RD Sharma class 12th exercise 18.13 a students best study guide as an NCERT solution. Practice makes everything perfect and this perfection is required when students will sit for their board exams. Students in class 12 have to finish a huge maths syllabus in a limited time. This might cause them to panic and stress out. However, with the help of RD Sharma class 12 chapter 18 exercise 18.13, they will be able to practice well at home and master the subject quickly. The RD Sharma solutions will soon become their holy grail and help them score high.
Indefinite Integrals Excercise:18.13
Indefinite Integrals Excercise 18.13 Question 2
Answer: $\frac{1}{8a^{2}}\frac{x^{8}}{\left ( a^{2}-x^{2} \right )^{4}}+c$Hint: Use substitution method to solve this integral.
Given: $\int \frac{x^{7}}{\left ( a^{2}-x^{2} \right )^{5}} dx$Solution: Let
$I=\int \frac{x^{7}}{\left ( a^{2}-x^{2} \right )^{5}} dx$Put
$x=a \sin\theta\Rightarrow dx=a\cos\theta d\theta$ …(i) (Differentiating w.r.t to θ)
$\begin{aligned} &\text { Then } \mathrm{I}=\int \frac{a^{7} \sin ^{7} \theta}{\left(a^{2}-a^{2} \sin ^{2} \theta\right)^{5}} \cdot a \cos \theta d \theta \\ &=\int \frac{a^{8} \sin ^{7} \theta \cos \theta}{\left\{a^{2}\left(1-\sin ^{2} \theta\right)\right\}^{5}} d \theta=\int \frac{a^{8} \sin ^{7} \theta \cos \theta}{\left.a^{2 \times 5}\left(\cos ^{2} \theta\right)\right\}^{5}} d \theta \\ &=\int \frac{a^{8} \sin ^{7} \theta \cos \theta}{a^{10} \cos ^{10} \theta} d \theta=\frac{1}{a^{2}} \int \frac{\sin ^{7} \theta}{\cos ^{9} \theta} d \theta \end{aligned}$$\begin{aligned} &=\frac{1}{a^{2}} \int \frac{\sin ^{7} \theta}{\cos ^{7} \theta} \cdot \frac{1}{\cos ^{2} \theta} d \theta \\ &=\frac{1}{a^{2}} \int \tan ^{7} \theta \cdot \sec ^{2} \theta d \theta \quad \quad\quad\quad\quad\quad\quad\left[\because \frac{\sin \theta}{\cos \theta}=\tan \theta \text { and } \frac{1}{\cos \theta}=\sec \theta\right] \end{aligned}$Again put
$\tan\theta=t\Rightarrow \sec2\theta d\theta=dt$ (on differentiating w.r.t to
$\theta$)
$\begin{aligned} &\text { Then } I=\frac{1}{a^{2}} \int t^{7} d t=\frac{1}{a^{2}} \cdot \frac{t^{7+1}}{7+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &I=\frac{1}{a^{2}} \cdot \frac{t^{8}}{8}+c=\frac{1}{8 a^{2}} \cdot t^{8}+c \\ &I=\frac{1}{8 a^{2}} \cdot t^{8}+c \quad\quad\quad\quad\quad[\because t=\tan \theta] \end{aligned}$From (i)
$x=a\sin\theta$$\Rightarrow \sin \theta=\frac{x}{a}$and we know that
