The class 12 RD Sharma chapter 18 exercise MCQ Indefinite Integrals course of action is particularly trusted and proposed by students and educators across the entire country The appropriate responses in the RD Sharma class 12th exercise MCQ are handpicked and made via prepared experts, making them exact and sensible enough for students In addition, in RD Sharma Solutions class 12 chapter 18 exercise MCQ, the experts offer response keys and some surprising tips in the book that the students presumably will not find elsewhere RD Sharma class 12 solutions MCQ Chapter 18 has around 43 questions
Indefinite Integrals Excercise: MCQ
Indefinite Integrals Exercise Multiple Choice Questions Question 1
Answer: $\frac{1}{4} \tan ^{-1} \frac{x^{2}}{2}+C$Given:$\int \frac{x}{4+x^{4}} d x$Hint:
Using
$\int \frac{d x}{1+x^{2}}$Explanation:
Let
$\mathrm{I}=\int \frac{x}{4+x^{4}} d x$$=\int \frac{x d x}{(2)^{2}+\left(x^{2}\right)^{2}}$ $\text { [Put } \left.x^{2}=t \Rightarrow 2 x \mathrm{~d} x=\mathrm{dt} \Rightarrow x \mathrm{dx}=\frac{d t}{2}\right]$$\begin{aligned} &=\int \frac{1}{(2)^{2}+t^{2}} \times \frac{d t}{2} \\ &=\frac{1}{2} \int \frac{d t}{t^{2}+2^{2}} \\ &=\frac{1}{2} \cdot \frac{1}{2} \tan ^{-1} \frac{t}{2}+C \ldots \ldots . .\left\{\int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c\right\} \\ &=\frac{1}{4} \tan ^{-1} \frac{x^{2}}{2}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 2
Answer:$\frac{1}{2} \log \left(\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)\right)+C$Given:$\int \frac{1}{\cos x+\sqrt{3} \sin x} d x$Hint:
You must know about the
$\int \cos e c x d x$Explanation:Let
$I=\int \frac{1}{2\left(\sin x \cdot \frac{\sqrt{8}}{2}+\cos x \cdot \frac{1}{2}\right)} d x$$=\frac{1}{2} \int \frac{d x}{\sin x \cos _{6}^{\pi}+\cos x \sin \frac{\pi}{6}}$ $\left[\because \cos \frac{\pi}{6}=\frac{\sqrt{3}}{2} ; \sin \frac{\pi}{6}=\frac{1}{2}\right]$$=\frac{1}{2} \int \frac{d x}{\sin \left(x+\frac{\pi}{6}\right)}$ $[\sin (A+B)=\sin A \cos B+\cos A \sin B]$$=\frac{1}{2} \int \operatorname{cosec}\left(x+\frac{\pi}{6}\right) d x$ $\left[\because \sin x=\frac{1}{\cos \theta c x}\right]$$=\frac{-1}{2} \log \left(\operatorname{cosec}\left(x+\frac{\pi}{6}\right)+\cot \left(x+\frac{\pi}{6}\right)\right)+C$ $\left[\int \operatorname{cosec}(x) d x=-\log (\operatorname{cosec} x+\cot x)+c\right]$Now,
$\begin{aligned} \cos e c x+\cot x &=\frac{1}{\sin x}+\frac{\cos x}{\sin x} \\ &=\frac{1+\cos x}{\sin x} \\ &=\frac{2 \cos ^{2} \frac{x}{2}}{2 \sin \frac{x}{2} \cos _{2}^{x}} \end{aligned}$ $\left[\because 1+\cos 2 \theta=2 \cos ^{2} \theta ; \sin \theta=2 \sin \frac{\theta}{2} \cos \frac{\theta}{2}\right]$$=\cot \frac{x}{2}$$\therefore \text { From } E q \cdot(i)$$\begin{aligned} &I=\frac{-1}{2} \log \left(\cot \left(\frac{x+\frac{\pi}{6}}{2}\right)\right)+C \\ &=\frac{1}{2} \log \left[\cot \left(\frac{x}{2}+\frac{\pi}{12}\right)\right]^{-1}+C \\ &=\frac{1}{2} \log \left(\tan \left(\frac{x}{2}+\frac{\pi}{12}\right)\right)+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 3
Answer: $\frac{1}{2} \log \left(\sec x^{2}+\tan x^{2}\right)+C$Given:$\int x \sec x^{2} d x$Hint:
Using
$\int \sec \theta d \theta$Explanation:Let,
$\mathrm{I}=\int x \sec x^{2} d x$ $\left[\text { Put } x^{2}=t \Rightarrow 2 x d x=d t \Rightarrow x d x=\frac{d t}{2}\right]$$\begin{aligned} &=\int \sec t \cdot \frac{d t}{2} \\ &=\frac{1}{2} \int \sec t d t \\ &=\frac{1}{2} \log |\sec t+\tan t|+C \end{aligned}$ $\left\{\int \sec x d x=\log |\sec x+\tan x|+c\right\}$$=\frac{1}{2} \log \left|\sec x^{2}+\tan x^{2}\right|+C$Indefinite Integrals Exercise Multiple Choice Questions Question 4
Answer: $A=\frac{2}{3}, B=\frac{5}{3}$Given:$\int \frac{1}{5+4 \sin x} d x=A \tan ^{-1}\left(B \tan \frac{x}{2}+\frac{4}{3}\right)+C$Hint
Using
$\int \frac{1}{1+t^{2}} d t$Explanation:Let
$\mathrm{I}=\int \frac{1}{5+4 \sin x} d x$$\begin{aligned} &=\int \frac{1}{5+4.2 \sin \frac{x}{2} \cos \frac{x}{2}} d x \\ &=\int \frac{1}{5.1+8 \sin \frac{x}{2} \cos \frac{x}{2}} d x \end{aligned}$ $[\because \sin 2 \theta=2 \sin \theta \cos \theta]$$=\int \frac{1}{5\left(\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x^{2}}{2}\right)+8 \sin \frac{x}{2} \cos _{2}^{x}} d x$ $\left[\because \sin ^{2} \theta+\cos ^{2} \theta=1\right]$$=\int \frac{1}{5 \sin ^{2} \frac{x}{2}+5 \cos ^{2} \frac{x}{2}+8 \sin \frac{x}{2} \cos _{2}^{x}} d x$Divide num and den by $\cos ^{2} \frac{x}{2}$$\begin{aligned} &=\int \frac{\frac{1}{\cos ^{2} \frac{x}{2}}}{5 \tan ^{2} \frac{x}{2}+5+8 \tan _{2}^{x}} d x \\ &=\frac{1}{5} \int \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}+\frac{8}{5} \tan _{2}^{x}+1} d x \end{aligned}$ $\left[\because \sec x=\frac{1}{\cos x}\right]$$=\frac{1}{5} \int \frac{2}{t^{2}+\frac{8}{5} t+1} d t$ $\left[\text { Put } \tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x=d t \Rightarrow \sec ^{2} \frac{x}{2} d x=2 d t\right]$$\begin{aligned} &=\frac{2}{5} \int \frac{d t}{t^{2}+\frac{8 t}{5}+\left(\frac{4}{5}\right)^{2}-\left(\frac{4}{5}\right)^{2}+1} \\ &=\frac{2}{5} \int \frac{d t}{\left(t+\frac{4}{5}\right)^{2}+\left(\frac{3}{5}\right)^{2}} \\ &=\frac{2}{5} \times \frac{1}{\frac{3}{5}} \tan ^{-1}\left(\frac{5 t+4}{3}\right)+C \quad \ldots \ldots \ldots \ldots \ldots\left\{\frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c\right\} \end{aligned}$$\therefore I=\frac{2}{3} \tan ^{-1}\left(\frac{5}{3} \tan \frac{x}{2}+\frac{4}{3}\right)+C$ $[E q \cdot(i)]$Acc to given,
