RD Sharma Class 12 Exercise 18.28 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.28 Indefinite Integrals Solutions Maths - Download PDF Free Online

Updated on 24 Jan 2022, 10:17 AM IST

Class 12 RD Sharma chapter 18 exercise 18.28 solution is an accomplishment for each understudy. In any case, students can't get their optimal results without thorough practice. Therefore, the one book that has been recommended to students for preparing and alluding to for RD Sharma class 12 solutions chapter 18 exercise 18.28 arrangement. RD Sharma solutions To have phenomenal practice, you need solicitations, and RD Sharma Class 12 Solutions Indefinite Integrals Ex 18.28 meets a splendid fundamental of maths questions. RD Sharma Maths scrutinizing material is one of the most astounding course books for class 12 maths unequivocally for students planning for genuine tests.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.28


Indefinite Integrals Excercise 18.28 Question 1

Answer:-
$\frac{1}{2}(x-1) \sqrt{3+2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x-1}{2}\right)+c$
Hint:-
Adding and subtracting with 1.
Given:-
$\int \sqrt{3+2 x-x^{2}} d x$
Solution:-
$\begin{aligned} &=\int \sqrt{4+2 x-x^{2}-1} d x \\\\ &=\int \sqrt{(2)^{2}-\left(x^{2}-2 x+1\right)} d x \\\\ &=\int \sqrt{(2)^{2}-(x-1)^{2}} d x \end{aligned}$
$\begin{aligned} &=\frac{1}{2}(x-1) \sqrt{3+2 x-x^{2}}+\frac{1}{2} \times(2)^{2} \sin ^{-1}\left(\frac{x-1}{2}\right)+c \\\\ &=\frac{1}{2}(x-1) \sqrt{3+2 x-x^{2}}+2 \sin ^{-1}\left(\frac{x-1}{2}\right)+c \end{aligned}$

Using the formula

$\int \sqrt{a^{2}+x^{2}} d x=\frac{1}{2} x \sqrt{a^{2}+x^{2}}+\frac{1}{2} a^{2} \sin ^{-1}\left(\frac{x}{2}\right)+c$

Indefinite Integrals Excercise 18.28 Question 2

Answer:-
$\left(\frac{2 x+1}{4}\right) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|(2 x+1)+\sqrt{x^{2}+x+1}\right|+c$
Hint:-
$\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c$
Given:-
$\int \sqrt{x^{2}+x+1} d x$
Solution:-
$\begin{aligned} &\int \sqrt{x^{2}+x+1} d x \\\\\ &=\int \sqrt{x^{2}+x+\frac{1}{4}+\frac{3}{4}} d x \\\\ &=\int \sqrt{x^{2}+x+\left(\frac{1}{5}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x \end{aligned}$
$\begin{aligned} &=\int \sqrt{\left(x+\frac{1}{5}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}} d x \\\\ &=\frac{\left(x+\frac{1}{5}\right)}{2} \sqrt{\left(x+\frac{1}{5}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}+\frac{\left(\frac{\sqrt{3}}{2}\right)^{2}}{2} \log \left|\left(x+\frac{1}{5}\right)+\sqrt{\left(x+\frac{1}{5}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+c \end{aligned}$

Using the formula

$\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &=\left(\frac{2 x+1}{4}\right) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(x+\frac{1}{5}\right)+\sqrt{\left(x+\frac{1}{5}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}\right|+c \end{aligned}$
$\begin{aligned} &=\left(\frac{2 x+1}{4}\right) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|\left(\frac{2 x+1}{2}\right)+\frac{1}{2} \sqrt{x^{2}+x+1}\right|+c \\\\ &=\left(\frac{2 x+1}{4}\right) \sqrt{x^{2}+x+1}+\frac{3}{8} \log \left|(2 x+1)+\sqrt{x^{2}+x+1}\right|+c \end{aligned}$

Indefinite Integrals Excercise 18.28 Question 3

Answer:-
$\frac{1}{2}(2 x-1) \sqrt{x-x^{2}}+\frac{1}{8} \sin ^{-1}(2 x-1)+c$
Hint:-
Add and subtract $\frac{1}{4}$
Given:-
$\int \sqrt{x-x^{2}} d x$
Solution:-
$\begin{aligned} &\int \sqrt{x-x^{2}} d x \\\\ &=\int \sqrt{\frac{1}{4}-\frac{1}{4}+x-x^{2}} d x \end{aligned}$