$\sin^{2}\theta+\cos^{2}\theta=1$$\begin{aligned} &\Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta \\ &\Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\left(\frac{x}{a}\right)^{2}} \\ &\Rightarrow \cos \theta=\sqrt{1-\frac{x^{2}}{a^{2}}}=\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}=\frac{1}{a} \sqrt{a^{2}-x^{2}} \end{aligned}$$\begin{aligned} &\therefore \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{x}{a}}{\frac{1}{a} \sqrt{a^{2}-x^{2}}} \\ &\Rightarrow \tan \theta=\frac{x}{a} \cdot \frac{a}{\sqrt{a^{2}-x^{2}}}=\frac{x}{\sqrt{a^{2}-x^{2}}} \end{aligned}$$\therefore \tan\theta=\frac{x}{\sqrt{a^{2}-x^{2}}}$ …(iii)
Put the value of tanθ from (iii) in (ii) then
$\begin{aligned} &I=\frac{1}{8 a^{2}}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)^{8}+c \\ &=\frac{1}{8 a^{2}} \frac{x^{8}}{\left(a^{2}-x^{2}\right)^{\frac{8}{2}}}+c \\ &=\frac{1}{8 a^{2}} \frac{x^{8}}{\left(a^{2}-x^{2}\right)^{4}}+c \end{aligned}$Indefinite Integrals Excercise 18.13 Question 3
Answer: $\frac{x^{2}}{2}+c$Hint: Use substitution method to solve this integral
Given: $\int \cos \left \{ 2\cot^{-1} \sqrt{\frac{1+x}{1-x}}\right \}dx$Put
$x=\cos2\theta$ …(i)
$\begin{aligned} &\text { Then } I=\int \cos \left\{2 \cot ^{-1} \sqrt{\frac{1+\cos 2 \theta}{1-\cos 2 \theta}}\right\} d x \\ &=\int \cos \left\{2 \cot ^{-1} \sqrt{\frac{2 \cos ^{2} \theta}{2 \sin ^{2} \theta}}\right\} d x \quad\quad\quad\quad\quad\left\{\begin{array}{l} \because 1+\cos 2 A=2 \cos ^{2} A \\ 1-\cos 2 A=2 \sin ^{2} A \end{array}\right\} \\ &=\int \cos \left\{2 \cot ^{-1} \sqrt{\left(\frac{\cos \theta}{\sin \theta}\right)^{2}}\right\} d x \\ &=\int \cos \left\{2 \cot ^{-1} \sqrt{(\cot \theta)^{2}}\right\} d x \quad\quad\quad\quad\quad\quad\left[\because \frac{\cos A}{\sin A}=\cot A\right] \\ &=\int \cos \left\{2 \cot ^{-1} \cdot \cot \theta\right\} d x \end{aligned}$$\begin{aligned} &=\int \cos \{2 \theta\} d x \quad\left[\because \cot \left(\cot ^{-1} x\right)=x\right] \\ &=\int \cos \left\{\cos ^{-1}(x)\right\} d x \\ &=\int x^{1} d x \quad\left[\begin{array}{c} \because x=\cos 2 \theta \\ 2 \theta=\cos ^{-1}(x) \end{array}\right] \\ &=\frac{x^{1+1}}{1+1}+c \quad\left[\because \cos \left(\cos ^{-1} x\right)=x\right] \\ &=\frac{x^{2}}{2}+c \end{aligned}$Indefinite Integrals Excercise 18.13 Question 4
Answer: $\frac{-1}{3} \frac{\left(1+x^{2}\right)^{\frac{3}{2}}}{x^{3}}+c \$Hint: Use substitution method to solve this integral
Given:$\int \frac{\sqrt{1+x^{2}}}{x^{4}}dx$Solution: Let
$I=\int \frac{\sqrt{1+x^{2}}}{x^{4}}dx$Putting
$x=\tan\theta$ … (i)
$dx=\sec 2\theta d\theta$Then