$\mathrm{I}=A \tan ^{-1}\left(B \tan \frac{x}{2}+\frac{4}{3}\right)+C$ $[E q \cdot(i i)]$From Eq ( i ) and ( ii )
$A \tan ^{-1}\left(B \tan \frac{x}{2}+\frac{4}{3}\right)+C=\frac{2}{3} \tan ^{-1}\left(\frac{5}{3} \tan \frac{x}{2}+\frac{4}{3}\right)+C$
Comparing both sides, we get
$A=\frac{2}{3}, B=\frac{5}{3}$
Indefinite Integrals Exercise Multiple Choice Questions Question 5
Answer:$x^{\sin x}+C$Given:$\int x^{\sin x}\left(\frac{\sin x}{x}+\cos x \cdot \log x\right) d x$Hint:
You must know about the derivation of
$x^{\sin x}$Explanation:Let
$\mathrm{I}=\int x^{\sin x}\left(\frac{\sin x}{x}+\cos x \cdot \log x\right)$$=\int t \cdot \frac{d t}{t}$ $\text { [ Put } x^{\sin x}=t, \text { Taking log of both sides }$$=\int 1 d t$ $\sin x \cdot \log x=\log t$$=t+C$Diff w r t t,$=x^{\sin x}+C$$\left.\left(\log x \cos x+\frac{\sin x}{x}\right) \frac{d x}{d t}=\frac{1}{t} \Rightarrow\left(\log x \cos x+\frac{\sin x}{x}\right) d x=\frac{d t}{t}\right]$ Indefinite Integrals Exercise Multiple Choice Questions Question 6
Answer: $\tan ^{-1}\left(\log _{e} x\right)^{2}+C$Given:$\int \frac{1}{1+\left(\log _{e} x\right)^{2}} d x \quad \text { w.r.t. }\left(\log _{e} x\right)$Hint:Using
$\int \frac{1}{1+t^{2}} d x$Explanation:Let
$I=\int \frac{1}{1+\left(\log _{e} x\right)^{2}} d x(\log x)$$=\int \frac{1}{1+\left(\log _{e} x\right)^{2}} \frac{d x}{x}$ $\left[\frac{d}{d x}(\log x)=\frac{1}{x} \Rightarrow d(\log x)=\frac{d x}{x}\right]$$=\int \frac{1}{1+t^{2}} \cdot d t$ $\text { [Put } \left.\log _{e} x=t \Rightarrow \frac{1}{x} d x=d t\right]$$=\tan ^{-1} t+C$ $\left[\because \int \frac{1}{1+x^{2}} d x=\tan ^{-1} x+C\right]$$=\tan ^{-1}\left(\log _{e} x\right)+C$Indefinite Integrals Exercise Multiple Choice Questions Question 7
Answer: $\frac{1}{16}$Given:$\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x=a \cos 8 x+C$HintUsing
$\int \sin x d x$Explanation:Let
$I=\int \frac{\cos 8 x+1}{\tan 2 x-\cot 2 x} d x$$=\int \frac{2 \cos ^{2} 4 x-1+1}{\frac{\sin 2 x}{\cos 2 x}-\frac{\cos 2 x}{\sin 2 x}} d x \quad\left\[\because 2 \cos ^{2} x=1+\cos 2 x ; \tan x=\frac{\sin x}{\cos x} ; \cot x=\frac{\cos x}{\sin x}\right]$$=\int \frac{2 \cos ^{2} 4 x \cdot \sin 2 x \cos 2 x}{\sin ^{2} 2 x-\cos ^{2} 2 x} d x$$=\int \frac{\cos ^{2} 4 x \sin 4 x}{-\cos 4 x} d x$ $\left[\because \cos ^{2} x-\sin ^{2} x=\cos 2 x\right]$$=-\int \cos 4 x \sin 4 x d x$$=-\frac{1}{2} \int \sin 8 x d x$ $[\because \sin 2 x=2 \sin x \cos x]$$=-\frac{1}{2} \int \sin 8 x d x$ $[\because \sin 2 x=2 \sin x \cos x]$$\begin{aligned} &=-\frac{1}{2}\left(-\frac{\cos 8 x}{8}\right)+C \\ &I=\frac{\cos 8 x}{16}+C \end{aligned}$According to given,
$\begin{aligned} &I=a \cos 8 x+C \\ &\because a \cos 8 x+C=\frac{1}{16} \cos 8 x+C \\ &\therefore a=\frac{1}{16} \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 8
Answer: $-\frac{1}{2}$Given:$\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x=a \sin 2 x+C$Hint:
Using identity
$\left(a^{2}-b^{2}\right) \& \int \cos x d x$Explanation:Let
$I=\int \frac{\sin ^{8} x-\cos ^{8} x}{1-2 \sin ^{2} x \cos ^{2} x} d x$$=\int \frac{\left(\sin ^{4} x\right)^{2}-\left(\cos ^{4} x\right)^{2}}{\left(\sin ^{2} x+\cos ^{2} x\right)^{2}-2 \sin ^{2} x \cos ^{2} x} d x$ $\left[\because \sin ^{2} x+\cos ^{2} x=1\right]$$\begin{aligned} &=\int \frac{\left(\sin ^{4} x-\cos ^{4} x\right)\left(\sin ^{4} x+\cos ^{4} x\right)}{\left(\sin ^{4} x+\cos ^{4} x\right)} d x \\ &=\int\left(\sin ^{4} x-\cos ^{4} x\right) d x \\ &=-\int\left(\cos ^{4} x-\sin ^{4} x\right) d x \\ &=-\int\left(\cos ^{2} x-\sin ^{2} x\right)\left(\cos ^{2} x+\sin ^{2} x\right) d x \end{aligned}$ $\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$$=-1 \int \cos 2 x(1) d x$ $\left[\because \sin ^{2} x+\cos ^{2} x=1\right]$ According to given : $I=a \sin 2 x+C$$\therefore a \sin 2 x+C=-\frac{1}{2} \sin 2 x+C$Comparing both sides, we get
$a=-\frac{1}{2}$Indefinite Integrals Exercise Multiple Choice Questions Question 9
Answer: $-x e^{-x}+C$Given:$\int(x-1) e^{-x} d x$Hint:
Using integration by parts &
$\int e^{-x} d x$Explanation:Let
$I=\int(x-1) e^{-x} d x$$\begin{aligned} &=\int x e^{-x} d x-\int e^{-x} d x \\ &=x \frac{e^{-x}}{-1}+\int(1) e^{-x} d x-\int e^{-x} d x \end{aligned}$ $\left[\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right]$$=-x e^{-x}+\int e^{-x} d x-\int e^{-x} d x$ $\left[\because \int e^{x} d x=e^{x}+C\right]$$=-x e^{-x}+C$Indefinite Integrals Exercise Multiple Choice Questions Question 10
Answer:$-\frac{1}{\log _{e} 2}$Given:$\int \frac{2^{\frac{1}{x}}}{x^{2}} d x=K 2^{\frac{1}{x}}+C$Hint Using
$\int a^{x} d x$Explanation:Let
$=\int \frac{2^{\frac{1}{x}}}{x^{2}} d x$ $\text { [Put } \frac{1}{x}=t \Rightarrow-\frac{1}{x^{2}} d x=d t \Rightarrow \frac{d x}{x^{2}}=-d t$$\begin{aligned} &=-\int 2^{t} d t \\ &=-\frac{2^{t}}{l o g_{e} 2}+2 \end{aligned}$$=-\frac{2 \frac{1}{x}}{\log _{e} 2}+2$ $\left[\because \int a^{x} d x=\frac{a^{x}}{\log _{e} a}\right]$According to given:
$I=K 2^{\frac{1}{x}}+C$$\therefore K 2^{\frac{1}{x}}+C=-\frac{1}{\log _{e} 2} \cdot 2^{\frac{1}{x}}+C$Comparing both sides,
$K=\frac{-1}{\log _{e} 2}$
Indefinite Integrals Exercise Multiple Choice Questions Question 11
Answer: $\frac{1}{2}[x+\log |(\sin x+\cos x)|]+C$Given:$\int \frac{1}{1+\tan x} d x$Hint:
You must know about the derivation of sin x and cos x and use
$\int \frac{d x}{x}$Explanation:Let
