Careers360 Logo
RD Sharma Class 12 Exercise 18.15 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.15 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:15 PM IST

It is a well-known fact that RD Sharma class 12th exercise 18.15 is a highly recommended NCERT solution. Students and teachers from across the Indian subcontinent have expressed their trust in RD Sharma Solutions, which has become a popular name in the education industry. The RD Sharma class 12 chapter 18 exercise 18.15 is especially favoured by students as it contains answers to a challenging section from the maths book.

The RD Sharma class 12 solutions Indefinite Integrals 18.15 will cover the chapter Indefinite Integrals which is complex and pretty lengthy. The chapter will test stunning on the concepts of Integrals, Graphs of indefinite integrals, Indefinite integrals of common functions, solving the quadratic equation etc. The exercise 18.15 part has a total of 6 questions. The RD Sharma class 12th exercise 18.15 will provide students with easy answers to all 6 of them.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise: 18.15

Indefinite Integrals Exercise 18.15 Question 1

Answer:
\frac{1}{8} \log \left|\frac{2 x+1}{2 x+5}\right|+C
Hint:
To solve this problem use special integration formula
Given:
\int \frac{1}{4 x^{2}+12 x+5} d x
Solution:
Let I=\int \frac{1}{4 x^{2}+12 x+5} d x=\frac{1}{4} \int \frac{1}{x^{2}+\frac{12 x}{4}+\frac{5}{4}} d x
\begin{aligned} &=\frac{1}{4} \int \frac{1}{x^{2}+3 x+\frac{5}{4}} d x=\frac{1}{4} \int \frac{d x}{x^{2}+2 \cdot x \cdot \frac{3}{2}+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+\frac{5}{4}} \\\\ &=\frac{1}{4} \int \frac{1}{\left(x+\frac{3}{2}\right)^{2}-\frac{9}{4}+\frac{5}{4}} d x=\frac{1}{4} \int \frac{1}{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{9-5}{4}\right)} d x \end{aligned}

Put x+\frac{3}{2}=t \Rightarrow d x=d t

Then I=\frac{1}{4} \int \frac{1}{t^{2}-1^{2}} d t
=\frac{1}{4} \cdot \frac{1}{2 \times 1} \log \left|\frac{t-1}{t+1}\right|+C \quad\left[\because \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C\right]
=\frac{1}{4} \times \frac{1}{2} \log \left|\frac{x+\frac{3}{2}-1}{x+\frac{3}{2}+1}\right|+C \text { } \left[\because t=x+\frac{3}{2}\right]
\begin{aligned} &=\frac{1}{8} \log \left|\frac{\frac{2 x+3-2}{2}}{\frac{2 x+3+2}{2}}\right|+C \\\\ &\end{aligned}
=\frac{1}{8} \log \left|\frac{2 x+1}{2 x+5}\right|+C

Indefinite Integrals Exercise 18.15 Question 2

Answer:
\frac{1}{3} \tan ^{-1}\left(\frac{x-5}{3}\right)+C
Hint:
To solve this problem use special integration formula
Given:
\int \frac{1}{x^{2}-10 x+34} d x
Solution:
Let I=\int \frac{1}{x^{2}-10 x+34} d x
\begin{aligned} &=\int \frac{1}{x^{2}-2 \cdot x \cdot 5+5^{2}-5^{2}+34} d x \\\\ &=\int \frac{1}{(x-5)^{2}-25+34} d x=\int \frac{1}{(x-5)^{2}+9} d x \\\\ &=\int \frac{1}{(x-5)^{2}+3^{2}} d x \end{aligned}
Put x-5=t \Rightarrow d x=d t
Then I=\int \frac{1}{t^{2}+3^{2}} d t
=\frac{1}{3} \tan ^{-1}\left(\frac{t}{3}\right)+C \quad\left[\because \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C\right]
=\frac{1}{3} \tan ^{-1}\left(\frac{x-5}{3}\right)+C \quad[\because t=x-5]