$\begin{aligned} &I=\int \frac{\sqrt{1+\tan ^{2} \theta}}{\tan ^{4} \theta} \sec ^{2} \theta d \theta \\ &=\int \frac{\sqrt{\sec ^{2} \theta}}{\tan ^{4} \theta} \cdot \sec ^{2} \theta d \theta \quad\quad\quad\quad\quad\quad\quad\left[\begin{array}{l} \because \sec ^{2} \theta-\tan ^{2} \theta=1 \\ 1+\tan ^{2} \theta=\sec ^{2} \theta \end{array}\right] \\ &=\int \frac{\sec \theta \cdot \sec ^{2} \theta}{\tan ^{4} \theta} d \theta=\int \frac{\sec ^{3} \theta}{\tan ^{4} \theta} d \theta \\ &=\int \frac{1}{\cos ^{3} \theta \cdot \frac{\sin ^{4} \theta}{\cos ^{4} \theta}} d \theta=\int \frac{\cos ^{4} \theta}{\sin ^{4} \theta \cdot \cos ^{3} \theta} d \theta \\ &=\int \frac{\cos \theta}{\sin ^{4} \theta} d \theta \end{aligned}$Again putting
$\sin\theta=t$$\begin{aligned} &\Rightarrow \cos \theta d \theta=d t \text { then } \\ &I=\int \frac{1}{t^{4}} \cdot d t \\ &=\int t^{-4} d t=\frac{t^{-4+1}}{-4+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=\frac{t^{-3}}{-3}+c \\ &=\frac{-1}{3} t^{-3}+c \\ &=\frac{-1}{3 t^{3}}+c \quad \text { u. (ii) } \end{aligned}$Also from (i),
$x=\tan\theta$$\begin{aligned} &x^{2}=\tan ^{2} \theta\quad\quad\quad\quad \quad \text { [Squaring both sides] }\\ &\Rightarrow x^{2}=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \quad\quad\quad\quad\quad\quad\quad\quad\left[\tan \theta=\frac{\sin \theta}{\cos \theta}\right]\\ &\Rightarrow x^{2} \cos ^{2} \theta=\sin ^{2} \theta\\ &\Rightarrow x^{2}\left(1-\sin ^{2} \theta\right)=\sin ^{2} \theta \quad\quad\quad\quad\quad\left[\begin{array}{l} \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta \end{array}\right] \end{aligned}$$\begin{aligned} &\Rightarrow x^{2}-x^{2} \sin ^{2} \theta=\sin ^{2} \theta\\ &\Rightarrow x^{2}=\sin ^{2} \theta+x^{2} \sin ^{2} \theta=\sin ^{2} \theta\left(1+x^{2}\right)\\ &\Rightarrow \sin ^{2} \theta=\frac{x^{2}}{1+x^{2}}\\ &\Rightarrow \sin \theta=\sqrt{\frac{x^{2}}{1+x^{2}}}\\ &\Rightarrow \sin \theta=\frac{x}{\sqrt{1+x^{2}}} \end{aligned}$Putting the value of sinθ from (iii) in (ii), we get
$I=\frac{-1}{3}\frac{1}{\left ( \sin\theta \right )^{3}}+c$$\begin{aligned} &=\frac{-1}{3} \frac{1}{\left(\frac{x}{\sqrt{1+x^{2}}}\right)^{3}}+c \\ &=\frac{-1}{3} \frac{1}{\frac{x^{3}}{\left(\sqrt{1+x^{2}}\right)^{3}}}+c \\ &=-\frac{1}{3} \frac{\left(1+x^{2}\right)^{\frac{3}{2}}}{x^{3}}+c \end{aligned}$Indefinite Integrals Excercise 18.13 Question 1
Answer:$\frac{x}{\sqrt{a^{2}-x^{2}}}-\sin ^{-1}\left(\frac{x}{a}\right)+c$Hint: Use substitution method to solve this integral.
