Careers360 Logo
RD Sharma Class 12 Exercise 18.19 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.19 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:20 PM IST

RD Sharma Class 12th Exercise 18.19 solutions are the best choice for a student because of the perfect answers to all the questions of RD Sharma which is considered as maths bible. The team always looks forward to finding multiple ways to solve these questions making the journey easy for every student. This particular exercise has 18 questions that are formatted by a team of experts. RD Sharma Solutions Rd Sharma Class 12th Exercise 18.19 discusses completing squaring method to solve quadratic equation, integrating the function, which includes use of fundamental integration formulae to explain standard results on integration.

This Story also Contains
  1. RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise
  2. Indefinite Integrals Excercise:18.19
  3. RD Sharma Chapter-wise Solutions

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.19

Indefinite Integrals Exercise 18.19 Question 1

Answer:=12[log|x2+3x+2|]32[log|x+1x+2|]+c
Hint Using Integration method
Given:xx2+3x+2dx
Solution: Let,x2+3x+2=t
(2x+3)dx=dt
I=22xx2+3x+2dx=122xx2+3x+2dx=122x+33x2+3x+2dx=12[2x+3x2+3x+2dx3x2+3x+2dx]
=12[dtt3dx(x+1)(x+2)] [(x2+3x+2)=(x2+2x+x+2)=(x(x+2)+1(x+2))=(x+1)(x+2)]
=12[logt3(1x+11x+2)dx] [1xdx=logx+c]
=12[log(x2+3x+2)3(log(x+1)log(x+2)]+c
=12[log(x2+3x+2)3log(x+1x+2)]+c
=12[log(x2+3x+2)]32[log(x+1x+2)]+c

Indefinite Integrals Exercise 18.18 Question 2

Answer: 12log|x2+x+3|+111tan1(2x+111)+c
Hint: Integrate by ILATE
Given: x+1x2+x+3dx
Solution:
I1=122x+2x2+x+3dxI1=12(2x+1)+1x2+x+3dx
=122x+1x2+x+3dx+121x2+x+3dx
I1=122x+2x2+x+3dxI1=12(2x+1)+1x2+x+3dx=122x+1x2+x+3dx+121x2+x+3dx [dtt=lnt+c,]
Let,x2+x+3=t
(2x+1)dx=dt
I1=log|x2+x+3|+C
I2=1x2+x+3dx
=1(x+12)214+3dx
=1(x+12)2+114dx [x+12=tdx=dt114=a=112]
=1112tan1(x+12112)+C2 [1t2+a2dt=1atan1(ta)+C2]
I2=211tan1(2x+1)11+C2
I=12(I1+I2)
=12[log|x2+x+3|+211tan1(2x+111)]+c
=12log|x2+x+3|+111tan1(2x+111)+c

Indefinite Integrals Exercise 18.19 Question 3

Answer: 25log|x+15x+1+5|+12log|x2+2x4|+c
Hint Find value of A and B
Given: x3x2+2x4dx
Solution: Let x3=A+Bddx(x2+2x4)
x3=A+B(2x+2)
x3=A+2Bx+2B
On comparing,
[x=2BxB=123=A+2B32×12=AA=4]
=4dxx2+2x4+12ddx(x2+2x4)x2+2x4 [x2+2x+141(x+1)2(5)2]
=4dx(x+1)2(5)2+12log|x2+2x4| [dxx2a2=12alog|xax+a|+c]
=25log|x+15x+1+5|+12log|x2+2x4|+c