Indefinite Integrals Exercise 18.15 Question 3

Answer:
\frac{-1}{\sqrt{5}} \log \left|\frac{2 x-1-\sqrt{5}}{2 x-1+\sqrt{5}}\right|+C
Hint:
To solve this problem use special integration formula
Given:
\int \frac{1}{1+x-x^{2}} d x
Solution:
Let I=\int \frac{1}{1+x-x^{2}} d x=-\int \frac{1}{x^{2}-x-1} d x
\begin{aligned} &=-\int \frac{1}{x^{2}-2 \cdot x \cdot \frac{1}{2}+\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}-1} d x \\ & \end{aligned}
=-\int \frac{1}{\left(x-\frac{1}{2}\right)^{2}-\frac{1}{4}-1} d x
\begin{aligned} &=-\int \frac{1}{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{1+4}{4}\right)} d x \\ & \end{aligned}
=-\int \frac{1}{\left(x-\frac{1}{2}\right)^{2}-\frac{5}{4}} d x
Put x-\frac{1}{2}=t \Rightarrow d x=d t
Then I=-\int \frac{1}{t^{2}-\left(\frac{\sqrt{5}}{2}\right)^{2}} d t
=\frac{-1}{2 \cdot \frac{\sqrt{5}}{2}} \log \left|\frac{t-\frac{\sqrt{5}}{2}}{t+\frac{\sqrt{5}}{2}}\right|+C \text { } \quad\left[\because \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C\right]
=\frac{-1}{\sqrt{5}} \log \left|\frac{x-\frac{1}{2}-\frac{\sqrt{5}}{2}}{x-\frac{1}{2}+\frac{\sqrt{5}}{2}}\right|+C \quad\left[\because t=x-\frac{1}{2}\right]
\begin{aligned} &=\frac{-1}{\sqrt{5}} \log \left|\frac{\frac{2 x-1-\sqrt{5}}{2}}{\frac{2 x-1+\sqrt{5}}{2}}\right|+C \\ & \end{aligned}
=\frac{-1}{\sqrt{5}} \log \left|\frac{2 x-1-\sqrt{5}}{2 x-1+\sqrt{5}}\right|+C

Indefinite Integrals Exercise 18.15 Question 4

Answer:
\frac{1}{3} \log \left|\frac{4 x-4}{4 x+2}\right|+C
Hint:
To solve this problem use special integration formula
Given:
\int \frac{1}{2 x^{2}-x-1} d x
Solution:
Let I=\int \frac{1}{2 x^{2}-x-1} d x=\frac{1}{2} \int \frac{1}{x^{2}-\frac{x}{2}-\frac{1}{2}} d x
\begin{aligned} &=\frac{1}{2} \int \frac{1}{x^{2}-2 \cdot x \cdot \frac{1}{4}+\left(\frac{1}{4}\right)^{2}-\left(\frac{1}{4}\right)^{2}-\frac{1}{2}} d x \\ & \end{aligned}
=\frac{1}{2} \int \frac{1}{\left(x-\frac{1}{4}\right)^{2}-\frac{1}{16}-\frac{1}{2}} d x
\begin{aligned} &=\frac{1}{2} \int \frac{1}{\left(x-\frac{1}{4}\right)^{2}-\left(\frac{1+8}{16}\right)} d x \\ & \end{aligned}
=\frac{1}{2} \int \frac{1}{\left(x-\frac{1}{4}\right)^{2}-\frac{9}{16}} d x
Put x-\frac{1}{4}=t \Rightarrow d x=d t
Then I=\frac{1}{2} \int \frac{1}{t^{2}-\left(\frac{3}{4}\right)^{2}} d x
=\frac{1}{2} \cdot \frac{1}{2 \times \frac{3}{4}} \log \left|\frac{t-\frac{3}{4}}{t+\frac{3}{4}}\right|+C \left[\because \int \frac{1}{x^{2}-a^{2}} d x=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+C\right]
=\frac{1}{3} \log \left|\frac{x-\frac{1}{4}-\frac{3}{4}}{x-\frac{1}{4}+\frac{3}{4}}\right|+C \text { } \quad\left[\because t=x-\frac{1}{4}\right]
\begin{aligned} &=\frac{1}{3} \log \left|\frac{\frac{4 x-1-3}{4}}{\frac{4 x-1+3}{4}}\right|+C \\ & \end{aligned}
=\frac{1}{3} \log \left|\frac{4 x-4}{4 x+2}\right|+C