Given:$\int \frac{x^{2}}{\left(a^{2}-x^{2}\right)^{\frac{3}{2}}} d x$Solution:Let
$I=\int \frac{x^{2}}{\left(a^{2}-x^{2}\right)^{\frac{3}{2}}} d x$Put
$x = a \sin u$ …(i)
$dx = a \cos u du$ (on differentiating w.r.t to u)
Then
$\begin{aligned} &I=\int \frac{a^{2} \sin ^{2} u}{\left(a^{2}-a^{2} \sin ^{2} u\right)^{\frac{3}{2}}} \cdot a \cos u d u=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{2}\left(1-\sin ^{2} u\right)\right\}^{\frac{3}{2}}} d u \\ &=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{2}\right)^{\frac{3}{2}}\left(1-\sin ^{2} u\right)^{\frac{3}{2}}} d u=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{3}\right)\left(\cos ^{2} u\right)^{\frac{3}{2}}} d u \\ &=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{3}\right)\left(\cos ^{2} u\right)^{\frac{3}{2}}} d u \\ &=\int \frac{\sin ^{2} u \cdot \cos u}{(\cos u)^{2 \times \frac{3}{2}}} d u \end{aligned}$$\begin{aligned} &=\int \frac{\sin ^{2} u \cdot \cos u}{(\cos u)^{3}} d u \\ &=\int \frac{\sin ^{2} u}{(\cos u)^{2}} d u=\int\left(\frac{\sin u}{\cos u}\right)^{2} d u \\ &=\int(\tan u)^{2} d u=\int \tan ^{2} u d u \quad\left[\because \frac{\sin \theta}{\cos \theta}=\tan \theta\right] \end{aligned}$$\begin{aligned} &=\int\left(\sec ^{2} u-1\right) d u=\int \sec ^{2} u d u-\int 1 d u \\ &{\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1\right]} \\ &I=\tan u-u+c \quad \text { ... (ii) } \quad\quad\quad\quad\left[\because \int 1 d x=x+c\right] \end{aligned}$From (i)
$x = a \sin u$$\Rightarrow \operatorname{\sin} \mathrm{u}=\frac{x}{a} \Rightarrow u=\sin ^{-1}\left(\frac{x}{a}\right)$ …(iii)
And we know that
$1=\sin ^{2} u+\cos ^{2} u$ then
$\begin{aligned} &\Rightarrow \cos ^{2} u=1-\sin ^{2} u \\ &\Rightarrow \cos u=\sqrt{1-\sin ^{2} u}=\sqrt{1-\left(\frac{x}{a}\right)^{2}} \end{aligned}$Now
$\begin{aligned} &\operatorname{tan} u=\frac{\sin u}{\cos u}=\frac{\frac{x}{a}}{\sqrt{1-\frac{x^{2}}{a^{2}}}}=\frac{\frac{x}{a}}{\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}}=\frac{\frac{x}{a}}{\frac{1}{a} \sqrt{a^{2}-x^{2}}} \\ &\tan u=\frac{x}{a} \cdot \frac{a}{\sqrt{a^{2}-x^{2}}}=\frac{x}{\sqrt{a^{2}-x^{2}}} \\ &\operatorname{tan} u=\frac{x}{\sqrt{a^{2}-x^{2}}} \end{aligned}$ …(iv)
Now put the value of tan u and u from equation (iv) and (iii) in equation (ii), we get
$\mathrm{I}=\frac{x}{\sqrt{a^{2}-x^{2}}}-\sin ^{-1}\left(\frac{x}{a}\right)+c$Indefinite Integrals Excercise 18.13 Question 5
Answer: $\frac{1}{54}\left[\tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{3(x+1)}{x^{2}+2+10}\right]+c$Hint: Use substitution method to solve this integral
Given:$\int \frac{1}{\left(x^{2}+2 x+10\right)^{2}} d x \\$Solution: $\begin{aligned} &\text { Let } I=\int \frac{1}{\left(x^{2}+2 x+10\right)^{2}} d x \\ &=\int \frac{1}{\left(x^{2}+2 x+1+9\right)^{2}} d x \\ &=\int \frac{1}{\left\{\left(x^{2}+2 x \cdot 1+1\right)+9\right\}^{2}} d x \\ &=\int \frac{1}{\left\{(x+1)^{2}+9\right\}^{2}} d x \end{aligned}$Putting
$x+1=3\tan\theta$ …(i)
$d x=3 \sec ^{2} \theta d \theta$Then