Indefinite Integrals Exercise 18.19 Question 4

Answer:
I=log|x2+6x+13|92tan1(x+32)+c
Hint: Using Formula dxx2a2=1atan1(xa)+c&dtt=logt+c
Given: 2x3x2+6x+13dx
Solution: ddx(x2+6x+13)=2x+6
Let, 2x3=A(2x+6)+B
2x3=2Ax+6A+B
On comparing,
2x=2Ax=>A=1
6A+B=3=>B=9
I=2x+6x2+6x+13dx9dxx2+6x+13
 Let, x2+6x+13=t
(2x+6)dx=dt
I=dtt9dxx2+2(3)x+3232+13
I=dtt9dx(x+3)29+13
I=dtt9dx(x+3)24
I=dtt9dx(x+3)222 [dxx2a2=1atan1(xa)+c&dtt=logt+c]
I=log|t|9×12tan1(x+32)+c
I=log|x2+6x+13|92tan1(x+32)+c

Indefinite Integrals Exercise 18.19 Question 5

Answer: 515tan1|3x25|+12log|x243x+1|+c
Hint: Using Formula dxx2a2=1atan1(xa)+c&dtt=logt+c
Given:x13x24x+3dx
Solution:
x13x24x+3dx
19x1x24x3+1dx
x1=A+Bddx(x24x3+1)
x1=A+B(2x43) [x=2BxB=121=A43B1+43×12=A1+23=AA=13]
I=13×3dxx243x+1+13×26x4x243x+1dx
I=19dxx243x+1+16dtt [ Let, x243x+1=t(2x43)dx=dt(6x4)dx3=dt]
I=19dxx243x+49+149+12dtt
I=19dx(x23)2+(58)2+12dtt [dxx2a2=1atan1(xa)+c&dtt=logt+c]
I=19×153tan1|x2353|+12log|x243x+1|+c
I=135tan1|3x25|+12log|x243x+1|+c
I=3535×35tan1|3x25|+12log|x243x+1|+c
I=515tan1|3x25|+12log|x243x+1|+c

Indefinite Integrals Exercise 18.19 Question 6

Answer: 43ln|x2|23ln|x+1|+c
Hint: You must know about how to solve integration
Given: 2x2+xx2dx
Solution: 2x2+xx2dx
=2xx2x2dx
=2x(x2)(x+1)dx
A(x2)+B(x+1)=2x(x2)(x+1)
A(x+1)+B(x+2)=2x
Ax+A+Bx+2B=2x
On comparing,

(Ax+Bx=2xA2B=0A+B=2A=2B)
2B+B=2
B=23,A=43
43(1x2)dx231x+1dx
=43log|x2|23log|x+1|+c

Indefinite Integrals Exercise 18.19 Question 7

Answer:12ln(3x2+4x+2)+32tan1(3x+22)+c
Hint:Use Pn+qax2+bx+c
Given: 13x3x2+4x+2dx
Solution:
I=13x3x2+4x+2dn
Pn+qax2+bx+cdx
 Numerator =A(ddx( deno min ator ))+B
13x=A(ddx(3x2+4x+2))+B
13x=A(6x+4)+B
13x=6Ax+4A+B
On comparing,
6A=3A=36A=12
4A+B=14(12)+B=12+B=1B=3
I=(12)(6x+4)+33x2+4x+2dx
I=12(6x+4)3x2+4x+2dx+33x2+4x+2dx
=12(6x+4)3x2+4x+2dx+33(x2+43x+23)dx
=12(6x+4)3x2+4x+2dx+1x2+43x+4949+23dx
=12ddx(3x2+4x+2)3x2+4x+2dx+1(x+23)2+(23)2dx
3x2+4x+2=td(3x2+4x+2)dx=dt
=12dtt+123[tan1x+2323][1x2+a2=1atan1x2+c]
=12ln(3x2+4x+2)+32tan1(3x+22)+c

Indefinite Integrals Exercise 18.19 Question 8

Answer: log|x2x2|+2log|x2x+1|+c
Hint: You must know about how to solve integration
Given:2x+5x2x2dx
Solution:
Let I=2x+5x2x2dx
=2x1+6x2x2dx
=2x1x2x2dx+6x2x2dx
I1=2x1x2x2dx
Let
x2x2=t
(2x1)dx=dt
I1=dtt=log|t|+c1=log|x2x2|+c1
I2=6x2x2dx=6dxx2x+14142=6dx(x12)2(32)2[dxx2a2=12alog|xax+a|+c]=6×13log|x1232x12+32|+c2=2log|2x42x+2|+c2
So,I=I1+I2
=log|x2x2|+2log|x2x+1|+c

