RD Sharma Class 12th Exercise 18.19 solutions are the best choice for a student because of the perfect answers to all the questions of RD Sharma which is considered as maths bible. The team always looks forward to finding multiple ways to solve these questions making the journey easy for every student. This particular exercise has 18 questions that are formatted by a team of experts. RD Sharma Solutions Rd Sharma Class 12th Exercise 18.19 discusses completing squaring method to solve quadratic equation, integrating the function, which includes use of fundamental integration formulae to explain standard results on integration.
Indefinite Integrals Excercise:18.19 Indefinite Integrals Exercise 18.19 Question 1
Answer: $=\frac{1}{2}\left[\log \left|x^{2}+3 x+2\right|\right]-\frac{3}{2}\left[\log \left|\frac{x+1}{x+2}\right|\right]+c$ Hint Using Integration method
Given:$\int \frac{x}{x^{2}+3 x+2} d x$ Solution: Let,
$x^{2}+3 x+2=t$ $(2 x+3) d x=d t$ $\begin{aligned} &I=\frac{2}{2} \int \frac{x}{x^{2}+3 x+2} d x \\ &=\frac{1}{2} \int \frac{2 x}{x^{2}+3 x+2} d x \\ &=\frac{1}{2} \int \frac{2 x+3-3}{x^{2}+3 x+2} d x \\ &=\frac{1}{2}\left[\int \frac{2 x+3}{x^{2}+3 x+2} d x-\int \frac{3}{x^{2}+3 x+2} d x\right] \end{aligned}$ $=\frac{1}{2}\left[\frac{d t}{t}-3 \int \frac{d x}{(x+1)(x+2)}\right]$ $\left[\begin{array}{c} \because\left(x^{2}+3 x+2\right) \\ =\left(x^{2}+2 x+x+2\right) \\ =(x(x+2)+1(x+2)) \\ =(x+1)(x+2) \end{array}\right]$ $=\frac{1}{2}\left[\log t-3 \int\left(\frac{1}{x+1}-\frac{1}{x+2}\right) d x\right]$ $\left[\int \frac{1}{x} d x=\log x+c\right]$ $=\frac{1}{2}\left[\log \left(x^{2}+3 x+2\right)-3(\log (x+1)-\log (x+2)]+c\right.$ $=\frac{1}{2}\left[\log \left(x^{2}+3 x+2\right)-3 \log \left(\frac{x+1}{x+2}\right)\right]+c$ $=\frac{1}{2}\left[\log \left(x^{2}+3 x+2\right)\right]-\frac{3}{2}\left[\log \left(\frac{x+1}{x+2}\right)\right]+c$ Indefinite Integrals Exercise 18.18 Question 2
Answer: $\frac{1}{2} \log \left|x^{2}+x+3\right|+\frac{1}{\sqrt{11}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{11}}\right)+c$ Hint: Integrate by ILATE
Given: $\int \frac{x+1}{x^{2}+x+3} d x$ Solution: $\begin{aligned} &I_{1}=\frac{1}{2} \int \frac{2 x+2}{x^{2}+x+3} d x \\ &I_{1}=\frac{1}{2} \int \frac{(2 x+1)+1}{x^{2}+x+3} d x \end{aligned}$ $=\frac{1}{2} \int \frac{2 x+1}{x^{2}+x+3} d x+\frac{1}{2} \int \frac{1}{x^{2}+x+3} d x$ $\begin{aligned} I_{1} &=\frac{1}{2} \int \frac{2 x+2}{x^{2}+x+3} d x \\ I_{1} &=\frac{1}{2} \int \frac{(2 x+1)+1}{x^{2}+x+3} d x \\ &=\frac{1}{2} \int \frac{2 x+1}{x^{2}+x+3} d x+\frac{1}{2} \int \frac{1}{x^{2}+x+3} d x \end{aligned}$ $\left[\int \frac{d t}{t}=\ln t+c,\right]$ Let,
$x^{2}+x+3=t$ $(2 x+1) d x=d t$ $I_{1}=\log \left|x^{2}+x+3\right|+\mathrm{C}$ $I_{2}=\int \frac{1}{x^{2}+x+3} d x$ $=\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}-\frac{1}{4}+3} d x$ $=\int \frac{1}{\left(x+\frac{1}{2}\right)^{2}+\frac{11}{4}} d x$ $\left[\begin{array}{c} x+\frac{1}{2}=t \Rightarrow d x=d t \\ \sqrt{\frac{11}{4}}=a=\frac{\sqrt{11}}{2} \end{array}\right]$ $=\frac{1}{\frac{\sqrt{11}}{2}} \tan ^{-1}\left(\frac{x+\frac{1}{2}}{\frac{\sqrt{11}}{2}}\right)+C_{2}$ $\left[\int \frac{1}{t^{2}+a^{2}} d t=\frac{1}{a} \tan ^{-1}\left(\frac{t}{a}\right)+C_{2}\right]$ $I_{2}=\frac{2}{\sqrt{11}} \tan ^{-1} \frac{(2 x+1)}{\sqrt{11}}+C_{2}$ $I=\frac{1}{2}\left(I_{1}+I_{2}\right)$ $=\frac{1}{2}\left[\log \left|x^{2}+x+3\right|+\frac{2}{\sqrt{11}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{11}}\right)\right]+c$ $=\frac{1}{2} \log \left|x^{2}+x+3\right|+\frac{1}{\sqrt{11}} \tan ^{-1}\left(\frac{2 x+1}{\sqrt{11}}\right)+c$ Indefinite Integrals Exercise 18.19 Question 3
