RD Sharma Class 12 Exercise 18.13 Indefinite Integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.13 Indefinite Integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 12:11 PM IST

RD Sharma class 12th exercise 18.13 a students best study guide as an NCERT solution. Practice makes everything perfect and this perfection is required when students will sit for their board exams. Students in class 12 have to finish a huge maths syllabus in a limited time. This might cause them to panic and stress out. However, with the help of RD Sharma class 12 chapter 18 exercise 18.13, they will be able to practice well at home and master the subject quickly. The RD Sharma solutions will soon become their holy grail and help them score high.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.13

Indefinite Integrals Excercise 18.13 Question 2

Answer: \frac{1}{8a^{2}}\frac{x^{8}}{\left ( a^{2}-x^{2} \right )^{4}}+c
Hint: Use substitution method to solve this integral.
Given: \int \frac{x^{7}}{\left ( a^{2}-x^{2} \right )^{5}} dx
Solution:
Let I=\int \frac{x^{7}}{\left ( a^{2}-x^{2} \right )^{5}} dx
Put x=a \sin\theta\Rightarrow dx=a\cos\theta d\theta …(i) (Differentiating w.r.t to θ)
\begin{aligned} &\text { Then } \mathrm{I}=\int \frac{a^{7} \sin ^{7} \theta}{\left(a^{2}-a^{2} \sin ^{2} \theta\right)^{5}} \cdot a \cos \theta d \theta \\ &=\int \frac{a^{8} \sin ^{7} \theta \cos \theta}{\left\{a^{2}\left(1-\sin ^{2} \theta\right)\right\}^{5}} d \theta=\int \frac{a^{8} \sin ^{7} \theta \cos \theta}{\left.a^{2 \times 5}\left(\cos ^{2} \theta\right)\right\}^{5}} d \theta \\ &=\int \frac{a^{8} \sin ^{7} \theta \cos \theta}{a^{10} \cos ^{10} \theta} d \theta=\frac{1}{a^{2}} \int \frac{\sin ^{7} \theta}{\cos ^{9} \theta} d \theta \end{aligned}
\begin{aligned} &=\frac{1}{a^{2}} \int \frac{\sin ^{7} \theta}{\cos ^{7} \theta} \cdot \frac{1}{\cos ^{2} \theta} d \theta \\ &=\frac{1}{a^{2}} \int \tan ^{7} \theta \cdot \sec ^{2} \theta d \theta \quad \quad\quad\quad\quad\quad\quad\left[\because \frac{\sin \theta}{\cos \theta}=\tan \theta \text { and } \frac{1}{\cos \theta}=\sec \theta\right] \end{aligned}
Again put\tan\theta=t\Rightarrow \sec2\theta d\theta=dt (on differentiating w.r.t to \theta)
\begin{aligned} &\text { Then } I=\frac{1}{a^{2}} \int t^{7} d t=\frac{1}{a^{2}} \cdot \frac{t^{7+1}}{7+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &I=\frac{1}{a^{2}} \cdot \frac{t^{8}}{8}+c=\frac{1}{8 a^{2}} \cdot t^{8}+c \\ &I=\frac{1}{8 a^{2}} \cdot t^{8}+c \quad\quad\quad\quad\quad[\because t=\tan \theta] \end{aligned}
From (i)x=a\sin\theta
\Rightarrow \sin \theta=\frac{x}{a}
and we know that \sin^{2}\theta+\cos^{2}\theta=1
\begin{aligned} &\Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta \\ &\Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta}=\sqrt{1-\left(\frac{x}{a}\right)^{2}} \\ &\Rightarrow \cos \theta=\sqrt{1-\frac{x^{2}}{a^{2}}}=\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}=\frac{1}{a} \sqrt{a^{2}-x^{2}} \end{aligned}
\begin{aligned} &\therefore \tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{x}{a}}{\frac{1}{a} \sqrt{a^{2}-x^{2}}} \\ &\Rightarrow \tan \theta=\frac{x}{a} \cdot \frac{a}{\sqrt{a^{2}-x^{2}}}=\frac{x}{\sqrt{a^{2}-x^{2}}} \end{aligned}

\therefore \tan\theta=\frac{x}{\sqrt{a^{2}-x^{2}}} …(iii)

