methods of integration

  • Questions related to Integration by substitution

  • Questions related to Integration by parts

  • Questions related to some important integrals along with theorems

RD Sharma Chapter-wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Are the RD Sharma class 12 solutions chapter 18 MCQ Indefinite Integrals considered the best audit material for exam arrangements?

RD Sharma class 12th exercise MCQ, are orchestrated as PDFs so students can download them at whatever point in vain and imply them wherever.

2. How is it possible that students would anticipate the yearly exam using the RD Sharma Solutions Class 12 Maths Chapter 18 MCQ?

The RD Sharma Solutions are made by ace subject guides at CAREER360 and are a skilled resource for exam arrangements.

3. What are the components of using the RD Sharma Class 12 Solutions Chapter 18 MCQ?

Master mentors have made these solutions as shown by the most recent CBSE supervisors and venture plans.

4. How should students use the RD Sharma class 12th exercise MCQ Chapter 18 to get ready for the yearly exam?

To comprehend the basic thoughts, students should zero in on the chapter and practice the exercise questions.

5. What number of questions are there in RD Sharma Solutions Class 12 Maths Chapter 18 MCQ?

There are 43 inquiries in RD Sharma class 12th exercise MCQ.

Articles

Upcoming School Exams

Application Date:11 November,2024 - 10 January,2025

Application Date:11 November,2024 - 10 January,2025

Late Fee Application Date:13 December,2024 - 22 December,2024

Admit Card Date:13 December,2024 - 31 December,2024

View All School Exams
Get answers from students and experts
Back to top