Answer: $-\frac{2}{\sqrt{5}} \log \left|\frac{x+1-\sqrt{5}}{x+1+\sqrt{5}}\right|+\frac{1}{2} \log \left|x^{2}+2 x-4\right|+c$ Hint Find value of A and B
Given: $\int \frac{x-3}{x^{2}+2 x-4} d x$ Solution: Let
$x-3=A+B \frac{d}{d x}\left(x^{2}+2 x-4\right)$ $x-3=A+B(2 x+2)$ $x-3=A+2 B x+2 B$ On comparing,
$\left[\begin{array}{c} x=2 B x \Rightarrow B=\frac{1}{2} \\ -3=A+2 B \Rightarrow-3-2 \times \frac{1}{2}=A \Rightarrow A=-4 \end{array}\right]$ $=-4 \int \frac{d x}{x^{2}+2 x-4}+\frac{1}{2} \int \frac{\frac{d}{d x}\left(x^{2}+2 x-4\right)}{x^{2}+2 x-4}$ $\left[\begin{array}{l} x^{2}+2 x+1-4-1 \\ (x+1)^{2}-(\sqrt{5})^{2} \end{array}\right]$ $=-4 \int \frac{d x}{(x+1)^{2}-(\sqrt{5})^{2}}+\frac{1}{2} \log \left|x^{2}+2 x-4\right|$ $\left[\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c\right]$ $=-\frac{2}{\sqrt{5}} \log \left|\frac{x+1-\sqrt{5}}{x+1+\sqrt{5}}\right|+\frac{1}{2} \log \left|x^{2}+2 x-4\right|+c$ Indefinite Integrals Exercise 18.19 Question 4
Answer: $I=\log \left|x^{2}+6 x+13\right|-\frac{9}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+c$ Hint: Using Formula
$\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \& \int \frac{d t}{t}=\log t+c$ Given: $\int \frac{2 x-3}{x^{2}+6 x+13} d x$ Solution: $\frac{d}{d x}\left(x^{2}+6 x+13\right)=2 x+6$ Let,
$2 x-3=A(2 x+6)+B$ $2 x-3=2 A x+6 A+B$ On comparing,
$2 x=2 A x=>A=1$ $6 A+B=-3=>B=-9$ $I=\int \frac{2 x+6}{x^{2}+6 x+13} d x-9 \int \frac{d x}{x^{2}+6 x+13}$ $\text { Let, } x^{2}+6 x+13=t$ $(2 x+6) d x=d t$ $I=\int \frac{d t}{t}-9 \int \frac{d x}{x^{2}+2(3) x+3^{2}-3^{2}+13}$ $I=\int \frac{d t}{t}-9 \int \frac{d x}{(x+3)^{2}-9+13}$ $I=\int \frac{d t}{t}-9 \int \frac{d x}{(x+3)^{2}-4}$ $I=\int \frac{d t}{t}-9 \int \frac{d x}{(x+3)^{2}-2^{2}}$ $\left[\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \& \int \frac{d t}{t}=\log t+c\right]$ $I=\log |t|-9 \times \frac{1}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+c$ $I=\log \left|x^{2}+6 x+13\right|-\frac{9}{2} \tan ^{-1}\left(\frac{x+3}{2}\right)+c$ Indefinite Integrals Exercise 18.19 Question 5
Answer: $-\frac{\sqrt{5}}{15} \tan ^{-1}\left|\frac{3 x-2}{\sqrt{5}}\right|+\frac{1}{2} \log \left|x^{2}-\frac{4}{3} x+1\right|+c$ Hint: Using Formula
$\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \& \int \frac{d t}{t}=\log t+c$ Given:$\int \frac{x-1}{3 x^{2}-4 x+3} d x$ Solution: $\int \frac{x-1}{3 x^{2}-4 x+3} d x$ $\frac{1}{9} \int \frac{x-1}{x^{2}-\frac{4 x}{3}+1} d x$ $x-1=A+B \frac{d}{d x}\left(x^{2}-\frac{4 x}{3}+1\right)$ $x-1=A+B\left(2 x-\frac{4}{3}\right)$ $\left[\begin{array}{l} x=2 B x \Rightarrow B=\frac{1}{2} \\ -1=A-\frac{4}{3} B \Rightarrow-1+\frac{4}{3} \times \frac{1}{2}=A \\ -1+\frac{2}{3}=A \Rightarrow A=\frac{-1}{3} \end{array}\right]$ $I=\frac{-1}{3 \times 3} \int \frac{d x}{x^{2}-\frac{4}{3} x+1}+\frac{1}{3 \times 2} \int \frac{6 x-4}{x^{2}-\frac{4}{3} x+1} d x$ $I=\frac{-1}{9} \int \frac{d