Put the value of tanθ from (iii) in (ii) then
\begin{aligned} &I=\frac{1}{8 a^{2}}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)^{8}+c \\ &=\frac{1}{8 a^{2}} \frac{x^{8}}{\left(a^{2}-x^{2}\right)^{\frac{8}{2}}}+c \\ &=\frac{1}{8 a^{2}} \frac{x^{8}}{\left(a^{2}-x^{2}\right)^{4}}+c \end{aligned}

Indefinite Integrals Excercise 18.13 Question 3

Answer: \frac{x^{2}}{2}+c
Hint: Use substitution method to solve this integral
Given: \int \cos \left \{ 2\cot^{-1} \sqrt{\frac{1+x}{1-x}}\right \}dx
Putx=\cos2\theta …(i)
\begin{aligned} &\text { Then } I=\int \cos \left\{2 \cot ^{-1} \sqrt{\frac{1+\cos 2 \theta}{1-\cos 2 \theta}}\right\} d x \\ &=\int \cos \left\{2 \cot ^{-1} \sqrt{\frac{2 \cos ^{2} \theta}{2 \sin ^{2} \theta}}\right\} d x \quad\quad\quad\quad\quad\left\{\begin{array}{l} \because 1+\cos 2 A=2 \cos ^{2} A \\ 1-\cos 2 A=2 \sin ^{2} A \end{array}\right\} \\ &=\int \cos \left\{2 \cot ^{-1} \sqrt{\left(\frac{\cos \theta}{\sin \theta}\right)^{2}}\right\} d x \\ &=\int \cos \left\{2 \cot ^{-1} \sqrt{(\cot \theta)^{2}}\right\} d x \quad\quad\quad\quad\quad\quad\left[\because \frac{\cos A}{\sin A}=\cot A\right] \\ &=\int \cos \left\{2 \cot ^{-1} \cdot \cot \theta\right\} d x \end{aligned}
\begin{aligned} &=\int \cos \{2 \theta\} d x \quad\left[\because \cot \left(\cot ^{-1} x\right)=x\right] \\ &=\int \cos \left\{\cos ^{-1}(x)\right\} d x \\ &=\int x^{1} d x \quad\left[\begin{array}{c} \because x=\cos 2 \theta \\ 2 \theta=\cos ^{-1}(x) \end{array}\right] \\ &=\frac{x^{1+1}}{1+1}+c \quad\left[\because \cos \left(\cos ^{-1} x\right)=x\right] \\ &=\frac{x^{2}}{2}+c \end{aligned}