Indefinite Integrals Excercise 18.15 Question 5

Answer:
\frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+C
Hint:
To solve this problem use special integration formula
Given:
\int \frac{1}{x^{2}+6 x+13} d x
Solution:
Let I=\int \frac{1}{x^{2}+6 x+13} d x
\begin{aligned} &=\int \frac{1}{x^{2}+2 \cdot x \cdot 3+3^{2}-3^{2}+13} d x \\ & \end{aligned}
=\int \frac{1}{(x+3)^{2}-9+13} d x \\
=\int \frac{1}{(x+3)^{2}+4} d x
Put x+3=t \Rightarrow d x=d t
Then I=\int \frac{1}{t^{2}+2^{2}} d t
=\frac{1}{2} \tan ^{-1}\left(\frac{t}{2}\right)+C \left[\because \int \frac{1}{x^{2}+a^{2}} d x=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+C\right]
=\frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+C \quad[\because t=x+3]

Indefinite Integrals Excercise 18.15 Question 6

Answer:
\log \left|\frac{(x+3)^{2}}{(x+2)}\right|+C
Hint:
To solve this problem use special integration formula
Given:
\int \frac{(x+1)}{(x+2)(x+3)} d x
Solution:
Let I=\int \frac{(x+1)}{(x+2)(x+3)} d x
Applying partial fraction
\begin{aligned} &\frac{(x+1)}{(x+2)(x+3)}=\frac{A}{(x+2)}+\frac{B}{(x+3)} \\ & \end{aligned}
(x+1)=A(x+3)+B(x+2)
Putting
\begin{aligned} &x=-2 \\ \end{aligned}
(-2+1)=A(-2+3)+B(-2+2) \\
A=-1
Putting
\begin{aligned} &x=-3 \\ \end{aligned}
(-3+1)=A(-3+3)+B(-3+2) \\
-2=0+B(-1) \\
B=2
\begin{aligned} &I=\int \frac{x+1}{(x+1)(x+2)} d x=\int \frac{-1}{x+2} d x+\int \frac{2}{x+3} d x \\ \end{aligned}
=-\log |x+2|+2 \log |x+3| \\
=\log \left|\frac{(x+3)^{2}}{(x+2)}\right|+C

There is no doubt that RD Sharma class 12 chapter 18 exercise 18.15 is an excellent guidebook for exam preparations. However, we must look into the reasons why it is so popular among students and teachers. Here are some features of the RD Sharma class 12th exercise 18.15 which make it a lucrative NCERT solution:-

  • Experts have crafted the answers in the RD Sharma class 12 solutions Indefinite Integrals ex 18.15 book. This is why the answers are accurate and contain some new methods of calculation.

  • Students who want to practice maths at home can take the help of RD Sharma class 12th exercise 18.15 for their practice. They can answer all NCERT questions and compare them with the RD Sharma solutions to see if they have performed well.

  • Homework questions can also be solved using RD Sharma class 12th exercise 18.15 solution as teachers like to use the book to give home assignments to students.

  • The class 12 RD Sharma chapter 18 exercise 18.15 solution comes with the latest syllabus that is updated according to the newest NCERT Books. Students will find all answers and information they will require.

  • Unlike expensive guidebooks, the RD Sharma class 12th exercise 18.15 is available for free at the Career360 website. It can be downloaded by all students for self-study.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter wise Solutions

Frequently Asked Question (FAQs)

1. Where can I download class 12 RD Sharma chapter 18 exercise 18.15 solution?

Students who wish to download the free copy of class 12 RD Sharma chapter 5 exercise VSQ solution can do so from the Career360 website. They will find all types of RD Sharma solutions here.

2. Which NCERT solution is ideal for CBSE board preparations?

RD Sharma solution is a name that is trusted by innumerable students and teachers. They have highly recommended their Solutions therefore, it is definitely the top choice when it comes to CBSE NCERT solutions

3. What concepts are covered in RD Sharma class 12th exercise 18.15?

The 18th Chapter of RD Sharma class 12th exercise 18.15 has the chapter Indefinite Integrals. The concepts covered under it 

  • Graphs of indefinite integrals 

  • concepts of Integrals

  • Indefinite integrals of common functions

4. Can I use RD Sharma Solutions for JEE Mains preparations?

Students can use the RD Sharma solutions to practice answering questions for their JEE mains exams. The book contains the syllabus that is required to crack JEE mains exams.

5. Why is RD Sharma Solutions the best?

RD Sharma Solutions have detailed answers which are also pretty accurate. Experts have written these solutions and they contain some unique methods of calculations.

  

Articles

Upcoming School Exams

Application Date:05 September,2024 - 20 September,2024

Exam Date:19 September,2024 - 19 September,2024

Exam Date:20 September,2024 - 20 September,2024

View All School Exams
Get answers from students and experts
Back to top