Careers360 Logo
RD Sharma Class 12 Exercise 18.28 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.28 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 10:17 AM IST

Class 12 RD Sharma chapter 18 exercise 18.28 solution is an accomplishment for each understudy. In any case, students can't get their optimal results without thorough practice. Therefore, the one book that has been recommended to students for preparing and alluding to for RD Sharma class 12 solutions chapter 18 exercise 18.28 arrangement. RD Sharma solutions To have phenomenal practice, you need solicitations, and RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.28 meets a splendid fundamental of maths questions. RD Sharma Maths scrutinizing material is one of the most astounding course books for class 12 maths unequivocally for students planning for genuine tests.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.28


Indefinite Integrals Excercise 18.28 Question 1

Answer:-
12(x1)3+2xx2+2sin1(x12)+c
Hint:-
Adding and subtracting with 1.
Given:-
3+2xx2dx
Solution:-
=4+2xx21dx=(2)2(x22x+1)dx=(2)2(x1)2dx
=12(x1)3+2xx2+12×(2)2sin1(x12)+c=12(x1)3+2xx2+2sin1(x12)+c

Using the formula

a2+x2dx=12xa2+x2+12a2sin1(x2)+c

Indefinite Integrals Excercise 18.28 Question 2

Answer:-
(2x+14)x2+x+1+38log|(2x+1)+x2+x+1|+c
Hint:-
x2+a2dx=x2x2+a2+a22log|x+x2+a2|+c
Given:-
x2+x+1dx
Solution:-
x2+x+1dx =x2+x+14+34dx=x2+x+(15)2+(32)2dx
=(x+15)2+(32)2dx=(x+15)2(x+15)2+(32)2+(32)22log|(x+15)+(x+15)2+(32)2|+c

Using the formula

x2+a2dx=x2x2+a2+a22log|x+x2+a2|+c=(2x+14)x2+x+1+38log|(x+15)+(x+15)2+(32)2|+c
=(2x+14)x2+x+1+38log|(2x+12)+12x2+x+1|+c=(2x+14)x2+x+1+38log|(2x+1)+x2+x+1|+c

Indefinite Integrals Excercise 18.28 Question 3

Answer:-
12(2x1)xx2+18sin1(2x1)+c
Hint:-
Add and subtract 14
Given:-
xx2dx
Solution:-
xx2dx=1414+xx2dx

=(12)2(12x)2dx=(12x4)(12)2(12x)2(12)22sin1(12x4)12+c
Using the formula
a2x2=12xa2x2+a22sin1xa+c=(2x14)xx2+18sin1(2x1)+c






Indefinite Integrals Excercise 18.28 Question 4

Answer:-
18(4x1)1+x2x2+9232sin1(2x1)+c

Multiplying by 2.

Given:-
1+x2x2dx
Solution:-
1+x2x2dx
By multiplying by 2
=212+x2x2dx=2916(116x2+x2)dx=2(34)2(x14)2dx

=2{((x14)2)12+x2x2+932sin1(x143/4)2}+c=18(4x1)1+x2x2+9232sin1(4x13)+c
Using the formula
a2x2=12xa2x2+a22sin1xa+c


Indefinite Integrals Exercise 18.28 Question 5

Answer:-
12sinx4sin2x+2sin1sinx2+c
Hint:-
Taking sinx=t
Given:-
cosx4sin2xdx
Solution:-
By taking sinx=t
cosxdx=dt
Hence
=4t2dt=(2)2(t)2dt=12t4t2+12(2)2sin1t2+c

Using the formula
a2x2=12xa2x2+a22sin1xa+c=12sinx4sin2x+2sin1sinx2+c




Indefinite Integrals Exercise 18.28 Question 6

Answer:-
12exe2x+1+12log{ex+e2x+1}+c
Hint:-
Let ex=z
Given:-
exe2x+1dx
Solution:-
By taking ex=z
exdx=zdx
Hence
=z2+1dz=(z)2+(1)2dz=12zz2+1+12(1)2log{z+z2+1}+c

Using the formula
x2+a2dx=x2x2+a2+a22log|x+x2+a2|+c=12exe2x+1+12log{ex+e2x+1}+c


Indefinite Integrals Exercise 18.28 Question 7

Answer:-
12x9x2+92sin1x3+c
Hint:-
Using the formula
a2x2=12xa2x2+a22sin1xa+c
Given:-
9x2dx
Solution:-
By using the formula
=(3)2(x)2dx=12x9x2+12(3)2sin1x3+c
Using the formula
a2x2=12xa2x2+a22sin1xa+c=12x9x2+92sin1x3+c