x}{x^{2}-\frac{4}{3} x+1}+\frac{1}{6} \int \frac{d t}{t}$ $\left[\begin{array}{c} \text { Let, } x^{2}-\frac{4}{3} x+1=t \\ \left(2 x-\frac{4}{3}\right) d x=d t \\ \frac{(6 x-4) d x}{3}=d t \end{array}\right]$ $I=\frac{-1}{9} \int \frac{d x}{x^{2}-\frac{4}{3} x+\frac{4}{9}+1-\frac{4}{9}}+\frac{1}{2} \int \frac{d t}{t}$ $I=-\frac{1}{9} \int \frac{d x}{\left(x-\frac{2}{3}\right)^{2}+\left(\frac{\sqrt{5}}{8}\right)^{2}}+\frac{1}{2} \int \frac{d t}{t}$ $\left[\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{a} \tan ^{-1}\left(\frac{x}{a}\right)+c \& \int \frac{d t}{t}=\log t+c\right]$ $I=\frac{-1}{9} \times \frac{1}{\frac{\sqrt{5}}{3}} \tan ^{-1}\left|\frac{x-\frac{2}{3}}{\frac{\sqrt{5}}{3}}\right|+\frac{1}{2} \log \left|x^{2}-\frac{4}{3} x+1\right|+c$ $I=\frac{-1}{3 \sqrt{5}} \tan ^{-1}\left|\frac{3 x-2}{\sqrt{5}}\right|+\frac{1}{2} \log \left|x^{2}-\frac{4}{3} x+1\right|+c$ $I=\frac{-3 \sqrt{5}}{3 \sqrt{5} \times 3 \sqrt{5}} \tan ^{-1}\left|\frac{3 x-2}{\sqrt{5}}\right|+\frac{1}{2} \log \left|x^{2}-\frac{4}{3} x+1\right|+c$ $I=\frac{-\sqrt{5}}{15} \tan ^{-1}\left|\frac{3 x-2}{\sqrt{5}}\right|+\frac{1}{2} \log \left|x^{2}-\frac{4}{3} x+1\right|+c$ Indefinite Integrals Exercise 18.19 Question 6
Answer: $\frac{-4}{3} \ln |x-2|-\frac{2}{3} \ln |x+1|+c$ Hint: You must know about how to solve integration
Given: $\int \frac{2 x}{2+x-x^{2}} d x$ Solution: $\int \frac{2 x}{2+x-x^{2}} d x$ $=-\int \frac{2 x}{x^{2}-x-2} d x$ $=-\int \frac{2 x}{(x-2)(x+1)} d x$ $\frac{A}{(x-2)}+\frac{B}{(x+1)}=\frac{2 x}{(x-2)(x+1)}$ $A(x+1)+B(x+2)=2 x$ $A x+A+B x+2 B=2 x$ On comparing,
$\left(\begin{array}{c|c} A x+B x=2 x & A-2 B=0 \\ A+B=2 & A=2 B \end{array}\right)$ $2 B+B=2$ $B=\frac{2}{3}, A=\frac{4}{3}$ $\int-\frac{4}{3}\left(\frac{1}{x-2}\right) d x-\frac{2}{3} \int \frac{1}{x+1} d x$ $=-\frac{4}{3} \log |x-2|-\frac{2}{3} \log |x+1|+c$ Indefinite Integrals Exercise 18.19 Question 7
Answer: $-\frac{1}{2} \ln \left(3 x^{2}+4 x+2\right)+\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+2}{\sqrt{2}}\right)+c$ Hint:Use
$\int \frac{P n+q}{a x^{2}+b x+c}$ Given: $\int \frac{1-3 x}{3 x^{2}+4 x+2} d x$ Solution: $I=\int \frac{1-3 x}{3 x^{2}+4 x+2} d n$ $\int \frac{P n+q}{a x^{2}+b x+c} d x$ $\text { Numerator }=A\left(\frac{d}{d x}(\text { deno min ator })\right)+B$ $1-3 x=A\left(\frac{d}{d x}\left(3 x^{2}+4 x+2\right)\right)+B$ $1-3 x=A(6 x+4)+B$ $1-3 x=6 A x+4 A+B$ On comparing,
$6 A=-3 \Rightarrow A=-\frac{3}{6} \Rightarrow A=\frac{-1}{2}$ $4 A+B=1 \Rightarrow 4\left(\frac{-1}{2}\right)+B=1 \Rightarrow-2+B=1 \Rightarrow B=3$ $I=\int \frac{\left(-\frac{1}{2}\right)(6 x+4)+3}{3 x^{2}+4 x+2} d x$ $I=\int-\frac{1}{2} \frac{(6 x+4)}{3 x^{2}+4 x+2} d x+\int \frac{3}{3 x^{2}+4 x+2} d x$ $=\frac{-1}{2} \int \frac{(6 x+4)}{3 x^{2}+4 x+2} d x+\int \frac{3}{3\left(x^{2}+\frac{4}{3} x+\frac{2}{3}\right)} d x$ $=\frac{-1}{2} \int \frac{(6 x+4)}{3 x^{2}+4 x+2} d x+\int \frac{1}{x^{2}+\frac{4}{3} x+\frac{4}{9}-\frac{4}{9}+\frac{2}{3}} d x$ $=\frac{-1}{2} \int \frac{\frac{d}{d x}\left(3 x^{2}+4 x+2\right)}{3 x^{2}+4 x+2} d x+\int \frac{1}{\left(x+\frac{2}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}} d x$ $\begin{aligned} &3 x^{2}+4 x+2=t \\ &\frac{d\left(3 x^{2}+4 x+2\right)}{d x}=d t \end{aligned}$ $=-\frac{1}{2} \int \frac{d t}{t}+\frac{1}{\frac{\sqrt{2}}{3}}\left[\frac{\tan ^{-1} x+\frac{2}{3}}{\frac{\sqrt{2}}{3}}\right]\left[\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{2}+c\right]$ $=-\frac{1}{2} \ln \left(3 x^{2}+4 x+2\right)+\frac{3}{\sqrt{2}} \tan ^{-1}\left(\frac{3 x+2}{\sqrt{2}}\right)+c$ Indefinite Integrals Exercise 18.19 Question 8