$\begin{aligned} &=\int \sqrt{\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}-x\right)^{2}} d x \\\\ &=\left(\frac{1-2 x}{4}\right) \sqrt{\left(\frac{1}{2}\right)^{2}-\left(\frac{1}{2}-x\right)^{2}}-\frac{\left(\frac{1}{2}\right)^{2}}{2} \sin ^{-1} \frac{\left(\frac{1-2 x}{4}\right)}{\frac{1}{2}}+c \end{aligned}$
Using the formula
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &=\left(\frac{2 x-1}{4}\right) \sqrt{x-x^{2}}+\frac{1}{8} \sin ^{-1}(2 x-1)+c \end{aligned}$






Indefinite Integrals Excercise 18.28 Question 4

Answer:-
$\frac{1}{8}(4 x-1) \sqrt{1+x-2 x^{2}}+\frac{9 \sqrt{2}}{32} \sin ^{-1}(2 x-1)+c$

Multiplying by $\sqrt{2}$.

Given:-
$\int \sqrt{1+x-2 x^{2}} d x$
Solution:-
$\int \sqrt{1+x-2 x^{2}} d x$
By multiplying by $\sqrt{2}$
$\begin{aligned} &=\sqrt{2} \int \sqrt{\frac{1}{2}+\frac{x}{2}-x^{2}} d x \\\\ &=\sqrt{2} \int \sqrt{\frac{9}{16}-\left(\frac{1}{16}-\frac{x}{2}+x^{2}\right)} d x \\\\ &=\sqrt{2} \int \sqrt{\left(\frac{3}{4}\right)^{2}-\left(x-\frac{1}{4}\right)^{2}} d x \end{aligned}$

$\begin{aligned} &=\sqrt{2}\left\{\left(\frac{\left(x-\frac{1}{4}\right)}{2}\right) \sqrt{\frac{1}{2}+\frac{x}{2}-x^{2}}+\frac{9}{32} \sin ^{-1}\left(\frac{x-\frac{1}{4}}{3 / 4}\right)^{2}\right\}+c \\\\ &=\frac{1}{8}(4 x-1) \sqrt{1+x-2 x^{2}}+\frac{9 \sqrt{2}}{32} \sin ^{-1}\left(\frac{4 x-1}{3}\right)+c \end{aligned}$
Using the formula
$\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c$


Indefinite Integrals Exercise 18.28 Question 5

Answer:-
$\frac{1}{2} \sin x \sqrt{4-\sin ^{2} x}+2 \sin ^{-1} \frac{\sin x}{2}+c$
Hint:-
Taking $\sin x = t$
Given:-
$\int \cos x \sqrt{4-\sin ^{2} x} d x$
Solution:-
By taking $\sin x = t$
$\cos x d x=d t$
Hence
$\begin{aligned} &=\int \sqrt{4-t^{2}} d t \\\\ &=\int \sqrt{(2)^{2}-(t)^{2}} d t \\\\ &=\frac{1}{2} t \sqrt{4-t^{2}}+\frac{1}{2}(2)^{2} \sin ^{-1} \frac{t}{2}+c \end{aligned}$

Using the formula
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &=\frac{1}{2} \sin x \sqrt{4-\sin ^{2} x}+2 \sin ^{-1} \frac{\sin x}{2}+c \end{aligned}$




Indefinite Integrals Exercise 18.28 Question 6

Answer:-
$\frac{1}{2} e^{x} \sqrt{e^{2 x}+1}+\frac{1}{2} \log \left\{e^{x}+\sqrt{e^{2 x}+1}\right\}+c$
Hint:-
Let $e^{x}=z$
Given:-
$\int e^{x} \sqrt{e^{2 x}+1} d x$
Solution:-
By taking $e^{x}=z$
$e^{x} d x=z d x$
Hence
$\begin{aligned} &=\int \sqrt{z^{2}+1} d z \\\\ &=\int \sqrt{(z)^{2}+(1)^{2}} d z \\\\ &=\frac{1}{2} z \sqrt{z^{2}+1}+\frac{1}{2}(1)^{2} \log \left\{z+\sqrt{z^{2}+1}\right\}+c \end{aligned}$

Using the formula
$\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &=\frac{1}{2} e^{x} \sqrt{e^{2 x}+1}+\frac{1}{2} \log \left\{e^{x}+\sqrt{e^{2 x}+1}\right\}+c \end{aligned}$