Indefinite Integrals Excercise 18.13 Question 4

Answer: \frac{-1}{3} \frac{\left(1+x^{2}\right)^{\frac{3}{2}}}{x^{3}}+c \
Hint: Use substitution method to solve this integral
Given:\int \frac{\sqrt{1+x^{2}}}{x^{4}}dx
Solution:
Let I=\int \frac{\sqrt{1+x^{2}}}{x^{4}}dx
Putting x=\tan\theta … (i)
dx=\sec 2\theta d\theta
Then
\begin{aligned} &I=\int \frac{\sqrt{1+\tan ^{2} \theta}}{\tan ^{4} \theta} \sec ^{2} \theta d \theta \\ &=\int \frac{\sqrt{\sec ^{2} \theta}}{\tan ^{4} \theta} \cdot \sec ^{2} \theta d \theta \quad\quad\quad\quad\quad\quad\quad\left[\begin{array}{l} \because \sec ^{2} \theta-\tan ^{2} \theta=1 \\ 1+\tan ^{2} \theta=\sec ^{2} \theta \end{array}\right] \\ &=\int \frac{\sec \theta \cdot \sec ^{2} \theta}{\tan ^{4} \theta} d \theta=\int \frac{\sec ^{3} \theta}{\tan ^{4} \theta} d \theta \\ &=\int \frac{1}{\cos ^{3} \theta \cdot \frac{\sin ^{4} \theta}{\cos ^{4} \theta}} d \theta=\int \frac{\cos ^{4} \theta}{\sin ^{4} \theta \cdot \cos ^{3} \theta} d \theta \\ &=\int \frac{\cos \theta}{\sin ^{4} \theta} d \theta \end{aligned}
Again putting \sin\theta=t
\begin{aligned} &\Rightarrow \cos \theta d \theta=d t \text { then } \\ &I=\int \frac{1}{t^{4}} \cdot d t \\ &=\int t^{-4} d t=\frac{t^{-4+1}}{-4+1}+c \quad\left[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c\right] \\ &=\frac{t^{-3}}{-3}+c \\ &=\frac{-1}{3} t^{-3}+c \\ &=\frac{-1}{3 t^{3}}+c \quad \text { u. (ii) } \end{aligned}
Also from (i), x=\tan\theta
\begin{aligned} &x^{2}=\tan ^{2} \theta\quad\quad\quad\quad \quad \text { [Squaring both sides] }\\ &\Rightarrow x^{2}=\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \quad\quad\quad\quad\quad\quad\quad\quad\left[\tan \theta=\frac{\sin \theta}{\cos \theta}\right]\\ &\Rightarrow x^{2} \cos ^{2} \theta=\sin ^{2} \theta\\ &\Rightarrow x^{2}\left(1-\sin ^{2} \theta\right)=\sin ^{2} \theta \quad\quad\quad\quad\quad\left[\begin{array}{l} \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \Rightarrow \sin ^{2} \theta=1-\cos ^{2} \theta \end{array}\right] \end{aligned}
\begin{aligned} &\Rightarrow x^{2}-x^{2} \sin ^{2} \theta=\sin ^{2} \theta\\ &\Rightarrow x^{2}=\sin ^{2} \theta+x^{2} \sin ^{2} \theta=\sin ^{2} \theta\left(1+x^{2}\right)\\ &\Rightarrow \sin ^{2} \theta=\frac{x^{2}}{1+x^{2}}\\ &\Rightarrow \sin \theta=\sqrt{\frac{x^{2}}{1+x^{2}}}\\ &\Rightarrow \sin \theta=\frac{x}{\sqrt{1+x^{2}}} \end{aligned}
Putting the value of sinθ from (iii) in (ii), we get
I=\frac{-1}{3}\frac{1}{\left ( \sin\theta \right )^{3}}+c
\begin{aligned} &=\frac{-1}{3} \frac{1}{\left(\frac{x}{\sqrt{1+x^{2}}}\right)^{3}}+c \\ &=\frac{-1}{3} \frac{1}{\frac{x^{3}}{\left(\sqrt{1+x^{2}}\right)^{3}}}+c \\ &=-\frac{1}{3} \frac{\left(1+x^{2}\right)^{\frac{3}{2}}}{x^{3}}+c \end{aligned}

Indefinite Integrals Excercise 18.13 Question 1

Answer:\frac{x}{\sqrt{a^{2}-x^{2}}}-\sin ^{-1}\left(\frac{x}{a}\right)+c
Hint: Use substitution method to solve this integral.
Given:\int \frac{x^{2}}{\left(a^{2}-x^{2}\right)^{\frac{3}{2}}} d x
Solution:
Let I=\int \frac{x^{2}}{\left(a^{2}-x^{2}\right)^{\frac{3}{2}}} d x
Putx = a \sin u …(i)
dx = a \cos u du (on differentiating w.r.t to u)
Then
\begin{aligned} &I=\int \frac{a^{2} \sin ^{2} u}{\left(a^{2}-a^{2} \sin ^{2} u\right)^{\frac{3}{2}}} \cdot a \cos u d u=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{2}\left(1-\sin ^{2} u\right)\right\}^{\frac{3}{2}}} d u \\ &=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{2}\right)^{\frac{3}{2}}\left(1-\sin ^{2} u\right)^{\frac{3}{2}}} d u=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{3}\right)\left(\cos ^{2} u\right)^{\frac{3}{2}}} d u \\ &=\int \frac{a^{3} \sin ^{2} u \cdot \cos u}{\left(a^{3}\right)\left(\cos ^{2} u\right)^{\frac{3}{2}}} d u \\ &=\int \frac{\sin ^{2} u \cdot \cos u}{(\cos u)^{2 \times \frac{3}{2}}} d u \end{aligned}
\begin{aligned} &=\int \frac{\sin ^{2} u \cdot \cos u}{(\cos u)^{3}} d u \\ &=\int \frac{\sin ^{2} u}{(\cos u)^{2}} d u=\int\left(\frac{\sin u}{\cos u}\right)^{2} d u \\ &=\int(\tan u)^{2} d u=\int \tan ^{2} u d u \quad\left[\because \frac{\sin \theta}{\cos \theta}=\tan \theta\right] \end{aligned}
\begin{aligned} &=\int\left(\sec ^{2} u-1\right) d u=\int \sec ^{2} u d u-\int 1 d u \\ &{\left[\because 1+\tan ^{2} \theta=\sec ^{2} \theta \Rightarrow \tan ^{2} \theta=\sec ^{2} \theta-1\right]} \\ &I=\tan u-u+c \quad \text { ... (ii) } \quad\quad\quad\quad\left[\because \int 1 d x=x+c\right] \end{aligned}
From (i) x = a \sin u
\Rightarrow \operatorname{\sin} \mathrm{u}=\frac{x}{a} \Rightarrow u=\sin ^{-1}\left(\frac{x}{a}\right) …(iii)
And we know that 1=\sin ^{2} u+\cos ^{2} u then
\begin{aligned} &\Rightarrow \cos ^{2} u=1-\sin ^{2} u \\ &\Rightarrow \cos u=\sqrt{1-\sin ^{2} u}=\sqrt{1-\left(\frac{x}{a}\right)^{2}} \end{aligned}