$I=\int \frac{1}{1+\tan x} d x$$=\frac{1}{1+\tan x}$$=\frac{1}{1+\frac{\sin x}{\cos x}}$ $\left[\because \tan x=\frac{\sin x}{\cos x}\right]$$=\frac{\cos x}{\cos x+\sin x}$$=\frac{2 \cos x}{2(\cos x+\sin x)}$$=\frac{(\cos x+\sin x)+(\cos x-\sin x)}{2(\cos x+\sin x)}$ [Special step]
$\begin{aligned} &\quad=\frac{1}{2}\left[1+\frac{\cos x-\sin x}{\cos x+\sin x}\right] \\ &\therefore I_{2}=\int \frac{1}{1+\tan x} d x \\ &\quad=\int \frac{1}{2} d x+\frac{1}{2} \int \frac{\cos x-\sin x}{\cos x+\sin x} d x \\ &\therefore I_{2}=\frac{1}{2} \int 1 d x+\frac{1}{2} \int \frac{d t}{t} \end{aligned}$ $\left[\operatorname{Put} \cos x+\sin x=t \text { in } I_{2}\right]$$[(-\sin x+\cos x) d x=d t \Rightarrow(\cos x-\sin x) d x=d t]$$=\frac{1}{2} x+\frac{1}{2} \log |t|+C$$=\frac{1}{2}[x+\log |(\cos x+\sin x)|]+C$Indefinite Integrals Exercise Multiple Choice Questions Question 12
Answer: None of these
Given:$\int|x|^{3} d x$Hint:Using
$\int x^{n} d x$Explanation:Let
$I=\int|x|^{3} d x$Here two cases arise
$\begin{aligned} &I=\left\{-x^{3}, x<0 ; x^{3}, x \geq 0\right.\\ &\therefore \text { Case I, when } x<0 \end{aligned}$$\begin{aligned} &I=\int_{4}-x^{3} d x \\ &=\frac{-x^{4}}{4}+C \end{aligned}$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]$$\text { Case II, when } x \geq 0$$\begin{aligned} &I=\int_{4} x^{3} d x \\ &=\frac{x^{4}}{4}+C \end{aligned}$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]$Combining these two, we get
$I=\pm \frac{x^{4}}{4}+C$Indefinite Integrals Exercise Multiple Choice Questions Question 13
Answer: $2 \sin \sqrt{x}+C$Given:$\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$Hint
Using
$\int \cos x d x$Explanation:Let
$\mathrm{I}=\int \frac{\cos \sqrt{x}}{\sqrt{x}} d x$$=\int \cos t .2 d t$ $\left[\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \Rightarrow \frac{d x}{\sqrt{x}}=2 d t\right]$$\begin{aligned} &=2 \int \cos t d t \\ &=2 \sin t+C \\ &=2 \sin \sqrt{x}+C \end{aligned}$ $\left[\because \int \cos x d x=\sin x+C\right]$Indefinite Integrals Exercise Multiple Choice Questions Question 14
Answer: $-e^{x} \cot x+C$Given: $\int e^{x}\left(1-\cot x+\cot ^{2} x\right) d x$Hint:
Using integration by parts
Explanation:Let
$I=\int e^{x}\left(1-\cot x+\cot ^{2} x\right) d x$$\begin{aligned} &=\int e^{x}\left[\left(1+\cot ^{2} x\right)-\cot x\right] d x \\ &=\int e^{x}\left(\operatorname{cosec}^{2} x-\cot x\right) d x \end{aligned}$ $\left[\because 1+\cot ^{2} \theta=\cos e c^{2} \theta\right]$$\begin{aligned} &=-\int e^{x}\left(\cot x-\cos e c^{2} x\right) d x \\ =&-\int e^{x} \cot x d x+\int e^{x} \operatorname{cosec}^{2} x d x \\ =&-\left[\cot x \cdot e^{x}-\int\left(-\cos e c^{2} x\right) e^{x} d x\right]+\int e^{x} \cos e c^{2} x d x \ldots .\left\{\int u \cdot v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ =&-\cot x \cdot e^{x}-\int e^{x} \cos e c^{2} x d x+\int e^{x} \cos e c^{2} x d x \\ =&-\cot x e^{x}+C \quad \text { [Using integration by parts ] } \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 15
Answer: $\frac{\tan ^{7} x}{7}+C$Given:$\int \frac{\sin ^{6} x}{\cos ^{8} x} d x$Hint:
Using
$\int x^{n} d x$Explanation:Let
$\mathrm{I}=\int \frac{\sin ^{6} x}{\cos ^{8} x} d x$$=\int\left(\frac{\sin ^{6} x}{\cos ^{6} x} \times \frac{1}{\cos ^{2} x}\right) d x$$=\int \tan ^{6} x \sec ^{2} x d x$ $\left[\because \tan x=\frac{\sin x}{\cos x} ; \sec x=\frac{1}{\cos x}\right]$$=\int t^{6} d t$ $\text { Put } \left.\tan x=t \Rightarrow \sec ^{2} x d x=d t\right]$$\begin{aligned} &=\frac{t^{7}}{7}+C \\ &=\frac{\tan ^{7} x}{7}+C \end{aligned}$ $\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right]$Indefinite Integrals Exercise Multiple Choice Questions Question 16
Answer:$\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{1}{\sqrt{6}} \tan \frac{x}{2}\right)+C$Given:$\int\left(\frac{1}{7+5 \cos x}\right) d x$Hint:
You must know about the derivation of tan x and using
$\int \frac{1}{1+x^{2}} d x$Explanation:Let
$\mathrm{I}=\int \frac{1}{7+5 \cos x} d x$$\text { Put } \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}$$\begin{aligned} \therefore I &=\int \frac{1}{7+5\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x \\ &=\int \frac{1+\tan ^{2} \frac{x}{2}}{7\left(1+\tan ^{2} \frac{x}{2}\right)+5-5 \tan ^{2} \frac{x}{2}} d x \\ &=\int \frac{\sec ^{2} \frac{x}{2}}{12+2 \tan ^{2} \frac{x}{2}} \\ &=\frac{1}{2} \int \frac{\sec ^{2} \frac{x}{2}}{\tan ^{2} \frac{x}{2}+6} d x \\ &=\frac{1}{2} \int \frac{2 d t}{t^{2}+(\sqrt{6})^{2}} \end{aligned}$ $\text { [ Put } \left.\tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x=d t \Rightarrow \sec ^{2} \frac{x}{2} d x=2 d t\right]$$\begin{aligned} &=\int \frac{d t}{t^{2}+(\sqrt{6})^{2}} \\ &=\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{t}{\sqrt{6}}\right)+C \ldots \ldots \ldots \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c \\ &=\frac{1}{\sqrt{6}} \tan ^{-1}\left(\frac{\tan \frac{x}{2}}{\sqrt{6}}\right)+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 17
Answer: $\log \left|1-\cot \frac{x}{2}\right|+C$Given:$\int \frac{1}{1-\cos x-\sin x} d x$Hint:
Using partial fraction and
$\int \frac{1}{x} d x$Explanation:Let