Indefinite Integrals Exercise 18.28 Question 7

Answer:-
$\frac{1}{2} x \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}+c$
Hint:-
Using the formula
$\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c$
Given:-
$\int \sqrt{9-x^{2}} d x$
Solution:-
By using the formula
$\begin{aligned} &=\int \sqrt{(3)^{2}-(x)^{2}} d x \\\\ &=\frac{1}{2} x \sqrt{9-x^{2}}+\frac{1}{2}(3)^{2} \sin ^{-1} \frac{x}{3}+c \end{aligned}$
Using the formula
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &=\frac{1}{2} x \sqrt{9-x^{2}}+\frac{9}{2} \sin ^{-1} \frac{x}{3}+c \end{aligned}$

Indefinite Integrals Exercise 18.28 Question 8

Answer:-
$2 x \sqrt{x^{2}+\frac{25}{16}}+\frac{25}{8} \log \left[x+\sqrt{x^{2}+\frac{25}{16}}\right]+c$
Hint:-
Taking common 4 and then use the formula.
Given:-
$\int \sqrt{16 x^{2}+25} d x$
Solution:-
$\begin{aligned} &=4 \int \sqrt{x^{2}+\frac{25}{16}} d x \\\\ &=4 \int \sqrt{(x)^{2}+\left(\frac{5}{4}\right)^{2}} d x \\\\ &=4\left[\frac{1}{2} x \sqrt{(x)^{2}+\left(\frac{5}{4}\right)^{2}}+\frac{1}{2} \times \frac{25}{16} \log \left[x+\sqrt{x^{2}+\frac{25}{16}}\right]+c\right] \end{aligned}$

Using the formula
$\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &=2 x \sqrt{x^{2}+\frac{25}{16}}+\frac{25}{8} \log \left[x+\sqrt{x^{2}+\frac{25}{16}}\right]+c \end{aligned}$




Indefinite Integrals Exercise 18.28 Question 9

Answer:-
$2 x \sqrt{x^{2}-\frac{5}{4}}+\frac{5}{2} \log \left|x+\sqrt{x^{2}-\frac{5}{4}}\right|+c$
Hint:-
Taking common 2 and then use the formula.
Given:-
$\int \sqrt{4 x^{2}-5} d x$
Solution:-
$\begin{aligned} &=4 \int \sqrt{x^{2}-\left(\frac{\sqrt{5}}{2}\right)^{2}} d x \\\\ &=4\left[\frac{1}{2} x \sqrt{(x)^{2}-\frac{5}{4}}-\frac{1}{2} \times \frac{5}{4} \log \left[x+\sqrt{x^{2}-\frac{5}{4}}\right]+c\right] \end{aligned}$

By using the formula
$\begin{aligned} &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &=2 x \sqrt{x^{2}-\frac{5}{4}}+\frac{5}{2} \log \left|x+\sqrt{x^{2}-\frac{5}{4}}\right|+c \end{aligned}$




Indefinite Integrals Exercise 18.28 Question 10

Answer:-
$\frac{4 x+3}{8} \sqrt{2 x^{2}+3 x+4}+\frac{23 \sqrt{2}}{32} \log \left|x+\frac{3}{4} \sqrt{x^{2}-\frac{3}{2}+2}\right|+c$
Hint:-
Multiplying by $2\sqrt{2}$
Given:-
$\int \sqrt{2 x^{2}+3 x+4} d x$
Solution:-
$\begin{aligned} &=\frac{1}{2 \sqrt{2}} \int \sqrt{16 x^{2}+24 x+32} d x \\\\ &=\frac{1}{2 \sqrt{2}} \int \sqrt{(4 x)^{2}+2.4 x \cdot 3+(3)^{2}+23} d x \\\\ &=\frac{1}{2 \sqrt{2}} \int \sqrt{(4 x+3)^{2}+\sqrt{23}^{2}} d x \end{aligned}$