Answer: $\log \left|x^{2}-x-2\right|+2 \log \left|\frac{x-2}{x+1}\right|+c$ Hint: You must know about how to solve integration
Given:$\int \frac{2 x+5}{x^{2}-x-2} d x$ Solution: Let
$I=\int \frac{2 x+5}{x^{2}-x-2} d x$ $=\int \frac{2 x-1+6}{x^{2}-x-2} d x$ $=\int \frac{2 x-1}{x^{2}-x-2} d x+\int \frac{6}{x^{2}-x-2} d x$ $I_{1}=\int \frac{2 x-1}{x^{2}-x-2} d x$ Let
$x^{2}-x-2=t$ $\Rightarrow(2 x-1) d x=d t$ $\begin{aligned} &I_{1}=\int \frac{d t}{t}=\log |t|+c_{1} \\ &=\log \left|x^{2}-x-2\right|+c_{1} \end{aligned}$ $\begin{aligned} &I_{2}=\int \frac{6}{x^{2}-x-2} d x \\ &=6 \int \frac{d x}{x^{2}-x+\frac{1}{4}-\frac{1}{4}-2} \\ &=6 \int \frac{d x}{\left(x-\frac{1}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}}\left[\int \frac{d x}{x^{2}-a^{2}}=\frac{1}{2 a} \log \left|\frac{x-a}{x+a}\right|+c\right] \\ &=6 \times \frac{1}{3} \log \left|\frac{x-\frac{1}{2}-\frac{3}{2}}{x-\frac{1}{2}+\frac{3}{2}}\right|+c_{2} \\ &=2 \log \left|\frac{2 x-4}{2 x+2}\right|+c_{2} \end{aligned}$ So,
$I=I_{1}+I_{2}$ $=\log \left|x^{2}-x-2\right|+2 \log \left|\frac{x-2}{x+1}\right|+c$ Indefinite Integrals Exercise 18.19 Question 9
Answer :
$\frac{a}{4} \ln \left|x^{4}+c^{2}\right|+\frac{b}{2 c} \tan ^{-1} \frac{x^{2}}{c}+f$ Hint : Find
$I_{1}\: and \: I_{2}$ Given: $\int \frac{a x^{3}+b x}{x^{4}+c^{2}} d x$ Solution: $\int \frac{a x^{3}+b x}{x^{4}+c^{2}} d x$ $\begin{aligned} I &=\int \frac{a x^{3}}{x^{4}+c^{2}} d x+\int \frac{b x}{x^{4}+c^{2}} d x \\ I_{1} &=\int \frac{a x^{3}}{x^{4}+c^{2}} d x \end{aligned}$ Let,
$x^{4}+c^{2}=t$ $\begin{aligned} &4 x^{3} d x=d t \\ &x^{3} d x=\frac{1}{4} d t \end{aligned}$ $\Rightarrow I_{1}=\frac{a}{4} \int \frac{d t}{t}=\frac{a}{4} \ln t+C_{1}$ $\begin{aligned} &I_{2}=\int \frac{b x}{x^{4}+c^{2}} d x \\ &\text { Let } x^{2}=v \\ &2 x d x=d v \end{aligned}$ $I_{2}=\frac{b}{2} \int \frac{d v}{v^{2}+c^{2}}$ $=\frac{b}{2} \tan ^{-1}\left(\frac{v}{c}\right) \times \frac{1}{c}+c_{2} \quad\left[\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{2}+c\right]$ $I_{2}=\frac{b}{2 c} \tan ^{-1}\left(\frac{x^{2}}{c}\right)+c_{2}$ $\begin{aligned} &I=I_{1}+I_{2} \\ &I=\frac{a}{4} \ln \left|x^{4}+c^{2}\right|+c_{1}+\frac{b}{2 c} \tan ^{-1}\left(\frac{x^{2}}{c}\right)+c_{2} \\ &c_{1}+c_{2}=f \\ &I=\frac{a}{4} \ln \left|x^{4}+c^{2}\right|+\frac{b}{2 c} \tan ^{-1}\left(\frac{x^{2}}{c}\right)+f \end{aligned}$ Indefinite Integrals Exercise 18.19 Question 10
Answer:$\frac{4}{2-\sin x}+3 \log |2-\sin x|+c$ Hint: Use integration method
Given: $\int \frac{(3 \sin x-2) \cos x}{5-\cos ^{2} x-4 \sin x} d x$ Solution: $I=\int \frac{(3 \sin x-2) \cos x}{5-\cos ^{2} x-4 \sin x} d x$ $=\int \frac{(3 \sin x-2) \cos x}{5-\left(1-\sin ^{2} x\right)-4 \sin x} d x$ $=\int \frac{(3 \sin x-2) \cos x}{4+\sin ^{2} x-4 \sin x} d x$ $=\int \frac{(3 \sin x-2) \cos x}{(2-\sin x)^{2}} d x$ $\begin{aligned} &\text { Let } t=2-\sin x \\ &\sin x=2-t \\ &\qquad d t=-\cos x d x \end{aligned}$ $\begin{aligned} &I=\int \frac{3(2-t)-2}{t^{2}}(-d t) \\ &=-\int \frac{4-3 t}{t^{2}} d t \end{aligned}$ $\begin{aligned} &=-4 \int \frac{d t}{t^{2}}+3 \int \frac{1}{t} d t \\ &I=-4\left(\frac{-1}{t}\right)+3 \log t+c_{1} \\ &I=\frac{4}{2-\sin x}+3 \log |2-\sin x|+c \end{aligned}$ Indefinite Integrals Exercise 18 .19 Question 11