$\mathrm{I}=\int \frac{1}{1-\cos x-\sin x} d x$$\begin{aligned} &\text { Put } \cos x=\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan \frac{x^{x}}{2}} ; \sin x=\frac{2 \tan _{2}^{x}}{1+\tan ^{\frac{x}{2}}}\\ &\therefore I=\int \frac{1}{1-\left(\frac{1-\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)-\left(\frac{2 \tan \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}}\right)} d x \end{aligned}$$\begin{aligned} &=\int \frac{1+\tan ^{2} \frac{x}{2}}{1+\tan ^{2} \frac{x}{2}-1+\tan ^{2}-2 \tan \frac{x}{2}} d x \\ =& \int \frac{\sec ^{2} \frac{x}{2}}{2 \tan ^{2} \frac{x}{2}-2 \tan \frac{x}{2}} d x \\ =& \int \frac{\sec ^{2} \frac{x}{2} \cdot \frac{1}{2}}{\tan \frac{x}{2}\left(\tan _{2}^{x}-1\right)} d x \quad\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta\right] \end{aligned}$$=\int \frac{d t}{t(t-1)}$ $\text { [ Put } \left.\tan \frac{x}{2}=t \Rightarrow \sec ^{2} \frac{x}{2} \cdot \frac{1}{2} d x=d t\right]$Now,
$\frac{1}{t(t-1)}=\frac{A}{t}+\frac{B}{t-1}$Multiplying by t (t - 1)
$\Rightarrow 1=A(t-1)+B(t)$Putting t = 1
$\begin{aligned} &1=A(0-1)+B(0) \Rightarrow A=-1 \\ &\therefore \frac{1}{t(t-1)}=\frac{-1}{t}+\frac{1}{t-1} \\ &\therefore \int \frac{1}{t(t-1)} d t=-\int \frac{1}{t} d t+\int \frac{1}{t-1} d t \end{aligned}$
$\begin{aligned} &=-\log |t|+\log |t-1|+C \\ &=-\log \left|\tan \frac{x}{2}\right|+\log \left|\tan \frac{x}{2}-1\right|+C \\ &=\log \left|\frac{\tan _{\frac{x}{2}}-1}{\tan _{2}^{\frac{x}{x}}}\right|+C \\ &=\log \left|1-\cot \frac{x}{2}\right|+C \end{aligned}$$\left[\because \cot x=\frac{1}{\tan x}\right]$
Indefinite Integrals Exercise Multiple Choice Questions Question 18
Answer: $\frac{e^{x}}{x+4}+C$Given:$\int \frac{x+3}{(x+4)^{2}} e^{x} d x$Hint:
Using
$\left[\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right.$Explanation:Let
$\mathrm{I}=\int \frac{x+3}{(x+4)^{2}} e^{x} d x$$=\int \frac{(x+3+1-1)}{(x+4)^{2}} e^{x} d x$$=\int e^{x}\left[\frac{x+4}{(x+4)^{2}}-\frac{1}{(x+4)^{2}}\right] d x$$\begin{aligned} &=\int e^{x}\left[\frac{1}{x+4}-\frac{1}{(x+4)^{2}}\right] d x \\ &=\int e^{x} \frac{1}{x+4} d x-\int e^{x} \frac{1}{(x+4)^{2}} d x \\ &=\frac{1}{x+4} \cdot e^{x}-\int \frac{-1}{(x+4)^{2}} \cdot e^{x} d x-\int \frac{1}{(x+4)^{2}} \cdot e^{x} d x \ldots \ldots \ldots . .\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=\frac{e^{x}}{x+4}+\int \frac{1}{(x+4)^{2}} e^{x} d x-\int \frac{1}{(x+4)^{2}} e^{x} d x \\ &=\frac{e^{x}}{x+4}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 19
Answer:$\frac{-1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C$Given:$\int \frac{\sin x}{3+4 \cos ^{2} x} d x$Hint:
You must know about the derivative of cos x and
$\int \frac{1}{1+x^{2}} d x$Explanation:
Let $I=\int \frac{\sin x}{3+4 \cos ^{2} x} d x$$=\int \frac{-d t}{3+4 t^{2}}$ $[\text { Put } \cos x=t \Rightarrow-\sin x d x=d t \Rightarrow \sin x d x=-d t]$$\begin{aligned} &=\frac{-1}{4} \int \frac{d t}{t^{2}+\frac{3}{4}} \\ =& \frac{-1}{4} \int \frac{d t}{(t)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} \\ =& \frac{-1}{4} \cdot \frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{t}{\frac{\sqrt{3}}{2}}\right)+c \ldots \ldots \int \frac{1}{x^{2}+a^{2}} d x=\tan ^{-1} \frac{x}{a}+c \\ =& \frac{-1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 t}{\sqrt{3}}\right)+C \\ =& \frac{-1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 \cos x}{\sqrt{3}}\right)+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 20
Answer: $-e^{x} \cot \frac{x}{2}+C$Given:$\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$Hint:
You must know about the derivation of cot x and
$\int e^{x} d x$Explanation:Let
$\mathrm{I}=\int e^{x}\left(\frac{1-\sin x}{1-\cos x}\right) d x$$=\int e^{x}\left(\frac{\sin ^{2} \frac{x}{2}+\cos ^{2} \frac{x}{2}-2 \sin \frac{x}{2} \cos _{2}^{x}}{2 \sin ^{2} \frac{x}{2}}\right) d x$ $\left[\begin{array}{l} \because \sin ^{2} \theta+\cos ^{2} \theta=1 ; \sin 2 \theta=2 \sin \theta \cos \theta ; \\ 1-\cos \theta=2 \sin ^{2} \frac{\theta}{2} \end{array}\right]$$\begin{aligned} &=\frac{1}{2} \int e^{x}\left(\frac{\sin {\frac{x}{2}}-\cos \frac{x}{2}}{\sin \frac{x}{2}}\right)^{2} d x \\ &=\frac{1}{2} \int e^{x}\left(1-\cot \frac{x}{2}\right)^{2} d x \\ &=\frac{1}{2} \int e^{x}\left(\left(1+\cot ^{2} \frac{x}{2}\right)-2 \cot \frac{x}{2}\right) d x \end{aligned}$ $\left[\because \cot x=\frac{\cos x}{\sin x}\right]$$=\frac{1}{2} \int e^{x}\left(\operatorname{cosec}^{2} \frac{x}{2}-2 \cot \frac{x}{2}\right) d x$ $\left[\because 1+\cot ^{2} \theta=\cos e^{2} \theta\right]$$\begin{aligned} &=\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x-\int \cot \frac{x}{2} e^{x} d x \\ =&-\int \cot \frac{x}{2} \cdot e^{x} d x+\int \cos e c^{2} \frac{x}{2} e^{x} \cdot \frac{1}{2} d x \\ =&-\left[\cot \frac{x}{2} \cdot e^{x}-\int-\operatorname{cosec}^{2} \frac{x}{2} \cdot \frac{1}{2} \cdot e^{x} d x\right]+\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x \ldots . .\left[\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right] \\ =&-\cot \frac{x}{2} \cdot e^{x}-\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x+\frac{1}{2} \int e^{x} \cos e c^{2} \frac{x}{2} d x \\ =&-\cot \frac{x}{2} \cdot e^{x}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 21
Answer: $\frac{-e^{-x}}{e^{x}+e^{-x}}+C$Given: $\int \frac{2}{\left(e^{x}+e^{-x}\right)^{2}} d x$Hint:
You must know about the