By using the formula

$\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &=\frac{1}{2 \sqrt{2}}\left[\frac{1}{2} \times \frac{1}{4} \times(4 x+3) \sqrt{(4 x+3)^{2}}+\frac{\sqrt{23}^{2}}{2} \times \frac{1}{4} \log \left[(4 x+3)+\sqrt{(4 x+3)^{2}+\sqrt{23}}\right]+c\right] \end{aligned}$
$\begin{aligned} &=\frac{4 x+3}{8} \sqrt{2 x^{2}+3 x+4}+\frac{23 \sqrt{2}}{32} \log \left|(4 x+3)+\sqrt{2 x^{2}+3 x+4}\right|+c \\\\ &=\frac{4 x+3}{8} \sqrt{2 x^{2}+3 x+4}+\frac{23 \sqrt{2}}{32} \log \left|\left(x+\frac{3}{4}\right) \sqrt{x^{2}-\frac{3}{2}+2}\right|+\frac{23 \sqrt{2}}{32} \log 4+c \\\\ &=\frac{4 x+3}{8} \sqrt{2 x^{2}+3 x+4}+\frac{23 \sqrt{2}}{32} \log \left|x+\frac{3}{4} \sqrt{x^{2}-\frac{3}{2}+2}\right|+c \end{aligned}$

Indefinite Integrals Exercise 18.28 Question 11

Answer:-
The answer is
$\frac{1}{4}(2 x+1) \sqrt{3-2 x-2 x^{2}}+\frac{7 \sqrt{2}}{8} \sin ^{-1} \frac{2 x+1}{\sqrt{7}}+c$
Hints:-
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$\int \sqrt{3-2 x-2 x^{2}} d x$
Solution:-
Let,
$\begin{aligned} &I=\int \sqrt{3-2 x-2 x^{2}} d x \\\\ &\therefore \int \sqrt{3-2\left(x^{2}+2\left(\frac{1}{2}\right) x\right)} d x=\int \sqrt{3-2\left(x^{2}+2\left(\frac{1}{2}\right) x+\left(\frac{1}{2}\right)^{2}\right)+2\left(\frac{1}{2}\right)^{2}} d x \end{aligned}$
We have
$I=\int \sqrt{\frac{7}{4}-2\left(x+\frac{1}{2}\right)^{2}} d x=\int \sqrt{2} \sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}} d x$
As I match with the form
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &I=\sqrt{2}\left\{\frac{x+\frac{1}{2}}{2} \sqrt{\left(\frac{\sqrt{7}}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}}\right\}+\frac{\frac{7}{4}}{2} \sin ^{-1}\left(\frac{x+\frac{1}{2}}{\frac{\sqrt{7}}{2}}\right)+c \end{aligned}$
$I=\frac{1}{4}(2 x+1) \sqrt{2\left\{\left(\frac{\sqrt{7}}{2}\right)^{2}-\left(x+\frac{1}{2}\right)^{2}\right\}}+\frac{7 \sqrt{2}}{8} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{7}}\right)+c$
$I=\frac{1}{4}(2 x+1) \sqrt{3-2 x-2 x^{2}}+\frac{7 \sqrt{2}}{8} \sin ^{-1}\left(\frac{2 x+1}{\sqrt{7}}\right)+c$

Indefinite Integrals Exercise 18.28 Question 12

Answer:-
The answer is
$I=\frac{x^{2}}{4} \sqrt{x^{4}+1}+\frac{1}{4} \log \left|x+x^{2} \sqrt{x^{4}+1}\right|+c$
Hints:-
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$
Given:-

$I=\int x \sqrt{x^{4}+1} d x$
Solution:-
Let,
$I=\int x \sqrt{x^{4}+1} d x$
Let, $x^{2}= t$
Differentiating both sides,
$\begin{aligned} &\Rightarrow 2 x d x=d t \\\\ &\Rightarrow x d x=\frac{1}{2} d t \end{aligned}$
Substituting $x^{2}$ with t, we have
$\begin{aligned} &I=\frac{1}{2} \int \sqrt{t^{2}+1} d t \\\\ &I=\frac{1}{2} \int \sqrt{t^{2}+1^{2}} d t \end{aligned}$
As I match with the form

$\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &I=\frac{1}{2}\left\{\frac{t}{2} \sqrt{t^{2}+1}+\frac{1}{2} \log \left|t+\sqrt{t^{2}+1}\right|\right\}+c \\\\ &I=\frac{t}{4} \sqrt{t^{2}+1}+\frac{1}{4} \log \left|t+\sqrt{t^{2}+1}\right|+c \end{aligned}$
Putting the value of t back.
$\begin{aligned} &I=\frac{x^{2}}{4} \sqrt{\left(x^{2}\right)^{2}+1}+\frac{1}{4} \log \left|x^{2}+\sqrt{\left(x^{2}\right)^{2}+1}\right|+c \\\\ &I=\frac{x^{2}}{4} \sqrt{x^{4}+1}+\frac{1}{4} \log \left|x+x^{2} \sqrt{x^{4}+1}\right|+c \end{aligned}$