Indefinite Integrals Exercise 18.28 Question 8

Answer:-
2xx2+2516+258log[x+x2+2516]+c
Hint:-
Taking common 4 and then use the formula.
Given:-
16x2+25dx
Solution:-
=4x2+2516dx=4(x)2+(54)2dx=4[12x(x)2+(54)2+12×2516log[x+x2+2516]+c]

Using the formula
x2+a2dx=x2x2+a2+a22log|x+x2+a2|+c=2xx2+2516+258log[x+x2+2516]+c




Indefinite Integrals Exercise 18.28 Question 9

Answer:-
2xx254+52log|x+x254|+c
Hint:-
Taking common 2 and then use the formula.
Given:-
4x25dx
Solution:-
=4x2(52)2dx=4[12x(x)25412×54log[x+x254]+c]

By using the formula
x2a2dx=x2x2a2a22log|x+x2a2|+c=2xx254+52log|x+x254|+c




Indefinite Integrals Exercise 18.28 Question 10

Answer:-
4x+382x2+3x+4+23232log|x+34x232+2|+c
Hint:-
Multiplying by 22
Given:-
2x2+3x+4dx
Solution:-
=12216x2+24x+32dx=122(4x)2+2.4x3+(3)2+23dx=122(4x+3)2+232dx

By using the formula

x2+a2dx=x2x2+a2+a22log|x+x2+a2|+c=122[12×14×(4x+3)(4x+3)2+2322×14log[(4x+3)+(4x+3)2+23]+c]
=4x+382x2+3x+4+23232log|(4x+3)+2x2+3x+4|+c=4x+382x2+3x+4+23232log|(x+34)x232+2|+23232log4+c=4x+382x2+3x+4+23232log|x+34x232+2|+c

Indefinite Integrals Exercise 18.28 Question 11

Answer:-
The answer is
14(2x+1)32x2x2+728sin12x+17+c
Hints:-
a2x2dx=x2a2x2+a22sin1xa+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

32x2x2dx
Solution:-
Let,
I=32x2x2dx32(x2+2(12)x)dx=32(x2+2(12)x+(12)2)+2(12)2dx
We have
I=742(x+12)2dx=2(72)2(x+12)2dx
As I match with the form
a2x2dx=x2a2x2+a22sin1xa+cI=2{x+122(72)2(x+12)2}+742sin1(x+1272)+c
I=14(2x+1)2{(72)2(x+12)2}+728sin1(2x+17)+c
I=14(2x+1)32x2x2+728sin1(2x+17)+c

Indefinite Integrals Exercise 18.28 Question 12

Answer:-
The answer is
I=x24x4+1+14log|x+x2x4+1|+c
Hints:-
a2x2dx=x2a2x2+a22sin1xa+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c
Given:-

I=xx4+1dx
Solution:-
Let,
I=xx4+1dx
Let, x2=t
Differentiating both sides,
2xdx=dtxdx=12dt
Substituting x2 with t, we have
I=12t2+1dtI=12t2+12dt
As I match with the form

x2+a2dx=x2x2+a2+a22log|x+x2+a2|+cI=12{t2t2+1+12log|t+t2+1|}+cI=t4t2+1+14log|t+t2+1|+c
Putting the value of t back.
I=x24(x2)2+1+14log|x2+(x2)2+1|+cI=x24x4+1+14log|x+x2x4+1|+c

Indefinite Integrals exercise 18.28 question 13

Answer:-
x36a6x6+a66sin1(x3a3)+c
Hints:-
a2x2dx=x2a2x2+a22sin1xa+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

x2a6x6dx
Solution:-
Let,
I=x2a6x6dxI=x2a6(x3)2dx
Let, x3=t
Differentiating both sides,
3x2dx=dtx2dx=13dt

Substituting x3 with t, we have
I=13(a3)2t2dtI=12(a3)2t2dt


As I match with the form
a2x2dx=x2a2x2+a22sin1xa+cI=13{t2a6t2+a62sin1(ta3)}+cI=t4t2+1+14log|t+t2+1|+c


Putting the value of t i.e.t=x3

I=x36a6x6+a66sin1(x3a3)+c

Indefinite Integrals exercise 18.28 question 14

Answer:-
The answer is
I=logx2(logx)2+16+8log|logx+(logx)2+16|+c
Hints:-
a2x2dx=x2a2x2+a22sin1xa+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

I=(logx)2+16xdx
Solution:-
Let,
I=1x16+(logx)2dx
Let, logx=t
Differentiating both sides,
1xdx=dt
Substituting logx with t, we have
I=t2+16dtI=t2+42dt

As I match with the form
x2+a2dx=x2x2+a2+a22log|x+x2+a2|+cI={t2t2+16+162log|t+t2+16|}+c


Putting the value of t back.