$\int x^{n} d x$Explanation:$\begin{aligned} &I=\int \frac{2 d x}{\left(e^{x}+e^{-x}\right)^{2}} \\ &I=\int \frac{2 e^{x}}{e^{x}\left(e^{x}+e^{-x}\right)^{2}} d x \\ &\text { Put } e^{x}=t \Rightarrow e^{x} d x=d t \\ &I=\int \frac{2 d t}{t\left(t+\frac{1}{t}\right)^{2}} \\ &I=\int \frac{2 d t}{\frac{t\left(t^{2}+1\right)^{2}}{t^{2}}} \\ &=\int \frac{2 t d t}{\left(t^{2}+1\right)^{2}} \\ &\text { Put } z=t^{2}+1 \Rightarrow d z=2 t d t \end{aligned}$$\begin{aligned} &I=\int \frac{d z}{z^{2}} \\ &=\int z^{-2} d z \\ &=\frac{z^{-2+1}}{-2+1}+C \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+C\right] \\ &=-\frac{1}{z}+C \\ &=\frac{-1}{\left(t^{2}+1\right)}+C \quad\left[\because z=t^{2}+1\right] \\ &=\frac{-1}{e^{2 x}+1}+C \quad\left[\because t=e^{x}\right] \\ &=\frac{-1}{e^{x}\left(e^{x}+\frac{1}{e^{x}}\right)}+C \\ &=\frac{-e^{-x}}{\left(e^{x}+e^{-x}\right)}+C \end{aligned}$Hence
$I=\frac{-e^{-x}}{e^{x}+e^{-x}}+C$Option (a) is correct
Indefinite Integrals Exercise Multiple Choice Questions Question 22
Answer: $\tan \left(x e^{x}\right)+C$Given:$\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x$Hint:
You must know about the
$\int \sec ^{2} x d x$Explanation:Let
$\mathrm{I}=\int \frac{e^{x}(1+x)}{\cos ^{2}\left(x e^{x}\right)} d x$$=\int \frac{d t}{\cos ^{2} t}$ $\text { [ Put } \left.x e^{x}=t \Rightarrow\left(x e^{x}+e^{x}(1)\right) d x=d t \Rightarrow e^{x}(x+1) d x=d t\right]$$=\int \sec ^{2} t d t$ $\left[\because \sec \theta=\frac{1}{\cos \theta}\right]$$\begin{aligned} &=\tan t+C \\ &=\tan \left(x e^{x}\right)+C \end{aligned}$Hence,
$\int \frac{e^{x}(1+x) d x}{\cos ^{2}\left(x e^{x}\right)}=\tan \left(x e^{x}\right)+C$Indefinite Integrals Exercise Multiple Choice Questions Question 23
Answer:$\frac{1}{3} \tan ^{3} x+C$Given:$\int \frac{\sin ^{2} x}{\cos ^{4} x} d x$Hint:
You must know about the derivation of tan x and
$\int x^{n} d x$Explanation:Let
$I=\int \frac{\sin ^{2} x}{\cos ^{4} x} d x$$=\int \tan ^{2} x \sec ^{2} x d x$ $\left[\because \frac{\sin x}{\cos x}=\tan x ; \frac{1}{\cos x}=\sec x\right]$Put
$\tan x=t, \sec ^{2} x d x=d t$$\begin{aligned} &=\int t^{2} d t \\ &=\frac{(t)^{2+1}}{2+1}+C \\ &=\frac{1}{3} \tan ^{3} x+C \end{aligned}$Hence,
$\int \frac{\sin ^{2} x}{\cos ^{4} x}=\frac{1}{3} \tan ^{3} x+C .$Indefinite Integrals Exercise Multiple Choice Questions Question 24
Answer:$\frac{a^{x+\frac{1}{x}}}{\log _{e} a}$Given:$f(x)=\left(1-\frac{1}{x^{2}}\right) a^{x+\frac{1}{x}}, a>0$Hint:
You must know about the
$\int a^{x} d x$Explanation:Let
$\mathrm{I}=\int\left(1-\frac{1}{x^{2}}\right) a^{x+\frac{1}{x}} d x$$=\int a^{t} d t$ $\text { [Put } \left.x+\frac{1}{x}=t \Rightarrow\left(1-\frac{1}{x^{2}}\right) d x=d t\right]$$\begin{aligned} &=\frac{a^{t}}{\log _{e} a} \\ &=\frac{a^{x+\frac{1}{x}}}{\log _{e} a} \end{aligned}$ $\left[\because \int a^{x} d x=\frac{a^{x}}{\log a}\right]$Hence primitive of
$f(x) \text { is } \frac{a^{x+\frac{1}{x}}}{\log _{e} a}$Indefinite Integrals Exercise Multiple Choice Questions Question 25
Answer:$\log |1+\log x|+C$Given:$\int \frac{1}{x+x \log x} d x$Hint:
Using
$\int \frac{1}{x} d x$Explanation:Let
$I=\int \frac{1}{x+x \log x} d x$$\begin{aligned} &=\int \frac{1}{x(1+\log x)} d x \\ &=\int \frac{\frac{1}{x}}{1+\log x} d x \\ &=\int \frac{d t}{t} \end{aligned}$ $\text { [ Put } \left.1+\log x=t \Rightarrow \frac{1}{x} d x=d t\right]$$\begin{aligned} &=\log |t|+C \\ &=\log |1+\log x|+C \end{aligned}$Hence,
$\int \frac{1}{x+x \log x} d x=\log |1+\log x|+C$Indefinite Integrals Exercise Multiple Choice Questions Question 26
Answer:$\sin ^{-1} \sqrt{x}-\sqrt{x(1-x)}+C$Given:$\int \sqrt{\frac{x}{1-x}} d x$ is equal to:
Hint:
You must know about the
$\int \sin ^{2} \theta d \theta \text { . }$Explanation:Let I
$=\int \sqrt{\frac{x}{1-x}}$$=\int \sqrt{\frac{\sin ^{2} \theta}{1-\sin ^{2} \theta} \times} 2 \sin \theta \cos \theta d \theta$ $\text { [ Put } \left.x=\sin ^{2} \theta \Rightarrow d x=2 \sin \theta \cos \theta d \theta\right]$$=\int \sqrt{\frac{\sin ^{2} \theta}{\cos ^{2} \theta}} \cdot 2 \sin \theta \cos \theta d \theta$ $\left[\because 1-\sin ^{2} \theta=\cos ^{2} \theta\right]$$\begin{aligned} &=\int \sqrt{\tan ^{2} \theta} \cdot 2 \sin \theta \cos \theta d \theta \\ &=\int \frac{\sin \theta}{\cos \theta} \times 2 \sin \theta \cos \theta d \theta \\ &=\int 2 \sin ^{2} \theta d \theta \\ &=\int(1-\cos 2 \theta) d \theta \end{aligned}$ $\left[\because 2 \sin ^{2} \theta=1-\cos 2 \theta\right]$$\begin{aligned} &=\int 1 d \theta-\int \cos 2 \theta d \theta \\ &=\theta-\frac{1}{2} \sin 2 \theta+C \\ &=\theta-\frac{1}{2} \times 2 \sin \theta \cos \theta+C \\ &=\theta-\sin \theta \cos \theta+C \\ &=\theta-\sin \theta \sqrt{1-\sin ^{2} \theta}+C \\ &=\sin ^{-1} \sqrt{x}-\sqrt{x} \sqrt{1-x}+C \\ &=\sin ^{-1} \sqrt{x}-\sqrt{x(1-x)}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 27
Answer: $e^{x} f(x)+C$Given:$\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x$Hint:
You must know about the rule to integrate by parts
Explanation:Let
$\mathrm{I}=\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x$$\begin{aligned} &=\int e^{x} f(x) d x+\int e^{x} f^{\prime}(x) d x \\ &=f(x) e^{x}-\int e^{x} f^{\prime}(x) d x+\int e^{x} f^{\prime}(x) d x \ldots\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=f(x) e^{x}+C \end{aligned}$Hence,
$\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x=e^{x} f(x)+C$Indefinite Integrals Exercise Multiple Choice Questions Question 28
Answer:$\pm \log (\sin x-\cos x)+C$Given:$\int \frac{\sin x+\cos x}{\sqrt{1-\sin 2 x}}$Hint:
You must know about the derivation of sin and cos function and
$\int \frac{1}{x} d x$Explanation:Let