Answer: $\frac{1}{4} \ln \left(2 x^{2}+6 x+5\right)+\frac{1}{2} \tan ^{-1}(2 x+3)+c$ Hint: Multiply and Divide by 4
Given: $\int \frac{x+2}{2 x^{2}+6 x+5} d x$ Solution: Multiply and divide by 4
$\frac{1}{4} \int \frac{4 x+6}{2 x^{2}+6 x+5} d x+\frac{2}{4} \int \frac{d x}{2 x^{2}+6 x+5}$ .........(1)
$\begin{aligned} &I_{1}=\int \frac{4 x+6}{2 x^{2}+6 x+5} d x \\ &2 x^{2}+6 x+5=t \\ &(4 x+6) d x=d t \\ &I_{1}=\int \frac{d t}{t}=\ln t+c=\ln \left(2 x^{2}+6 x+5\right)+c_{1} \end{aligned}$ $\begin{aligned} &I_{2}=\frac{1}{2} \int \frac{d x}{2 x^{2}+6 x+5} \\ &I_{2}=\frac{1}{2} \int \frac{d x}{x^{2}+3 x+\frac{9}{4}+\frac{5}{2}-\frac{9}{4}} \end{aligned}$ $\frac{1}{2} \int \frac{d x}{\left(x+\frac{3}{2}\right)^{2}+\frac{1}{4}}$ $\begin{aligned} &\left(x+\frac{3}{2}\right)=u \Rightarrow 1 d x=d u \\ &I_{2}=\frac{1}{2} \int \frac{d u}{u^{2}+\left(\frac{1}{2}\right)^{2}} \\ &\frac{1}{2}\left[\frac{1}{\frac{1}{2}} \tan ^{-1}\left(\frac{u}{\frac{1}{2}}\right)\right]+c_{2}\left[\int \frac{1}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{2}\right. \\ &\begin{array}{l} \tan ^{-1}\left[2 \tan ^{-1}2\left(x+\frac{3}{2}\right)\right]+c_{2} \\ I_{2}=\tan ^{-1}(2 x+3)+c_{2} \\ I=\frac{1}{4} \ln \left(2 x^{2}+6 x+5\right)+c_{1}+\frac{1}{2} \tan ^{-1}(2 x+3)+c_{2} \\ I=\frac{1}{4} \ln \left(2 x^{2}+6 x+5\right)+\frac{1}{2} \tan ^{-1}(2 x+3)+c \end{array} \end{aligned}$ Indefinite Integrals Exercise 18.19 Question 12
Answer: $\frac{5}{6} \ln \left|3 x^{2}+2 x+1\right|-\frac{11}{3 \sqrt{2}} \tan ^{-1} \frac{3 x+1}{\sqrt{2}}+c$ Hint: Find value of M and N
Given: $\int \frac{5 x-2}{1+2 x+3 x^{2}} d x$ Solution: $I=\int \frac{5 x-2}{1+2 x+3 x^{2}} d x$ $\begin{aligned} &5 x-2=M \frac{d}{d x}\left(1+2 x+3 x^{2}\right)+N \\ &5 x-2=M(2+6 x)+N \\ &5 x-2=2 M+6 M x+N \end{aligned}$ On comparing,
$\begin{aligned} &6 M=5 \Rightarrow M=\frac{5}{6} \\ &2 M+N=-2 \Rightarrow 2\left(\frac{5}{6}\right)+N=-2 \\ &\Rightarrow \frac{5}{3}+N=-2 \Rightarrow N=-2-\frac{5}{3}=-\frac{11}{3} \end{aligned}$ $I=\frac{5}{6} \int \frac{2+6 x}{1+2 x+3 x^{2}} d x-\frac{11}{3} \int \frac{d x}{1+2 x+3 x^{2}}$ ................................(1)
$\begin{aligned} &I_{1}=\int \frac{2+6 x}{1+2 x+3 x^{2}} d x \\ &\text { let, } \quad t=1+2 x+3 x^{2} \\ &\Rightarrow 2+6 x=\frac{d t}{d x} \\ &\Rightarrow(2+6 x) d x=d t \end{aligned}$ $d x=\frac{d t}{2+6 x}$ $\begin{aligned} &I_{1}=\int \frac{d t}{t}=\log |t|+c \\ &I_{2}=\int \frac{d x}{1+2 x+3 x^{2}} \end{aligned}$ $\begin{aligned} &=3\left(x^{2}+2 \cdot x \cdot \frac{1}{3}+\left(\frac{1}{3}\right)^{2}-\left(\frac{1}{3}\right)^{2}+\frac{1}{3}\right) \\ &=3\left(\left(x+\frac{1}{3}\right)^{2}+\frac{1}{3}-\frac{1}{9}\right) \\ &=3\left(\left(x+\frac{1}{3}\right)^{2}+\frac{3-1}{9}\right) \\ &=3\left(\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}\right) \end{aligned}$ From eq 1