$\begin{aligned} &I=\int \frac{1}{\left\{(3 \tan \theta)^{2}+9\right\}^{2}} 3 \sec ^{2} \theta d \theta \\ &=\int \frac{3 \sec ^{2} \theta}{\left\{9\left(1+\tan ^{2} \theta\right)\right\}^{2}} d \theta=\int \frac{3 \sec ^{2} \theta}{9^{2}\left(\sec ^{2} \theta\right)^{2}} d \theta \end{aligned}$$\begin{aligned} &=\int \frac{3 \sec ^{2} \theta}{81 \sec ^{4} \theta} d \theta \quad\left[\begin{array}{l} \because \sec ^{2} \theta-\tan ^{2} \theta=1 \\ \Rightarrow 1+\tan ^{2} \theta=\sec ^{2} \theta \end{array}\right] \\ &=\int \frac{1}{27} \frac{1}{\sec ^{2} \theta} d \theta=\int \frac{1}{27} \cos ^{2} \theta d \theta \quad\left[\because \cos \theta=\frac{1}{\sec \theta}\right] \\ &=\frac{1}{27} \int\left\{\frac{1+\cos 2 \theta}{2}\right\} d \theta \quad\left[\begin{array}{l} \because 2 \cos ^{2} A=1+\cos 2 A \\ \cos ^{2} A=\frac{1+\cos 2 A}{2} \end{array}\right] \end{aligned}$$\begin{aligned} &=\frac{1}{27}\left\{\int \frac{1}{2} d \theta+\int \frac{1}{2} \cos 2 \theta d \theta\right\} \\ &=\frac{1}{27} \times \frac{1}{2} \int \theta^{0} d \theta+\frac{1}{27} \times \frac{1}{2} \int \cos 2 \theta d \theta \\ &=\frac{1}{54} \cdot \frac{\theta^{0+1}}{0+1}+\frac{1}{54} \frac{\sin 2 \theta}{2}+c\quad\quad\quad\quad[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \text { and } \int \cos a x d x=\frac{\sin a x}{a}+c ]\\ \end{aligned}$$=\frac{1}{54} \theta+\frac{1}{108} \sin 2 \theta+c$ …(ii)
Also from (i)
$\begin{aligned} &x+1=3 \tan \theta \\ &\tan \theta=\frac{x+1}{3} \Rightarrow \theta=\tan ^{-1}\left(\frac{x+1}{3}\right) \end{aligned}$ … (iii)
And
$\tan\theta=\frac{x+1}{3}$$\begin{array}{ll} \Rightarrow \tan ^{2} \theta=\left(\frac{x+1}{3}\right)^{2} & \text { [Squaring both sides] } \\\\ \Rightarrow \frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{(x+1)^{2}}{9} \quad & {\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]} \\ \\\Rightarrow \sin ^{2} \theta=\frac{(x+1)^{2}}{9} \cdot \cos ^{2} \theta & {\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]} \end{array}$$\begin{aligned} &\Rightarrow \sin ^{2} \theta=\frac{\left(x^{2}+2 x+1\right) \cos ^{2} \theta}{9} \\ &\Rightarrow \sin ^{2} \theta=\frac{\left(x^{2}+2 x+1\right)}{9}\left(1-\sin ^{2} \theta\right) \quad\left[\begin{array}{l} \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta \end{array}\right] \\ &\Rightarrow \sin ^{2} \theta=\frac{\left(x^{2}+2 x+1\right)}{9}-\left(\frac{\left(x^{2}+2 x+1\right)}{9}\right) \sin ^{2} \theta \end{aligned}$$\begin{aligned} &\Rightarrow \frac{x^{2}+2 x+1}{9}=\sin ^{2} \theta+\left(\frac{x^{2}+2 x+1}{9}\right) \sin ^{2} \theta \\ &\Rightarrow \frac{x^{2}+2 x+1}{9}=\sin ^{2} \theta\left\{1+\left(\frac{x^{2}+2 x+1}{9}\right)\right\} \\ &\Rightarrow \frac{x^{2}+2 x+1}{9}=\left(\frac{9+x^{2}+2 x+1}{9}\right) \sin ^{2} \theta=\left(\frac{x^{2}+2 x+10}{9}\right) \sin ^{2} \theta \end{aligned}$$\begin{aligned} &\Rightarrow \sin ^{2} \theta=\frac{x^{2}+2 x+1}{9} \times \frac{9}{x^{2}+2 x+10}=\frac{(x+1)^{2}}{\left(x^{2}+2 x+10\right)} \quad\quad\quad\quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\ &\Rightarrow \sin \theta=\sqrt{\frac{(x+1)^{2}}{x^{2}+2 x+10}}=\frac{(x+1)}{\sqrt{x^{2}+2 x+10}} \quad \ldots \text { (iv) } \\ &\quad \text { Since } \sin ^{2} \theta+\cos ^{2} \theta=1 \end{aligned}$So we can write