$I=\int \frac{\sin x+\cos x}{\sqrt{1-\sin 2 x}} d x$$=\int \frac{\sin x+\cos x}{\sqrt{\sin ^{2} x+\cos ^{2} x-\sin 2 x}} d x$ $\left[\because \sin ^{2} x+\cos ^{2} x=1\right]$$=\int \frac{\sin x+\cos x}{\sqrt{(\cos x-\sin x)^{2}}} d x$ $\left[\because(a-b)^{2}=a^{2}+b^{2}-2 a b\right]$$\begin{aligned} &=\int \frac{\sin x+\cos x}{(\cos x-\sin x)} d x \\ &=\int \frac{d t}{ t} \end{aligned}$ $[\text { Put } \cos x-\sin x=t \Rightarrow(\cos x+\sin x) d x=d t]$$\begin{aligned} &= \log |t|+C \\ &= \log (\cos x-\sin x)+C \end{aligned}$Hence,
$\int \frac{\sin x+\cos x}{\sqrt{1-\sin 2 x}}= \log (\cos x-\sin x)+C .$Indefinite Integrals Exercise Multiple Choice Questions Question 29
Answer:$\sin x+C$Given:$\int x \sin x d x=-x \cos x+\alpha$Hint:
You must know the derivation of sin x and rule to integrate by parts
Explanation:Let
$I=\int x \sin x d x$$=x(-\cos x)+\int(1) \cos x d x$ $\text { [ : :Integration by parts } \left.\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right]$$=-x \cos x+\sin x+C$Acc to given$\begin{aligned} &I=-x \cos x+\alpha \\ &\Rightarrow-x \cos x+\sin x+C=-x \cos x+\alpha \end{aligned}$Comparing both sides
We get,
$\alpha=\sin x+C$Indefinite Integrals Exercise Multiple Choice Questions Question 30
Answer:$x-\tan x+C$Given:$\int \frac{\cos 2 x-1}{\cos 2 x+1} d x$Hint:
Using
$\int \tan ^{2} x d x$Explanation:Let
$\mathrm{I}=\int \frac{\cos 2 x-1}{\cos 2 x+1} d x$$=\int \frac{\cos ^{2} x-\sin ^{2} x-1}{\cos ^{2} x-\sin ^{2} x+1} d x$ $\left[\because \cos 2 x=\cos ^{2} x-\sin ^{2} x\right]$$\begin{aligned} &=\int \frac{\left(\cos ^{2} x-1\right)-\sin ^{2} x}{\cos ^{2} x+\left(1-\sin ^{2} x\right)} d x \\ &=\int \frac{-\sin ^{2} x-\sin ^{2} x}{\cos ^{2} x+\cos ^{2} x} d x \end{aligned}$ $\left[\begin{array}{l} \because \sin ^{2} x+\cos ^{2} x=1 \\ \Rightarrow 1-\sin ^{2} x=\cos ^{2} x \end{array}\right]$$\begin{aligned} &=\int \frac{-2 \sin ^{2} x}{2 \cos ^{2} x} d x \\ &=-\int \tan ^{2} x d x \end{aligned}$ $\left[\because \tan x=\frac{\sin x}{\cos x}\right]$$\begin{aligned} &=-\int\left(\sec ^{2} x-1\right) d x \\ &=\int\left(1-\sec ^{2} x\right) d x \\ &=\int 1 d x-\int \sec ^{2} x d x \\ &=x-\tan x+C \end{aligned}$Hence,
$\int \frac{\cos 2 x-1}{\cos 2 x+1} d x=x-\tan x+C$Indefinite Integrals Exercise Multiple Choice Questions Question 31
Answer:$2(\sin x+x \cos \theta)+C$Given:$\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x$Hint:
You must know about the integration of cos x
Explanation:Let
$\mathrm{I}=\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x$ $=\int \frac{\left(2 \cos ^{2} x-1\right)-\left(2 \cos ^{2} \theta-1\right)}{\cos x-\cos \theta} d x$ $\left[\because \cos 2 \theta=2 \cos ^{2} \theta-1\right]$$\begin{aligned} &=\int \frac{2 \cos ^{2} x-2 \cos ^{2} \theta+1-1}{\cos x-\cos \theta} d x \\ &=2 \int \frac{\cos ^{2} x-\cos ^{2} \theta}{\cos x-\cos \theta} d x \\ &=2 \int \frac{(\cos x-\cos \theta)(\cos x+\cos \theta)}{\cos x-\cos \theta} d x \end{aligned}$ $\left[\because a^{2}-b^{2}=(a+b)(a-b)\right]$$\begin{aligned} &=2 \int \cos x d x+2 \int \cos \theta d x \\ &=2 \int \cos x d x+2 \cos \theta \int 1 d x \\ &=2 \sin x+2 \cos \theta \cdot x+C \\ &=2(\sin x+x \cos \theta)+C \end{aligned}$Hence,
$\int \frac{\cos 2 x-\cos 2 \theta}{\cos x-\cos \theta} d x=2(\sin x+x \cos \theta)+C .$Indefinite Integrals Exercise Multiple Choice Questions Question 32
Answer:$\frac{1}{10}\left[4+\frac{1}{x^{2}}\right]^{-5}+C$Given:$\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x$Hint:
Using
$\int x^{n} d x$Explanation:Let
$\mathrm{I}=\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x$$=\int \frac{x^{9}}{x^{12}\left(4+\frac{1}{x^{2}}\right)^{6}} d x \ldots \ldots \ldots \text { taking } x^{2} \text { common from denominator }$$\begin{aligned} &=\int \frac{1}{x^{3}\left(4+\frac{1}{x^{2}}\right)^{6}} d x \\ &=\int \frac{\frac{1}{x^{3}}}{\left(4+\frac{1}{x^{2}}\right)^{6}} d x \end{aligned}$ $\text { [ Put } \left.4+\frac{1}{x^{2}}=t \Rightarrow \frac{-2}{x^{3}} d x=d t\right]$$\begin{aligned} &=-\frac{1}{2} \int \frac{d t}{t^{6}} \\ &=-\frac{1}{2}\left[\frac{t^{-6+1}}{-6+1}\right]+C \\ &=-\frac{1}{2}\left[\frac{(t)^{-5}}{-5}\right]+C \\ &=\frac{1}{10} \times \frac{1}{t^{5}}+C \\ &=\frac{t^{-5}}{10}+C \\ &=\frac{1}{10}\left[4+\frac{1}{x^{2}}\right]^{-5}+C \end{aligned}$Hence,
$\int \frac{x^{9}}{\left(4 x^{2}+1\right)^{6}} d x=\frac{1}{10}\left[4+\frac{1}{x^{2}}\right]^{-5}+C$Indefinite Integrals Exercise Multiple Choice Questions Question 33
Answer:$a=\frac{1}{3} ; b=-1$Given:$\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C$Hint:
Using
$\int x^{n} d x$Explanation:Let
$I=\int \frac{x^{3}}{\sqrt{1+x^{2}}} d x$$\begin{aligned} &=\int \frac{x^{2} x}{\sqrt{1+x^{2}}} d x \\ &=\int \frac{(t-1)}{\sqrt{t}} \cdot \frac{d t}{2} \end{aligned}$ $\text { [ Put } \left.1+x^{2}=t \Rightarrow x^{2}=t-1 \Rightarrow 2 x d x=d t\right]$$\begin{aligned} &=\frac{1}{2} \int \frac{t-1}{\sqrt{t}} d t \\ &=\frac{1}{2} \int \sqrt{t} d t-\frac{1}{2} \int \frac{1}{\sqrt{t}} d t \\ &=\frac{1}{2} \int(t)^{\frac{1}{2}} d t-\frac{1}{2} \int(t)^{\frac{-1}{2}} d t \\ &=\frac{1}{2}\left[\frac{t^{\frac{1}{2}+1}}{\frac{1}{2}+1}\right]-\frac{1}{2}\left[\frac{(t)^{\frac{-1}{2}+1}}{\frac{-1}{2}+1}\right]+C \\ &=\frac{1}{2} \times \frac{t^{\frac{3}{2}}}{\frac{3}{2}}-\frac{1}{2} \times \frac{(t)^{\frac{1}{2}}}{\frac{1}{2}}+C \\ &=\frac{1}{3} t^{\frac{3}{2}}-t^{\frac{1}{2}}+C \end{aligned}$$=\frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\sqrt{1+x^{2}}+C$Acc to given $I=a\left(1+x^{2}\right)^{\frac{8}{2}}+b \sqrt{1+x^{2}}+C$$\Rightarrow \frac{1}{3}\left(1+x^{2}\right)^{\frac{3}{2}}-\sqrt{1+x^{2}}+C=a\left(1+x^{2}\right)^{\frac{3}{2}}+b \sqrt{1+x^{2}}+C$On comparing, we get