$I=\frac{5}{6} \int \frac{d t}{t}-\frac{11}{3} \int \frac{d x}{3\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}}$ $=\frac{5}{6} \log |t|-\frac{11}{9} \int \frac{d x}{\left(x+\frac{1}{3}\right)^{2}+\left(\frac{\sqrt{2}}{3}\right)^{2}}$ $\int \frac{d x}{x^{2}+a^{2}}=\frac{1}{a} \tan ^{-1} \frac{x}{a}+c$ $=\frac{5}{6} \log \left|3 x^{2}+2 x+1\right|-\frac{11}{9} \times \frac{1}{\frac{\sqrt{2}}{3}} \tan ^{-1} \frac{\left(x+\frac{1}{3}\right)}{\frac{\sqrt{2}}{3}}$ $I=\frac{5}{6} \log \left|3 x^{2}+2 x+1\right|-\frac{11}{2 \sqrt{3}} \tan ^{-1} \frac{(3 x+1)}{\sqrt{2}}+c$ Indefinite Integrals Exercise 18.19 Question 13
Answer: $\frac{1}{3} \log |3 x-2|+c$ Hint: Solve integration by equation
Given: $\begin{aligned} &\int \frac{x+5}{3 x^{2}+13 x-10} d x \\ &=\int \frac{x+5}{3 x^{2}+15 x-2 x-10} d x \\ &=\int \frac{x+5}{3 x(x+5)-2(x+5)} d x \end{aligned}$ $\begin{aligned} &=\int \frac{x+5}{(3 x-2)(x+5)} d x \\ &=\int \frac{d x}{3 x-2} \end{aligned}$ .........(1)$\begin{aligned} &\text { Let, } 3 x-2=t \\ &\qquad \begin{array}{r} 3 d x=d t \\ d x=\frac{d t}{3} \end{array} \end{aligned}$ $\begin{aligned} &=\int \frac{d t}{3 t}+c \\ &=\frac{1}{3} \log |3 x-2|+c \end{aligned}$ Indefinite Integrals Exercise 18.19 Question 14
Answer: $10 \ln |\sin x-4|-7 \ln |\sin x-3|+c$ Hint : Let
$\sin x=t$ Given: $\int \frac{(3 \sin x-2) \cos x}{13-\cos ^{2} x-7 \sin x} d x$ Solution: $\text { Let } \sin x=t$ $\cos x d x=d t$ $\int \frac{(3 \sin x-2) \cos x}{13-\left(1-\sin ^{2} x\right)-7 \sin x} d x$ $\left(\cos ^{2} x=1-\sin ^{2} x\right)$ $\int \frac{(3 t-2) d t}{13-1+t^{2}-7 t}=\int \frac{(3 t-2) d t}{t^{2}-7 t+12}$ $\left[\begin{array}{l} t^{2}-7 t+12=(t-4)(t-3) \\ a x^{2}+b x+c, x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \end{array}\right]$ $\int \frac{3 t-2}{(t-4)(t-3)} d t=\frac{A}{t-4}+\frac{B}{t-3}$ ..........(1)$\begin{aligned} &3 t-2=\frac{A}{t-4}+\frac{B}{t-3} \\ &3 t-2=A(t-3)+B(t-4) \\ &3 t-2=A t-3 A+B t-4 B \end{aligned}$ On comparing,
$3 \mathrm{t}=\mathrm{At}+\mathrm{Bt} \Rightarrow \mathrm{A}+\mathrm{B}=3 \Rightarrow>\mathrm{A}=3-\mathrm{B}$ $-2=-3 A-4 B=23 A+4 B=2=>3(3-B)+4 B=2=>B=-7$ On solving both
$A=3-(-7) \Rightarrow A=10$ In eqn (1)
$\begin{aligned} & \int\left[\frac{10}{t-4}+\frac{-7}{t-3}\right] d t \\ =& \int \frac{10}{t-4} d t-\int \frac{7}{t-3} d t \end{aligned}$ $\int \frac{1}{t} d t=\ln |t|+c$ $\begin{aligned} &10 \ln |t-4|-7 l n|t-3|+c \\ &=10 \ln |t-4|-7 \ln |t-3|+c \\ &=10 \ln |\sin x-4|-7 \ln |\sin x-3|+c \end{aligned}$ Indefinite Integrals Exercise 18.19 Question 15
Answer: $\log \frac{|3 x+4|}{3}+c$ Hint: Solve Integration
Given: $\int \frac{x+7}{3 x^{2}+25 x+28} d x$ Solution: $\begin{aligned} &\int \frac{x+7}{3 x^{2}+25 x+28} d x \\ &=\int \frac{x+7}{3 x^{2}+21 x+4 x+28} d x \\ &=\int \frac{x+7}{3 x(x+7)+4(x+7)} d x \\ &=\int \frac{x+7}{(3 x+4)(x+7)} d x \\ &=\int \frac{d x}{3 x+4} \end{aligned}$ Let,
$\begin{aligned} &3 x+4=t \\ &3 d x=d t \end{aligned}$ $d x=\frac{d t}{3}$ $\begin{aligned} &=\int \frac{d t}{3 t}+c \\ &=\frac{1}{3} \log |3 x+4|+c \end{aligned}$ Indefinite Integrals Exercise 18.19 Question 16
Answer: $\frac{14}{9} \log |x-3|+\frac{13}{9} \ln |x+6|+c$ Hint: You know about how to solve integration
Given:$\int \frac{3 x+5}{x^{2}+3 x-18} d x$ Explanation: We have,
$\int \frac{3 x+5}{x^{2}+3 x-18} d x$ $\begin{aligned} &\Rightarrow \int \frac{3 x+5}{x^{2}+6 x-3 x-18} d x \\ &\Rightarrow \int \frac{3 x+5}{x(x+6)-3(x+6)} d x \\ &\Rightarrow \int \frac{3 x+5}{(x-3)(x+6)} d x \end{aligned}$ Now, Using Partial fraction,