Indefinite Integrals exercise 18.28 question 13

Answer:-
$\frac{x^{3}}{6} \sqrt{a^{6}-x^{6}}+\frac{a^{6}}{6} \sin ^{-1}\left(\frac{x^{3}}{a^{3}}\right)+c$
Hints:-
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$\int x^{2} \sqrt{a^{6}-x^{6}} d x$
Solution:-
Let,
$\begin{aligned} &I=\int x^{2} \sqrt{a^{6}-x^{6}} d x \\\\ &I=\int x^{2} \sqrt{a^{6}-\left(x^{3}\right)^{2}} d x \end{aligned}$
Let, $x^{3}= t$
Differentiating both sides,
$\begin{aligned} &\Rightarrow 3 x^{2} d x=d t \\\\ &\Rightarrow x^{2} d x=\frac{1}{3} d t \end{aligned}$

Substituting $x^{3}$ with t, we have
$\begin{aligned} &I=\frac{1}{3} \int \sqrt{\left(a^{3}\right)^{2}-t^{2}} d t \\\\ &I=\frac{1}{2} \int \sqrt{\left(a^{3}\right)^{2}-t^{2}} d t \end{aligned}$


As I match with the form
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &\therefore I=\frac{1}{3}\left\{\frac{t}{2} \sqrt{a^{6}-t^{2}}+\frac{a^{6}}{2} \sin ^{-1}\left(\frac{t}{a^{3}}\right)\right\}+c \\\\ &I=\frac{t}{4} \sqrt{t^{2}+1}+\frac{1}{4} \log \left|t+\sqrt{t^{2}+1}\right|+c \end{aligned}$


Putting the value of t i.e.t=x3

$I=\frac{x^{3}}{6} \sqrt{a^{6}-x^{6}}+\frac{a^{6}}{6} \sin ^{-1}\left(\frac{x^{3}}{a^{3}}\right)+c$

Indefinite Integrals exercise 18.28 question 14

Answer:-
The answer is
$I=\frac{\log x}{2} \sqrt{(\log x)^{2}+16}+8 \log \left|\log x+\sqrt{(\log x)^{2}+16}\right|+c$
Hints:-
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}} d x=\frac{x}{2} \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1} \frac{x}{a}+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$I=\int \frac{\sqrt{(\log x)^{2}+16}}{x} d x$
Solution:-
Let,
$I=\int \frac{1}{x} \sqrt{16+(\log x)^{2}} d x$
Let, $\log x=t$
Differentiating both sides,
$\Rightarrow \frac{1}{x} d x=d t$
Substituting logx with t, we have
$\begin{aligned} &I=\int \sqrt{t^{2}+16} d t \\\\ &I=\int \sqrt{t^{2}+4^{2}} d t \end{aligned}$

As I match with the form
$\begin{aligned} &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \\\\ &I=\left\{\frac{t}{2} \sqrt{t^{2}+16}+\frac{16}{2} \log \left|t+\sqrt{t^{2}+16}\right|\right\}+c \end{aligned}$


Putting the value of t back.

$I=\frac{\log x}{2} \sqrt{(\log x)^{2}+16}+8 \log \left|\log x+\sqrt{(\log x)^{2}+16}\right|+c$

Indefinite Integrals exercise 18.28 question 15

Answer:-
$\frac{1}{2}(x-a) \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+c$
Hint:-
Using the formula
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$\int \sqrt{2 a x-x^{2}} d x$
Solution:-
Let,
$\begin{aligned} & I=\int \sqrt{2 a x-x^{2}} d x \\ &\therefore I=\int \sqrt{-\left(x^{2}-2 a x\right)} d x=\int \sqrt{(a)^{2}-\left(x^{2}-2 a x+a^{2}\right)} d x \end{aligned}$
We have
$I=\int \sqrt{(a)^{2}-(x-a)^{2}} d x$
As I match with the form
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &I=\frac{x-a}{2} \sqrt{a^{2}-(x-a)^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+c \\\\ &I=\frac{1}{2}(x-a) \sqrt{2 a x-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x-a}{a}\right)+c \end{aligned}$