$a=\frac{1}{3}, b=-1$Indefinite Integrals Exercise Multiple Choice Questions Question 34
Answer:$x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C$Given:$\int \frac{x^{3}}{x+1} d x$Hint:
You must know how to integrate
$\int x^{n} d x$and
$\int \frac{1}{x} d x$Explanation:
Let
$\mathrm{I}=\int \frac{x^{3}}{x+1} d x$$\begin{aligned} &=\int \frac{x^{3}+1-1}{x+1} d x \\ &=\int \frac{(x+1)\left(x^{2}+1-x\right)}{x+1} d x-\int \frac{1}{x+1} d x \end{aligned}$ $\left[\because x^{3}+1=(x+1)\left(x^{2}+1-x\right)\right]$$\begin{aligned} &=\int\left(x^{2}+1-x\right) d x-\int \frac{1}{1+x} d x \\ &=\frac{x^{3}}{3}+x-\frac{x^{2}}{2}-\log |1+x|+C \\ &=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\log |1+x|+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 35
Answer:$a=\frac{-1}{10}, b=\frac{2}{5}$Given:$\int \frac{1}{(x+2)\left(x^{2}+1\right)} d x=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|+C$Hint:
Using partial fraction and
$\int \frac{1}{x} d x$and
$\int \frac{1}{1+x^{2}} d x$Explanation:Let
$\mathrm{I}=\int \frac{1}{(x+2)\left(x^{2}+1\right)} d x$Let
$\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{A}{x+2}+\frac{B x+C}{x^{2}+1}$ $\left [ Eq.(i)) \right ]$Multiplying by
$(x+2)\left(x^{2}+1\right)$, we get
$I=A\left(x^{2}+1\right)+(B x+C)(x+2)$Putting x = -2
$\begin{aligned} &1=A(5)+(-2 B+C)(-2+2) \\ &\Rightarrow 1=5 A+0 \\ &\Rightarrow A=\frac{1}{5} \end{aligned}$Putting x = 0
$\begin{aligned} &1=A(1)+(B(0)+C)(0+2) \\ &\Rightarrow 1=\frac{1}{5}+2 C \\ &\Rightarrow C=\frac{2}{5} \end{aligned}$Putting x = +1
$\begin{aligned} &1=A(1+1)+(B+C)(1+2) \\ &\Rightarrow 1=2\left(\frac{1}{5}\right)+\left(B+\frac{2}{5}\right)(3) \\ &\Rightarrow 1=\frac{2}{5}+3 B+\frac{6}{5} \\ &\Rightarrow 3 B=1-\frac{8}{5} \\ &\Rightarrow 3 B=\frac{-3}{5} \\ &\Rightarrow B=\frac{-1}{5} \end{aligned}$
$\therefore \text { From }[E q \cdot(i)]$
$\begin{aligned} &\frac{1}{(x+2)\left(x^{2}+1\right)}=\frac{\frac{1}{5}}{x+2}+\frac{\left(\frac{-1}{5}\right) x+\left(\frac{2}{5}\right)}{x^{2}+1}\\ &\therefore \int \frac{1}{(x+2)\left(x^{2}+1\right)} d x=\frac{1}{5} \int \frac{1}{x+2} d x+\left(\frac{-1}{5}\right) \cdot \frac{1}{2} \int \frac{2 x}{x^{2}+1} d x+\frac{2}{5} \int \frac{1}{x^{2}+1} d x\\ &\therefore I=\frac{1}{5} \log |x+2|-\frac{1}{10} \log \left|1+x^{2}\right|+\frac{2}{5} \tan ^{-1} x+C \end{aligned}$$\left [ Eq.(ii)) \right ]$
Acc to given
$I=a \log \left|1+x^{2}\right|+b \tan ^{-1} x+\frac{1}{5} \log |x+2|$ $\left [ Eq.(iii)) \right ]$
$\begin{aligned} &\therefore \text { From } E q \cdot(i i) \text { and } E q \cdot(\text { iii }) \text { we get }\\ &a=\frac{-1}{10}, b=\frac{2}{5} \end{aligned}$
Indefinite Integrals Exercise Multiple Choice Questions Question 36
Answer:$e^{x} \cos x+C$Given:$\int e^{x}(\cos x-\sin x) d x$Hint:
You must know the rule to integrate by parts
Explanation:Let
$I=\int e^{x}(\cos x-\sin x) d x$$\begin{aligned} &=\int e^{x} \cos x d x-\int e^{x} \sin x d x \\ &=\cos x e^{x}+\int e^{x} \sin x d x-\int e^{x} \sin x d x \ldots . .\left\{\int u \cdot v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=\cos x e^{x}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 37
Answer:$a=\frac{-1}{8}, b=\frac{+7}{8}$Given:$\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}} d x=a x+b \log _{e}\left|4 e^{x}+5 e^{-x}\right|+C$Hint:
Using
$\int e^{x} d x$Explanation:We are given that
$\int \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}} d x=a x+b \log _{e}\left|4 e^{x}+5 e^{-x}\right|+C$Differentiate both sides
$\frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=a+b \cdot \frac{1}{\left(4 e^{x}+5 e^{-x}\right)}\left(4 e^{x}-5 e^{-x}\right)$ $\left[\because \int e^{x} d x=e^{x}+C\right]$$\begin{aligned} &\Rightarrow \frac{3 e^{x}-5 e^{-x}}{4 e^{x}+5 e^{-x}}=\frac{a\left(4 e^{x}+5 e^{-x}\right)+b\left(4 e^{x}-5 e^{-x}\right)}{4 e^{x}+5 e^{-x}} \\ &\Rightarrow 3 e^{x}-5 e^{-x}=4 a e^{x}+5 a e^{-x}+4 b e^{x}-5 b e^{-x} \\ &\Rightarrow 3 e^{x}-5 e^{-x}=(4 a+4 b) e^{x}+(5 a-5 b) e^{-x} \end{aligned}$Comparing co eff of like terms, we get
$\begin{aligned} &4 a+4 b=3 ; 5(a-b)=-5 \\ &\Rightarrow a-b=-1 \Rightarrow a=b-1 \\ &\Rightarrow 4(b-1)+4 b=3 \\ &\Rightarrow 8 b-4=3 \\ &\Rightarrow 8 b=7 \Rightarrow b=\frac{7}{8} \\ &\therefore a=\frac{7}{8}-1 \Rightarrow a=\frac{-1}{8} \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 38
Answer:$\frac{e^{x}}{\left(1+x^{2}\right)}+C$Given:$\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x$Hint:
Using integration by parts
Explanation:Let
$I=\int e^{x}\left(\frac{1-x}{1+x^{2}}\right)^{2} d x$ $\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right]$ $=\int \frac{e^{x}\left(1-2 x+x^{2}\right)}{\left(1+x^{2}\right)^{2}} d x$$=\int \frac{e^{x}\left(1+x^{2}\right)}{\left(1+x^{2}\right)^{2}} d x-\int \frac{e^{x} 2 x}{\left(1+x^{2}\right)^{2}} d x$$\begin{aligned} &=\int \frac{e^{x}}{\left(1+x^{2}\right)} d x-\int \frac{e^{x} 2 x}{\left(1+x^{2}\right)^{2}} d x \\ &=\int e^{x} \cdot \frac{1}{1+x^{2}} d x-\int e^{x} \cdot \frac{2 x}{\left(1+x^{2}\right)^{2}} d x \end{aligned}$$=\frac{1}{1+x^{2}} \cdot e^{x}-\int e^{x}\left(\frac{\left(1+x^{2}\right)(0)-(1)(2 x)}{\left(1+x^{2}\right)^{2}}\right) d x-\int e^{x} \frac{2 x}{\left(1+x^{2}\right)^{2}} d x\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\}$$\begin{aligned} &=\frac{e^{x}}{1+x^{2}}+\int \frac{2 x e^{x}}{\left(1+x^{2}\right)^{2}} d x-\int \frac{2 x e^{x}}{\left(1+x^{2}\right)^{2}} d x \\ &=\frac{e^{x}}{1+x^{2}}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 39