I=logx2(logx)2+16+8log|logx+(logx)2+16|+c

Indefinite Integrals exercise 18.28 question 15

Answer:-
12(xa)2axx2+a22sin1(xaa)+c
Hint:-
Using the formula
a2x2=12xa2x2+a22sin1(xa)+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

2axx2dx
Solution:-
Let,
I=2axx2dxI=(x22ax)dx=(a)2(x22ax+a2)dx
We have
I=(a)2(xa)2dx
As I match with the form
a2x2=12xa2x2+a22sin1(xa)+cI=xa2a2(xa)2+a22sin1(xaa)+cI=12(xa)2axx2+a22sin1(xaa)+c

Indefinite Integrals Exercise 18.28 Question 16

Answer:-
I=x23x2+32sin1(x3)+c
Hint:-
Using the formula
a2x2=12xa2x2+a22sin1(xa)+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

3x2dx
Solution:-
 Let, I=3x2dxI=3x2dx=(3)2x2dx
As I match with the form
a2x2=12xa2x2+a22sin1(xa)+cI=x23x2+32sin1(x3)+c

Indefinite Integrals Exercise 18.28 Question 17

Answer:-
x12x22x12log|x1+x22x|+c
Hint:-
a2x2=12xa2x2+a22sin1(xa)+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

x22xdx
Solution:-
Let, I=x22xdx
We have
I=x22xdxI=x22x+1212dxI=(x1)2(1)2dx

As I match with the form
x2a2dx=x2x2a2a22log|x+x2a2|+cI=x12(x1)2112log|x1+(x1)21|+cI=x12x22x12log|x1+x22x|+c




Indefinite Integrals Exercise 18 point 28 Question 18

Answer:-
I=12(x1)2xx2+12sin1((x1))+c
Hint:-
Using the formula
a2x2=12xa2x2+a22sin1(xa)+cx2a2dx=x2x2a2a22log|x+x2a2|+cx2+a2dx=x2x2+a2+a22log|x+x2+a2|+c

Given:-

2xx2dx
Solution:-
 Let, I=2xx2dxI=(x22(1)x)dx
I=12(xa)2dxI=(1)2(x1)2dx
As I match with the forma2x2=12xa2x2+a22sin1(xa)+cI=x12(1)2(x1)2+122sin1(x11)+cI=12(x1)2xx2+12sin1(x1)+c

Rd Sharma class 12 chapter 18 exercise 18.28 answers that are clear and reviewed. It further helps students with getting a handle on formulae and tending to methods. Rd Sharma Class 12th exercise 18.28 has around 18 inquiries, including its subparts, and it joins themes like: -

  • Questions Related to antiderivative

  • Joining of mathematical capacities

  • Combination of outstanding capacities

  • Random issues

  • Mathematical translation of endless vital

  • Correlation among separation and combination

  • Methods of combination

Benefits of picking RD Sharma Mathematics Solutions from Career360 include:

  • Career360, you will need to get all of the solutions, so no convincing motivation to go somewhere else.

  • You can similarly benchmark your display premise with these solutions.

  • These solutions are available free of cost in career360.

  • Extraordinary yet arranged showing of the subjects.

  • A point by point clarification of thoughts and formulae

  • Assists understudies to rehearse with no issue

  • You can likewise benchmark your exhibition dependent on these solutions.

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. Does Career360 provide RD Sharma class 12 chapter 18 exercise 18.28 solution?

Career360 gives point-by-point and accurate solutions for RD Sharma class 12 chapter 18 ex 18.28. Subject matter experts provide RD Sharma Class 12 Solutions to work with a smooth and clear awareness of thoughts.

2. Are the RD Sharma Class 12 Maths Solutions Chapter 18 agreeable for CBSE students?

It's essentially suggested that class 12 RD Sharma chapter 18 exercise 18.28 plan students pick the RD Sharma Class 12 Solutions from Career360 as reference material for solutions.

3. How do students get the RD Sharma class 12th exercise 18.28 Solutions?

Students can get to the RD Sharma Solutions for Class 12 Maths open as a downloadable PDF at the Career360 webpage. In this RD Sharma class, 12 solutions chapter 18 ex 18.28 helps ace subject advisers to help students in their solutions.

4. How many requests are there in class 12 RD Sharma chapter 18?

There are 18 requests in Class 12 RD Sharma chapter 18 exercise 18.28.  

Articles

Back to top