Indefinite Integrals Exercise 18.19 Question 9

Answer:a4ln|x4+c2|+b2ctan1x2c+f
Hint : Find I1andI2
Given: ax3+bxx4+c2dx
Solution: ax3+bxx4+c2dx
I=ax3x4+c2dx+bxx4+c2dxI1=ax3x4+c2dx
Let,x4+c2=t
4x3dx=dtx3dx=14dt
I1=a4dtt=a4lnt+C1
I2=bxx4+c2dx Let x2=v2xdx=dv
I2=b2dvv2+c2
=b2tan1(vc)×1c+c2[1x2+a2=1atan1x2+c]
I2=b2ctan1(x2c)+c2
I=I1+I2I=a4ln|x4+c2|+c1+b2ctan1(x2c)+c2c1+c2=fI=a4ln|x4+c2|+b2ctan1(x2c)+f

Indefinite Integrals Exercise 18.19 Question 10

Answer:42sinx+3log|2sinx|+c
Hint: Use integration method
Given: (3sinx2)cosx5cos2x4sinxdx
Solution: I=(3sinx2)cosx5cos2x4sinxdx
=(3sinx2)cosx5(1sin2x)4sinxdx
=(3sinx2)cosx4+sin2x4sinxdx
=(3sinx2)cosx(2sinx)2dx
 Let t=2sinxsinx=2tdt=cosxdx
I=3(2t)2t2(dt)=43tt2dt
=4dtt2+31tdtI=4(1t)+3logt+c1I=42sinx+3log|2sinx|+c

Indefinite Integrals Exercise 18 .19 Question 11

Answer:14ln(2x2+6x+5)+12tan1(2x+3)+c
Hint: Multiply and Divide by 4
Given: x+22x2+6x+5dx
Solution:Multiply and divide by 4
144x+62x2+6x+5dx+24dx2x2+6x+5 .........(1)
I1=4x+62x2+6x+5dx2x2+6x+5=t(4x+6)dx=dtI1=dtt=lnt+c=ln(2x2+6x+5)+c1
I2=12dx2x2+6x+5I2=12dxx2+3x+94+5294
12dx(x+32)2+14
(x+32)=u1dx=duI2=12duu2+(12)212[112tan1(u12)]+c2[1x2+a2=1atan1x2tan1[2tan12(x+32)]+c2I2=tan1(2x+3)+c2I=14ln(2x2+6x+5)+c1+12tan1(2x+3)+c2I=14ln(2x2+6x+5)+12tan1(2x+3)+c

Indefinite Integrals Exercise 18.19 Question 12

Answer: 56ln|3x2+2x+1|1132tan13x+12+c
Hint: Find value of M and N
Given: 5x21+2x+3x2dx
Solution: I=5x21+2x+3x2dx
5x2=Mddx(1+2x+3x2)+N5x2=M(2+6x)+N5x2=2M+6Mx+N
On comparing,
6M=5M=562M+N=22(56)+N=253+N=2N=253=113
I=562+6x1+2x+3x2dx113dx1+2x+3x2 ................................(1)
I1=2+6x1+2x+3x2dx let, t=1+2x+3x22+6x=dtdx(2+6x)dx=dt
dx=dt2+6x
I1=dtt=log|t|+cI2=dx1+2x+3x2
=3(x2+2x13+(13)2(13)2+13)=3((x+13)2+1319)=3((x+13)2+319)=3((x+13)2+(23)2)
From eq 1
I=56dtt113dx3(x+13)2+(23)2
=56log|t|119dx(x+13)2+(23)2 dxx2+a2=1atan1xa+c
=56log|3x2+2x+1|119×123tan1(x+13)23
I=56log|3x2+2x+1|1123tan1(3x+1)2+c