Indefinite Integrals Exercise 18.28 Question 16

Answer:-
$I=\frac{x}{2} \sqrt{3-x^{2}}+\frac{3}{2} \sin ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c$
Hint:-
Using the formula
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$\int \sqrt{3-x^{2}} d x$
Solution:-
$\begin{aligned} &\text { Let, } I=\int \sqrt{3-x^{2}} d x \\ &\therefore I=\int \sqrt{3-x^{2}} d x=\int \sqrt{(\sqrt{3})^{2}-x^{2}} d x \end{aligned}$
As I match with the form
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &I=\frac{x}{2} \sqrt{3-x^{2}}+\frac{3}{2} \sin ^{-1}\left(\frac{x}{\sqrt{3}}\right)+c \end{aligned}$

Indefinite Integrals Exercise 18.28 Question 17

Answer:-
$\frac{x-1}{2} \sqrt{x^{2}-2 x}-\frac{1}{2} \log \left|x-1+\sqrt{x^{2}-2 x}\right|+c$
Hint:-
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$\int \sqrt{x^{2}-2 x} d x$
Solution:-
Let, $I=\int \sqrt{x^{2}-2 x} d x$
We have
$\begin{aligned} &I=\int \sqrt{x^{2}-2 x} d x \\ &I=\int \sqrt{x^{2}-2 x+1^{2}-1^{2}} d x \\ &I=\int \sqrt{(x-1)^{2}-(1)^{2}} d x \end{aligned}$

As I match with the form
$\begin{aligned} &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &I=\frac{x-1}{2} \sqrt{(x-1)^{2}-1}-\frac{1}{2} \log \left|x-1+\sqrt{(x-1)^{2}-1}\right|+c \\\\ &I=\frac{x-1}{2} \sqrt{x^{2}-2 x}-\frac{1}{2} \log \left|x-1+\sqrt{x^{2}-2 x}\right|+c \end{aligned}$




Indefinite Integrals Exercise 18 point 28 Question 18

Answer:-
$I=\frac{1}{2}(x-1) \sqrt{2 x-x^{2}}+\frac{1}{2} \sin ^{-1}((x-1))+c$
Hint:-
Using the formula
$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \\\\ &\int \sqrt{x^{2}+a^{2}} d x=\frac{x}{2} \sqrt{x^{2}+a^{2}}+\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{aligned}$

Given:-

$\int \sqrt{2 x-x^{2}} d x$
Solution:-
$\begin{aligned} &\text { Let, } I=\int \sqrt{2 x-x^{2}} d x \\\\ &\therefore I=\int \sqrt{-\left(x^{2}-2(1) x\right)} d x \end{aligned}$
$\begin{aligned} &I=\int \sqrt{1^{2}-(x-a)^{2}} d x \\\\ &I=\int \sqrt{(1)^{2}-(x-1)^{2}} d x \end{aligned}$
As I match with the form$\begin{aligned} &\int \sqrt{a^{2}-x^{2}}=\frac{1}{2} x \sqrt{a^{2}-x^{2}}+\frac{a^{2}}{2} \sin ^{-1}\left(\frac{x}{a}\right)+c \\\\ &I=\frac{x-1}{2} \sqrt{(1)^{2}-(x-1)^{2}}+\frac{1^{2}}{2} \sin ^{-1}\left(\frac{x-1}{1}\right)+c \\\\ &I=\frac{1}{2}(x-1) \sqrt{2 x-x^{2}}+\frac{1}{2} \sin ^{-1}(x-1)+c \end{aligned}$

Rd Sharma class 12 chapter 18 exercise 18.28 answers that are clear and reviewed. It further helps students with getting a handle on formulae and tending to methods. Rd Sharma Class 12th exercise 18.28 has around 18 inquiries, including its subparts, and it joins themes like: -

  • Questions Related to antiderivative

  • Joining of mathematical capacities

  • Combination of outstanding capacities

  • Random issues

  • Mathematical translation of endless vital

  • Correlation among separation and combination

  • Methods of combination

Benefits of picking RD Sharma Mathematics Solutions from Career360 include:

  • Career360, you will need to get all of the solutions, so no convincing motivation to go somewhere else.

  • You can similarly benchmark your display premise with these solutions.

  • These solutions are available free of cost in career360.

  • Extraordinary yet arranged showing of the subjects.

  • A point by point clarification of thoughts and formulae

  • Assists understudies to rehearse with no issue

  • You can likewise benchmark your exhibition dependent on these solutions.

JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
Download E-book

RD Sharma Chapter-wise Solutions

Upcoming School Exams
Ongoing Dates
UP Board 12th Others

10 Aug'25 - 27 Sep'25 (Online)

Ongoing Dates
UP Board 10th Others

10 Aug'25 - 27 Sep'25 (Online)