$\begin{aligned} &\frac{3 x+5}{(x-3)(x+6)}=\frac{A}{(x+6)}+\frac{B}{(x-3)} \\ &\frac{3 x+5}{(x-3)(x+6)}=\frac{A(x-3)+B(x+6)}{(x-3)(x+6)} \\ &\frac{3 x+5}{(x-3)(x+6)}=\frac{A x-3 A+B x+6 B}{(x-3)(x+6)} \\ &\Rightarrow \frac{3 x+5}{(x-3)(x+6)}=\frac{(A+B) x-3 A+6 B}{(x-3)(x+6)} \end{aligned}$ On comparing, we got
$A+B=3$ ......(1)
and
$\begin{aligned} &-3 A+6 B=5 \\ &(A+B=3) \times-3 \end{aligned}$ ........(2)
We get,
$-3 A-3 B=-9 \ldots .(3)$ Subtract (2) from (3)
$\begin{aligned} &(-3 A-3 B)-(-3 A+6 B)=(-9)-(5) \\ &-3 A-3 B+3 A-6 B=-9-5 \\ &-9 B=-14 \\ &B=\frac{14}{9} \end{aligned}$ Put value of B in (1)
$\begin{aligned} &A+B=3 \\ &A+\frac{14}{9}=3 \\ &A=3-\frac{14}{9} \Rightarrow \frac{27-14}{9} \\ &A=\frac{13}{9} \& B=\frac{14}{9} \end{aligned}$ Substituting value of A and B in
$\begin{aligned} &\frac{3 x+5}{(x-3)(x+6)}=\frac{A}{(x+6)}+\frac{B}{(x-3)} \\ &\frac{3 x+5}{(x-3)(x+6)}=\frac{13}{9} \frac{1}{(x+6)}+\frac{14}{9} \frac{B}{(x-3)} \end{aligned}$ Integrating both sides
$\int \frac{3 x+5}{(x-3)(x+6)} d x=\frac{13}{9} \int \frac{1}{(x+6)} d x+\frac{14}{9} \int \frac{1}{(x-3)} d x$ $\left[\int \frac{1}{x+a} d x=\log |x+a|\right]$ $\int \frac{3 x+5}{(x-3)(x+6)} d x=\frac{13}{9} \log |x+6|+\frac{14}{9} \log |x-3|+c$ Indefinite Integrals Exercise 18 .19 Question 17
Answer :
$\frac{1}{4} \ln \left|x^{4}+x^{2}+1\right|-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 x^{2}+1}{\sqrt{3}}\right)+c$ Hint: You know about the integration of
$\int x^{3}$ Given: $\int \frac{x^{3}}{x^{4}+x^{2}+1} d x$ Solution: $\int \frac{x^{3}}{x^{4}+x^{2}+1} d x$ $\begin{aligned} &\int \frac{x^{3}}{x^{4}+x^{2}+1} d x \\ &=\frac{1}{2} \int \frac{2 x^{3}}{x^{4}+x^{2}+1} d x \\ &=\frac{1}{2} \int \frac{x^{2}}{x^{4}+x^{2}+1} 2 x d x \end{aligned}$ Let
$x^{2}=t$ $2 x d x=d t$ $\begin{aligned} &\frac{1}{2} \int \frac{t}{t^{2}+t+1} d t \\ &\Rightarrow \frac{1}{2} \int \frac{2 t+1-1}{2\left(t^{2}+t+1\right)} d t \\ &\Rightarrow \frac{1}{4} \int \frac{2 t+1}{t^{2}+t+1} d t-\int \frac{d t}{t^{2}+t+1} \\ &\Rightarrow \frac{1}{4} \int \frac{2 t+1}{t^{2}+t+1} d t-\int \frac{d t}{t^{2}+t+\frac{1}{4}-\frac{1}{4}} \end{aligned}$ $\Rightarrow \frac{1}{4} \int \frac{2 t+1}{t^{2}+t+1} d t-\int \frac{d t}{\left(\frac{3}{4}\right)+\left(t+\frac{1}{2}\right)^{2}}$ Let,
$\begin{aligned} t^{2}+2 t+1 &=u \\ 2 t+1 d t &=d u \end{aligned}$ $\begin{aligned} &=\frac{1}{4} \int \frac{d u}{u}-\int \frac{d t}{\left(\frac{\sqrt{3}}{2}\right)^{2}+\left(t+\frac{1}{2}\right)^{2}} \\ &=\frac{1}{4}\left[\ln u-\frac{1}{\frac{\sqrt{3}}{2}} \tan ^{-1}\left(\frac{t+\frac{1}{2}}{\frac{\sqrt{3}}{2}}\right)\right]+c \end{aligned}$ $\begin{aligned} &=\frac{1}{4}\left(\ln \left(t^{2}+t+1\right)-\frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 t+1}{\sqrt{3}}\right)\right)+c \\ &=\frac{1}{4} \ln \left|x^{4}+x^{2}+1\right|-\frac{1}{4} \frac{2}{\sqrt{3}} \tan ^{-1}\left(\frac{2 x^{2}+1}{\sqrt{3}}\right)+c \\ &=\frac{1}{4} \ln \left|x^{4}+x^{2}+1\right|-\frac{1}{2 \sqrt{3}} \tan ^{-1}\left(\frac{2 x^{2}+1}{\sqrt{3}}\right)+c \end{aligned}$ Indefinite Integrals Exercise 18.19 Question 18
Answer: $\frac{-\sqrt{5}}{5} \log \left|\frac{x^{2}+1-\sqrt{5}}{x^{2}+1+\sqrt{5}}\right|+\frac{1}{4} \log \left|x^{4}-2 x^{2}-4\right|+c$ Hint : Let