Indefinite Integrals Exercise 18.19 Question 13

Answer:
13log|3x2|+c
Hint: Solve integration by equation
Given:
x+53x2+13x10dx=x+53x2+15x2x10dx=x+53x(x+5)2(x+5)dx
=x+5(3x2)(x+5)dx=dx3x2 .........(1)
 Let, 3x2=t3dx=dtdx=dt3
=dt3t+c=13log|3x2|+c

Indefinite Integrals Exercise 18.19 Question 14

Answer: 10ln|sinx4|7ln|sinx3|+c
Hint : Let sinx=t
Given: (3sinx2)cosx13cos2x7sinxdx
Solution:  Let sinx=t
cosxdx=dt
(3sinx2)cosx13(1sin2x)7sinxdx (cos2x=1sin2x)
(3t2)dt131+t27t=(3t2)dtt27t+12 [t27t+12=(t4)(t3)ax2+bx+c,x=b±b24ac2a]
3t2(t4)(t3)dt=At4+Bt3 ..........(1)
3t2=At4+Bt33t2=A(t3)+B(t4)3t2=At3A+Bt4B
On comparing,
3t=At+BtA+B=3⇒>A=3B
2=3A4B=23A+4B=2=>3(3B)+4B=2=>B=7
On solving both
A=3(7)A=10
In eqn (1)
[10t4+7t3]dt=10t4dt7t3dt 1tdt=ln|t|+c
10ln|t4|7ln|t3|+c=10ln|t4|7ln|t3|+c=10ln|sinx4|7ln|sinx3|+c

Indefinite Integrals Exercise 18.19 Question 15

Answer:log|3x+4|3+c
Hint: Solve Integration
Given: x+73x2+25x+28dx
Solution:
x+73x2+25x+28dx=x+73x2+21x+4x+28dx=x+73x(x+7)+4(x+7)dx=x+7(3x+4)(x+7)dx=dx3x+4
Let,3x+4=t3dx=dt
dx=dt3
=dt3t+c=13log|3x+4|+c

Indefinite Integrals Exercise 18.19 Question 16

Answer: 149log|x3|+139ln|x+6|+c
Hint: You know about how to solve integration
Given:3x+5x2+3x18dx
Explanation:
We have, 3x+5x2+3x18dx
3x+5x2+6x3x18dx3x+5x(x+6)3(x+6)dx3x+5(x3)(x+6)dx
Now, Using Partial fraction,
3x+5(x3)(x+6)=A(x+6)+B(x3)3x+5(x3)(x+6)=A(x3)+B(x+6)(x3)(x+6)3x+5(x3)(x+6)=Ax3A+Bx+6B(x3)(x+6)3x+5(x3)(x+6)=(A+B)x3A+6B(x3)(x+6)
On comparing, we got
A+B=3 ......(1)
and
3A+6B=5(A+B=3)×3 ........(2)
We get,
3A3B=9.(3)
Subtract (2) from (3)
(3A3B)(3A+6B)=(9)(5)3A3B+3A6B=959B=14B=149
Put value of B in (1)
A+B=3A+149=3A=314927149A=139&B=149
Substituting value of A and B in
3x+5(x3)(x+6)=A(x+6)+B(x3)3x+5(x3)(x+6)=1391(x+6)+149B(x3)
Integrating both sides
3x+5(x3)(x+6)dx=1391(x+6)dx+1491(x3)dx [1x+adx=log|x+a|]
3x+5(x3)(x+6)dx=139log|x+6|+149log|x3|+c