Now

\begin{aligned} &\operatorname{tan} u=\frac{\sin u}{\cos u}=\frac{\frac{x}{a}}{\sqrt{1-\frac{x^{2}}{a^{2}}}}=\frac{\frac{x}{a}}{\sqrt{\frac{a^{2}-x^{2}}{a^{2}}}}=\frac{\frac{x}{a}}{\frac{1}{a} \sqrt{a^{2}-x^{2}}} \\ &\tan u=\frac{x}{a} \cdot \frac{a}{\sqrt{a^{2}-x^{2}}}=\frac{x}{\sqrt{a^{2}-x^{2}}} \\ &\operatorname{tan} u=\frac{x}{\sqrt{a^{2}-x^{2}}} \end{aligned} …(iv)
Now put the value of tan u and u from equation (iv) and (iii) in equation (ii), we get
\mathrm{I}=\frac{x}{\sqrt{a^{2}-x^{2}}}-\sin ^{-1}\left(\frac{x}{a}\right)+c

Indefinite Integrals Excercise 18.13 Question 5

Answer: \frac{1}{54}\left[\tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{3(x+1)}{x^{2}+2+10}\right]+c
Hint: Use substitution method to solve this integral
Given:\int \frac{1}{\left(x^{2}+2 x+10\right)^{2}} d x \\
Solution:
\begin{aligned} &\text { Let } I=\int \frac{1}{\left(x^{2}+2 x+10\right)^{2}} d x \\ &=\int \frac{1}{\left(x^{2}+2 x+1+9\right)^{2}} d x \\ &=\int \frac{1}{\left\{\left(x^{2}+2 x \cdot 1+1\right)+9\right\}^{2}} d x \\ &=\int \frac{1}{\left\{(x+1)^{2}+9\right\}^{2}} d x \end{aligned}

Putting x+1=3\tan\theta …(i)

d x=3 \sec ^{2} \theta d \theta
Then
\begin{aligned} &I=\int \frac{1}{\left\{(3 \tan \theta)^{2}+9\right\}^{2}} 3 \sec ^{2} \theta d \theta \\ &=\int \frac{3 \sec ^{2} \theta}{\left\{9\left(1+\tan ^{2} \theta\right)\right\}^{2}} d \theta=\int \frac{3 \sec ^{2} \theta}{9^{2}\left(\sec ^{2} \theta\right)^{2}} d \theta \end{aligned}

\begin{aligned} &=\int \frac{3 \sec ^{2} \theta}{81 \sec ^{4} \theta} d \theta \quad\left[\begin{array}{l} \because \sec ^{2} \theta-\tan ^{2} \theta=1 \\ \Rightarrow 1+\tan ^{2} \theta=\sec ^{2} \theta \end{array}\right] \\ &=\int \frac{1}{27} \frac{1}{\sec ^{2} \theta} d \theta=\int \frac{1}{27} \cos ^{2} \theta d \theta \quad\left[\because \cos \theta=\frac{1}{\sec \theta}\right] \\ &=\frac{1}{27} \int\left\{\frac{1+\cos 2 \theta}{2}\right\} d \theta \quad\left[\begin{array}{l} \because 2 \cos ^{2} A=1+\cos 2 A \\ \cos ^{2} A=\frac{1+\cos 2 A}{2} \end{array}\right] \end{aligned}