$x^{2}=t$ Given: $\int \frac{x^{3}-3 x}{x^{4}+2 x^{2}-4} d x$ Solution: $\int \frac{x\left(x^{2}-3\right)}{\left(x^{2}\right)^{2}+2 x^{2}-4} d x$ Let
$x^{2}=t$ $x d x=\frac{d t}{2}$ $\frac{1}{2} \int \frac{(t-3)}{t^{2}+2 t-4} d t$ Multiply and divide by 2 $\begin{aligned} &=\frac{1}{4} \int \frac{2 t-6}{t^{2}+2 t-4} d t \\ &=\frac{1}{4} \int \frac{2 t+2-8}{t^{2}+2 t-4} d t \\ &=\frac{1}{4} \int \frac{2 t+2}{t^{2}+2 t-4} d t-\frac{1}{4} \int \frac{8}{t^{2}+2 t-4} d t \\ &=\frac{1}{4} \int \frac{2 t+2}{t^{2}+2 t-4} d t-2 \int \frac{1}{t^{2}+2 t-4} d t \\ &=\frac{1}{4} \int \frac{2 t+2}{t^{2}+2 t-4} d t-2 \int \frac{1}{t^{2}+2 t+1-5} d t \\ &=\frac{1}{4} \int \frac{2 t+2}{t^{2}+2 t-4} d t-2 \int \frac{1}{(t+1)^{2}-\sqrt{5}^{2}} d t \end{aligned}$ $I=\frac{1}{4}\log \left | t^{2}+2t-4 \right |-2\times \frac{1}{2\sqrt{5}}\log (\frac{t+1-\sqrt{5}}{t+1+\sqrt{5}})+c$ $I=\frac{1}{4}\log \left | x^{4}+2x^{2}-4 \right |-\frac{1}{\sqrt{5}}\log (\frac{x^{2}+1-\sqrt{5}}{x^{2}+1+\sqrt{5}})+c$
Rd Sharma Class 12. Exercise 18.19 The solutions will help each student and they will be able to clarify the concepts and study from the point of view of an exam. The advantages of these solutions are:
Created by experts
Class 12th RD Sharma Chapter 18 Exercise 18.19 Solutions are created by a team of experts making the solutions a reliable source to learn the material. These solutions will always help students to go for the exams confidently and perform brilliantly.
Best source for preparation
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-bookRd Sharma Class 12th Exercise 18.19 solutions being the reliable ones are the best source for preparation. A student can trust these solutions and go for them without worry. The expert team who writes the answers analyses every question to solve it in advanced ways so as to make it easy for students to understand.
NCERT Questions Answered
The questions appearing in board exams are often from NCERT maths textbooks. Teachers also like to set question papers from NCERT books , thus Rd Sharma Class 12th Chapter 18 Exercise 18.19 solutions helps students to prepare for school exams along with boards. The ultimate solution for all maths doubts is the RD Sharma Class 12 Solutions Chapter 18 ex 18.19 Solutions book.
Different approaches to resolve a question
RD Sharma Class 12 Solutions Chapter 18 ex 18.19 allows students to locate opportunity approaches to resolve a question. The principles are connected and solved through specialists in any such manner that it is straightforward for a pupil to apprehend and resolve questions in different approaches.
Great performance in exams:
Solutions assist students do properly in exams. RD Sharma Class 12 Solutions Ex. 18.19 covers all of the critical questions typically requested on exams, assisting the pupil to set up a benchmark rating on exams.
Free of price
Students will locate these types of answers freed from price at Career360, the fine web website online to go to for all of the blessings associated with questions in board checks in addition to aggressive checks. At Career360, a pupil will understand, study and carry out fairly checks. Thousands of college students have benefitted from those answers making Career360 primary desire for each pupil