$\begin{aligned} &\Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta \\ &\Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta} \\ &\begin{aligned} \Rightarrow \cos \theta &=\sqrt{1-\left[\frac{(x+1)}{\sqrt{x^{2}+2 x+10}}\right]^{2}} \\ &=\sqrt{\frac{x^{2}+2 x+10-\left(x^{2}+2 x+1\right)}{x^{2}+2 x+10}} \end{aligned} \quad\quad\quad\quad\quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \end{aligned}$$\begin{aligned} &\Rightarrow \cos \theta=\sqrt{\frac{x^{2}+2 x+10-x^{2}-2 x-1}{x^{2}+2 x+10}}\\ &\Rightarrow \cos \theta=\sqrt{\frac{9}{x^{2}+2 x+10}}=\frac{3}{\sqrt{x^{2}+2 x+10}}\quad\quad\quad\quad....(v) \end{aligned}$Also, we know
$\sin 2 \theta=2 \sin \theta \cos \theta$$\begin{aligned} &\Rightarrow \sin 2 \theta=2 \frac{(x+1)}{\sqrt{x^{2}+2 x+10}} \cdot \frac{3}{\sqrt{x^{2}+2 x+10}} \quad\quad \quad \quad [\text { from (iv) and (v)] }\\ &\Rightarrow \sin 2 \theta=\frac{2.3(x+1)}{x^{2}+2 x+10}=\frac{6(x+1)}{x^{2}+2 x+10}\quad \quad \quad \quad \cdot \cdot \cdot \cdot (vi) \end{aligned}$Now put the value of θ and sin2θ from equation (iii) and (vi) in (ii) we get
$\begin{aligned} &I=\frac{1}{54} \theta+\frac{1}{108} \sin 2 \theta+c \\ &=\frac{1}{54} \tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{1}{108} \cdot \frac{6(x+1)}{\left(x^{2}+2 x+10\right)}+c \\ &=\frac{1}{54} \tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{1}{54} \frac{3(x+1)}{\left(x^{2}+2 x+10\right)}+c \\ &=\frac{1}{54}\left[\tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{3(x+1)}{\left(x^{2}+2 x+10\right)}\right]+c \end{aligned}$The RD Sharma class 12 solutions Indefinite Integrals 18.13 is one of the most important NCERT solutions that students need to follow to clear their doubts and understand the chapter better. This solution contains the 18th chapter of the NCERT maths book. The concepts taught in this part deals with concepts of Integrals, Graphs of indefinite integrals, Indefinite integrals of common functions, completing squaring method etc. Exercise 18.13 has a total of 5 questions that cover concepts from the entire chapter.
The RD Sharma class 12 solutions chapter 18 ex 18.13 comes with great benefits if students opt to use this for their exam preparations. Here is a complete list of pros of using RD Sharma solutions in class 12:-
RD Sharma class 12th exercise 18.13 contains answers to all chapters and questions in the NCERT textbooks. The syllabus of RD Sharma solutions is set according to the latest updates on the NCERT books.
Several maths professionals were responsible for creating the answers in the RD Sharma class 12 chapter 18 exercise 18.13 solution. Hence, they contain some unique methods of calculation, which is why hundreds of students trust RD Sharma solutions.
Students can practice math questions at home and compare their answers with RD Sharma class 12 solutions Indefinite Integrals ex 18.13 to check their understanding of the chapter.
Students can also use class 12 RD Sharma chapter 18 exercise 18.13 solution to solve their homework as teachers often give questions from this book. Students might even find common questions in board exams.
The RD Sharma class 12th exercise 18.13 pdf is available online for free of cost. It can be downloaded from the Career360 website.