\begin{aligned} &=\frac{1}{27}\left\{\int \frac{1}{2} d \theta+\int \frac{1}{2} \cos 2 \theta d \theta\right\} \\ &=\frac{1}{27} \times \frac{1}{2} \int \theta^{0} d \theta+\frac{1}{27} \times \frac{1}{2} \int \cos 2 \theta d \theta \\ &=\frac{1}{54} \cdot \frac{\theta^{0+1}}{0+1}+\frac{1}{54} \frac{\sin 2 \theta}{2}+c\quad\quad\quad\quad[\because \int x^{n} d x=\frac{x^{n+1}}{n+1}+c \text { and } \int \cos a x d x=\frac{\sin a x}{a}+c ]\\ \end{aligned}
=\frac{1}{54} \theta+\frac{1}{108} \sin 2 \theta+c …(ii)
Also from (i)
\begin{aligned} &x+1=3 \tan \theta \\ &\tan \theta=\frac{x+1}{3} \Rightarrow \theta=\tan ^{-1}\left(\frac{x+1}{3}\right) \end{aligned} … (iii)
And\tan\theta=\frac{x+1}{3}
\begin{array}{ll} \Rightarrow \tan ^{2} \theta=\left(\frac{x+1}{3}\right)^{2} & \text { [Squaring both sides] } \\\\ \Rightarrow \frac{\sin ^{2} \theta}{\cos ^{2} \theta}=\frac{(x+1)^{2}}{9} \quad & {\left[\because \tan \theta=\frac{\sin \theta}{\cos \theta}\right]} \\ \\\Rightarrow \sin ^{2} \theta=\frac{(x+1)^{2}}{9} \cdot \cos ^{2} \theta & {\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]} \end{array}
\begin{aligned} &\Rightarrow \sin ^{2} \theta=\frac{\left(x^{2}+2 x+1\right) \cos ^{2} \theta}{9} \\ &\Rightarrow \sin ^{2} \theta=\frac{\left(x^{2}+2 x+1\right)}{9}\left(1-\sin ^{2} \theta\right) \quad\left[\begin{array}{l} \sin ^{2} \theta+\cos ^{2} \theta=1 \\ \Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta \end{array}\right] \\ &\Rightarrow \sin ^{2} \theta=\frac{\left(x^{2}+2 x+1\right)}{9}-\left(\frac{\left(x^{2}+2 x+1\right)}{9}\right) \sin ^{2} \theta \end{aligned}
\begin{aligned} &\Rightarrow \frac{x^{2}+2 x+1}{9}=\sin ^{2} \theta+\left(\frac{x^{2}+2 x+1}{9}\right) \sin ^{2} \theta \\ &\Rightarrow \frac{x^{2}+2 x+1}{9}=\sin ^{2} \theta\left\{1+\left(\frac{x^{2}+2 x+1}{9}\right)\right\} \\ &\Rightarrow \frac{x^{2}+2 x+1}{9}=\left(\frac{9+x^{2}+2 x+1}{9}\right) \sin ^{2} \theta=\left(\frac{x^{2}+2 x+10}{9}\right) \sin ^{2} \theta \end{aligned}
\begin{aligned} &\Rightarrow \sin ^{2} \theta=\frac{x^{2}+2 x+1}{9} \times \frac{9}{x^{2}+2 x+10}=\frac{(x+1)^{2}}{\left(x^{2}+2 x+10\right)} \quad\quad\quad\quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\ &\Rightarrow \sin \theta=\sqrt{\frac{(x+1)^{2}}{x^{2}+2 x+10}}=\frac{(x+1)}{\sqrt{x^{2}+2 x+10}} \quad \ldots \text { (iv) } \\ &\quad \text { Since } \sin ^{2} \theta+\cos ^{2} \theta=1 \end{aligned}

So we can write

\begin{aligned} &\Rightarrow \cos ^{2} \theta=1-\sin ^{2} \theta \\ &\Rightarrow \cos \theta=\sqrt{1-\sin ^{2} \theta} \\ &\begin{aligned} \Rightarrow \cos \theta &=\sqrt{1-\left[\frac{(x+1)}{\sqrt{x^{2}+2 x+10}}\right]^{2}} \\ &=\sqrt{\frac{x^{2}+2 x+10-\left(x^{2}+2 x+1\right)}{x^{2}+2 x+10}} \end{aligned} \quad\quad\quad\quad\quad\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \end{aligned}
\begin{aligned} &\Rightarrow \cos \theta=\sqrt{\frac{x^{2}+2 x+10-x^{2}-2 x-1}{x^{2}+2 x+10}}\\ &\Rightarrow \cos \theta=\sqrt{\frac{9}{x^{2}+2 x+10}}=\frac{3}{\sqrt{x^{2}+2 x+10}}\quad\quad\quad\quad....(v) \end{aligned}