Indefinite Integrals Exercise 18 .19 Question 17

Answer: 14ln|x4+x2+1|123tan1(2x2+13)+c
Hint: You know about the integration of x3
Given: x3x4+x2+1dx
Solution: x3x4+x2+1dx
x3x4+x2+1dx=122x3x4+x2+1dx=12x2x4+x2+12xdx
Let x2=t
2xdx=dt
12tt2+t+1dt122t+112(t2+t+1)dt142t+1t2+t+1dtdtt2+t+1142t+1t2+t+1dtdtt2+t+1414
142t+1t2+t+1dtdt(34)+(t+12)2
Let, t2+2t+1=u2t+1dt=du
=14duudt(32)2+(t+12)2=14[lnu132tan1(t+1232)]+c
=14(ln(t2+t+1)23tan1(2t+13))+c=14ln|x4+x2+1|1423tan1(2x2+13)+c=14ln|x4+x2+1|123tan1(2x2+13)+c

Indefinite Integrals Exercise 18.19 Question 18

Answer:55log|x2+15x2+1+5|+14log|x42x24|+c
Hint : Let x2=t
Given: x33xx4+2x24dx
Solution: x(x23)(x2)2+2x24dx
Let x2=t
xdx=dt2
12(t3)t2+2t4dt
Multiply and divide by 2
=142t6t2+2t4dt=142t+28t2+2t4dt=142t+2t2+2t4dt148t2+2t4dt=142t+2t2+2t4dt21t2+2t4dt=142t+2t2+2t4dt21t2+2t+15dt=142t+2t2+2t4dt21(t+1)252dt
I=14log|t2+2t4|2×125log(t+15t+1+5)+c
I=14log|x4+2x24|15log(x2+15x2+1+5)+c


Rd Sharma Class 12. Exercise 18.19 The solutions will help each student and they will be able to clarify the concepts and study from the point of view of an exam. The advantages of these solutions are:

  1. Created by experts

Class 12th RD Sharma Chapter 18 Exercise 18.19 Solutions are created by a team of experts making the solutions a reliable source to learn the material. These solutions will always help students to go for the exams confidently and perform brilliantly.

  1. Best source for preparation

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Rd Sharma Class 12th Exercise 18.19 solutions being the reliable ones are the best source for preparation. A student can trust these solutions and go for them without worry. The expert team who writes the answers analyses every question to solve it in advanced ways so as to make it easy for students to understand.

  1. NCERT Questions Answered

The questions appearing in board exams are often from NCERT maths textbooks. Teachers also like to set question papers from NCERT books, thus Rd Sharma Class 12th Chapter 18 Exercise 18.19 solutions helps students to prepare for school exams along with boards. The ultimate solution for all maths doubts is the RD Sharma Class 12 Solutions Chapter 18 ex 18.19 Solutions book.

  1. Different approaches to resolve a question

RD Sharma Class 12 Solutions Chapter 18 ex 18.19 allows students to locate opportunity approaches to resolve a question. The principles are connected and solved through specialists in any such manner that it is straightforward for a pupil to apprehend and resolve questions in different approaches.

  1. Great performance in exams:

Solutions assist students do properly in exams. RD Sharma Class 12 Solutions Ex. 18.19 covers all of the critical questions typically requested on exams, assisting the pupil to set up a benchmark rating on exams.

  1. Free of price

Students will locate these types of answers freed from price at Career360, the fine web website online to go to for all of the blessings associated with questions in board checks in addition to aggressive checks. At Career360, a pupil will understand, study and carry out fairly checks. Thousands of college students have benefitted from those answers making Career360 primary desire for each pupil

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. How to ace the chapter on indefinite integrals?

The indefinite integral Chapter is difficult and tedious. However, using RD Sharma solutions will help you master the concepts through regular exercise.

2. Why should I study RD Sharma solutions?

RD Sharma solutions will help students score great marks in exams by improving their understanding and learning of mathematics. Every question is created by a team of experts who are knowledgeable and mindful about helping students.

3. Are RD Sharma solutions expensive to own?

No, RD Sharma solutions are actually free of cost and can be owned by anyone. The free copy of the book is always available at Career360.

4. Define Indefinite Integrals in mathematics?

An indefinite integral refers to any integral without an upper and lower limit.

5. What are the different types of Integrals?

The integrals are two types and these are:

  1. Definite Integral

  2. Indefinite Integral

Articles

Back to top