Answer:$x \tan \frac{x}{2}+C$Given:$\int \frac{x+\sin x}{1+\cos x} d x$Hint:
Using integration by parts and
$\int \sec ^{2} \theta d \theta$Explanation:Let
$\mathrm{I}=\int \frac{x+\sin x}{1+\cos x} d x$$\begin{aligned} &=\int \frac{x}{1+\cos x} d x+\int \frac{\sin x}{1+\cos x} d x \\ &=\int \frac{x}{2 \cos ^{2} \frac{x}{2}} d x+\int \frac{2 \sin \frac{x}{2} \cos ^{x}}{2 \cos ^{2} \frac{x}{2}} d x \end{aligned}$ $\left[\because 1+\cos 2 \theta=2 \cos ^{2} \theta ; \sin 2 \theta=2 \sin \theta \cos \theta\right]$$=\frac{1}{2} \int x \sec ^{2} \frac{x}{2} d x+\int \tan \frac{x}{2} d x$ $\left[\text { Put } \frac{x}{2}=t \Rightarrow x=2 t \Rightarrow d x=2 d t\right]$$\begin{aligned} &=\frac{1}{2} \int 2 t \sec ^{2} t .2 d t+\int \tan t \cdot 2 d t \\ &=2 \int t \sec ^{2} t d t+2 \int \tan t d t \\ &=2\left[t . t a n t-\int \tan t d t\right]+2 \int \tan t d t \ldots\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\} \\ &=2 t . \tan t-2 \int \tan t d t+2 \int \tan t d t \\ &=2 t \tan t+C \\ &=2\left(\frac{x}{2}\right) \tan \frac{x}{2}+C \\ &=x \tan \frac{x}{2}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 40
Answer:$(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C$Given:$\int \tan ^{-1} \sqrt{x} d x$Hint:
Using integration by parts and
$\int \frac{1}{1+x^{2}} d x$Explanation:
Let
$I=\int \tan ^{-1} \sqrt{x} d x$$\Rightarrow I=\int \tan ^{-1} t .2 t d t$ $\left[\text { Put } \sqrt{x}=t \Rightarrow \frac{1}{2 \sqrt{x}} d x=d t \Rightarrow d x=2 \sqrt{x} d t \Rightarrow d x=2 t d t\right]$$=2 \int \tan ^{-1} t \cdot t d t$$=2\left[\tan ^{-1} t \cdot \frac{t^{2}}{2}-\int \frac{1}{1+t^{2}} \cdot \frac{t^{2}}{2} d t\right] \ldots\left\{\int u . v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\}$$\begin{aligned} &=2 \tan ^{-1} t \cdot \frac{t^{2}}{2}-\int\left(\frac{t^{2}+1-1}{t^{2}+1}\right) d t \\ &=\tan ^{-1} t \cdot t^{2}-\int 1 d t+\int \frac{1}{1+t^{2}} d t \\ &=t^{2} \tan ^{-1} t-t+\tan ^{-1} t+C \\ &=x \tan ^{-1} \sqrt{x}-\sqrt{x}+\tan ^{-1} \sqrt{x}+C \\ &=(x+1) \tan ^{-1} \sqrt{x}-\sqrt{x}+C \end{aligned}$Indefinite Integrals Exercise Multiple Choice Questions Question 41
Answer: $\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|$Given:$\int \frac{1}{\sin (x-a) \sin (x-b)} d x$Hint:
Using
$\sin (x-y)=\sin x \cos y-\cos x \sin y \text { and } \int \frac{1}{x} d x$Explanation:Let
$I=\int \frac{1}{\sin (x-a) \sin (x-b)} d x$$=\frac{1}{\sin (b-a)} \int \frac{\sin (b-a)}{\sin (x-a) \sin (x-b)} d x \ldots \ldots \text { multiplying by } \sin (b-a) \text { in num.\& den. }$$=\frac{1}{\sin (b-a)} \int \frac{\sin ((x-a)-(x-b))}{\sin (x-a) \sin (x-b)} d x$ $[\sin (x-y)=\sin x \cos y-\cos x \sin y]$$\begin{aligned} &=\frac{1}{\sin (b-a)} \int \frac{\sin (x-a) \cos (x-b)-\cos (x-a) \sin (x-b)}{\sin (x-a) \sin (x-b)} d x\\ &=\frac{1}{\sin (b-a)}\left[\int \frac{\cos (x-b)}{\sin (x-b)} d x-\int \frac{\cos (x-a)}{\sin (x-a)}\right] d x\\ &=\frac{1}{\sin (b-a)}[\log |\sin (x-b)|-\log |\sin (x-a)|]+C \end{aligned}$$=\operatorname{cosec}(b-a) \log \left|\frac{\sin (x-b)}{\sin (x-a)}\right|$ $\left[\because \log a-\log b=\log \frac{a}{b}\right]$Indefinite Integrals Exercise Multiple Choice Questions Question 42
Answer:$\frac{1}{3} e^{x^{3}}+C$Given:$\int x^{2} e^{x^{3}} d x$Hint:
Using
$\int e^{x} d x$Explanation:Let
$I=\int x^{2} e^{x^{3}} d x$$=\int e^{t} \cdot \frac{d t}{3}$ $\text { [Put } \left.x^{3}=t \Rightarrow 3 x^{2} d x=d t \Rightarrow x^{2} d x=\frac{d t}{3}\right]$$\begin{aligned} &=\frac{1}{3} e^{t}+C \\ &=\frac{1}{3} e^{x^{3}}+C \end{aligned}$ $\left[\because \int e^{x} d x=e^{x}+C\right]$Indefinite Integrals Exercise Multiple Choice Questions Question 43
Answer:$e^{x} \log (x+1)+C$Given:$\int \frac{e^{x}}{x+1}[1+(x+1) \log (x+1)] d x$Hint:
Using integration by parts and
$\int e^{x} d x$Explanation:Let
$\mathrm{I}=\int \frac{e^{x}}{x+1}[1+(x+1) \log (x+1)] d x$$\begin{aligned} &=\int e^{x}\left[\frac{1}{x+1}+\log (x+1)\right] d x \\ &=\int e^{x} \log (x+1) d x+\int e^{x} \frac{1}{x+1} d x \end{aligned}$$=\log (x+1) e^{x}-\int \frac{1}{x+1} e^{x} d x+\int \frac{1}{x+1} e^{x} d x \ldots\left\{\int u \cdot v d x=u \int v d x-\int \frac{d u}{d x} \int v d x d x\right\}$$=\log (x+1) e^{x}+C$Hence,
$\int \frac{e^{x}}{x+1}[1+(x+1) \log (x+1)] d x=\log (x+1) e^{x}+C$In this class 12 RD Sharma chapter 18 exercise MCQ. At Career360 Class 12 Maths, RD Sharma Class 12 Solutions Indefinite Integrals Ex MCQ helps students get a fair academic score in the exam.
This chapter of RD Sharma class 12th exercise MCQ Indefinite Integrals primary based on the possibility of soundness. Students can download the RD Sharma class 12 solutions MCQ Chapter 18 Indefinite Integrals to look into this theme.
Some important concepts like:-
Definition of primitive or antiderivative
Questions related to Fundamental integration formulae
Questions related to Integration of trigonometric functions
Geometrical interpretation of indefinite integral
Questions related to Comparison between differentiation and integration
Methods of integration
Questions related to Integration by substitution
Questions related to Integration by parts
Questions related to some important integrals along with theorems