Also, we know \sin 2 \theta=2 \sin \theta \cos \theta

\begin{aligned} &\Rightarrow \sin 2 \theta=2 \frac{(x+1)}{\sqrt{x^{2}+2 x+10}} \cdot \frac{3}{\sqrt{x^{2}+2 x+10}} \quad\quad \quad \quad [\text { from (iv) and (v)] }\\ &\Rightarrow \sin 2 \theta=\frac{2.3(x+1)}{x^{2}+2 x+10}=\frac{6(x+1)}{x^{2}+2 x+10}\quad \quad \quad \quad \cdot \cdot \cdot \cdot (vi) \end{aligned}
Now put the value of θ and sin2θ from equation (iii) and (vi) in (ii) we get
\begin{aligned} &I=\frac{1}{54} \theta+\frac{1}{108} \sin 2 \theta+c \\ &=\frac{1}{54} \tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{1}{108} \cdot \frac{6(x+1)}{\left(x^{2}+2 x+10\right)}+c \\ &=\frac{1}{54} \tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{1}{54} \frac{3(x+1)}{\left(x^{2}+2 x+10\right)}+c \\ &=\frac{1}{54}\left[\tan ^{-1}\left(\frac{x+1}{3}\right)+\frac{3(x+1)}{\left(x^{2}+2 x+10\right)}\right]+c \end{aligned}

The RD Sharma class 12 solutions Indefinite Integrals 18.13 is one of the most important NCERT solutions that students need to follow to clear their doubts and understand the chapter better. This solution contains the 18th chapter of the NCERT maths book. The concepts taught in this part deals with concepts of Integrals, Graphs of indefinite integrals, Indefinite integrals of common functions, completing squaring method etc. Exercise 18.13 has a total of 5 questions that cover concepts from the entire chapter.

The RD Sharma class 12 solutions chapter 18 ex 18.13 comes with great benefits if students opt to use this for their exam preparations. Here is a complete list of pros of using RD Sharma solutions in class 12:-

  • RD Sharma class 12th exercise 18.13 contains answers to all chapters and questions in the NCERT textbooks. The syllabus of RD Sharma solutions is set according to the latest updates on the NCERT books.

  • Several maths professionals were responsible for creating the answers in the RD Sharma class 12 chapter 18 exercise 18.13 solution. Hence, they contain some unique methods of calculation, which is why hundreds of students trust RD Sharma solutions.

  • Students can practice math questions at home and compare their answers with RD Sharma class 12 solutions Indefinite Integrals ex 18.13 to check their understanding of the chapter.

  • Students can also use class 12 RD Sharma chapter 18 exercise 18.13 solution to solve their homework as teachers often give questions from this book. Students might even find common questions in board exams.

  • The RD Sharma class 12th exercise 18.13 pdf is available online for free of cost. It can be downloaded from the Career360 website.

RD Sharma Chapter wise Solutions

JEE Main Highest Scoring Chapters & Topics
Just Study 40% Syllabus and Score upto 100%
Download E-book

Frequently Asked Questions (FAQs)

1. Are the answers in the RD Sharma solutions detailed and accurate?

Professionals known for their expertise in maths were responsible to draft the answers RD Sharma solutions books. Therefore they are highly detailed and written with utmost accuracy.

2. RD Sharma class 12th exercise 18.13 covers the syllabus of which exmas?

The RD Sharma class 12th exercise 18.13 solution has a common syllabus that will cover several exams like school tests, internals, terminal exams, boards, along with JEE mains exams.

3. Which site to use for 12 RD Sharma chapter 18 exercise 18.13 solution pdf?

Students will find the downloadable pdf of the class 12 RD Sharma chapter 18 exercise 18.13 solution on the Career360 website. You can simply download it on your preferred device.

4. Which is the most trusted and reliable NCERT solution book for class 12?

The top-selling NCERT solution or coursebook for class 12 is definitely the RD Sharma solutions. It has already made a name for itself among other study materials.

5. Is RD Sharma class 12th exercise 18.13 beneficial for exam practice?

Students can test themselves at home by answering the questions from the RD Sharma class 12th exercise 18.13 book and then comparing the answers to mark their performance.

Articles

Upcoming School Exams

Application Date:07 October,2024 - 22 November,2024

Application Date:07 October,2024 - 22 November,2024

Application Correction Date:08 October,2024 - 27 November,2024

View All School Exams
Get answers from students and experts
Back to top