Class 12 is a significant school year for students as it will be their last year in school. Therefore, all their subjects, including maths, will have a tough syllabus. The RD Sharma class 12th exercise 18.3 will be an excellent guide for students in high school to help them in their exam preparations. With board exams near, the answers of RD Sharma class 12 chapter 18 exercise 18.3 will be extremely helpful for students to clear their doubts and practice maths at home.
Indefinite Integrals Excercise: 18.3
Indefinite Integrals Exercise 18.3 Question 1
Answer:$\frac{(2 x-3)^{\6}}{12}+\frac{2}{9}(3 x+2)^{\frac{3}{2}}+c$Hint: To solve this equation we use
$\int(a x+b)^{n}$ formula
Given: $\int(2 x-3)^{5}+\sqrt{3 x+2} d x$Solution:$\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c ; n \neq-1$$\begin{aligned} &=\int\left[(2 x-3)^{5}+(3 x+2)^{\frac{1}{2}}\right] d x \\ &=\int(2 x-3)^{5} d x+\int(3 x+2)^{\frac{1}{2}} d x \end{aligned}$$\begin{aligned} &=\frac{1}{2(5+1)}(2 x-3)^{5+1}+\frac{1}{3\left(1+\frac{1}{2}\right)}(3 x+2)^{\frac{1}{2}+1}+c \\ &=\frac{1}{12}(2 x-3)^{6}+\frac{2}{9}(3 x+2)^{\frac{3}{2}}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 2
Answer: $\frac{-1}{14}(7 x-5)^{-2}+\frac{2}{5} \sqrt{5 x-4}+c$Hint:To solve this we take denominator as numerator
Given: $\int \frac{1}{(7 x-5)^{3}}+\frac{1}{\sqrt{5 x-4}} d x$Solution: $\int(7 x-5)^{-3} d x+\int(5 x+4)^{\frac{1}{2}}$$\begin{aligned} &\int(a x+b)^{n} d x=\frac{1}{a(n+1)}(a x+b)^{n+1}+c ; n \neq-1 \\ &=\frac{1}{7} \frac{(7 x-5)^{-2}}{-2}+\frac{1}{5} \frac{(5 x+4)^{\frac{1}{2}}}{\frac{1}{2}}+c \end{aligned}$$\begin{aligned} &=\frac{-1}{14}(7 x-5)^{-2}+\frac{2}{5} \sqrt{5 x-4}+c \\ &=\frac{-1}{14}(7 x-5)^{-2}+\frac{2}{5} \sqrt{5 x-4}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 3
Answer: $\frac{-1}{3} \log |2-3 x|+\frac{2}{3} \sqrt{3 x-2}+c$Hint: To solve this equation we use
$\int \frac{1}{(a x+b)^{n}} d x$ formula
Given: $\int \frac{1}{2-3 x}+\frac{1}{\sqrt{3 x-2}} d x$Solution: $\int \frac{1}{2-3 x} d x+\int(3 x-2)^{\frac{-1}{2}} d x$$\left\{\begin{array}{l} \int \frac{1}{a x+b} d x=\log (a x+b)+c \\ (a x+b)^{n} d x=\frac{(a x+b)^{n+1}}{a(n+1)} \\ b \neq-1 \end{array}\right\}$$\begin{aligned} &=\frac{\log |2-3 x|}{-3}+\frac{(3 x-2)^{\frac{1}{2}}}{3 \cdot \frac{1}{2}}+c \\ &=-\frac{\log |2-3 x|}{3}+\frac{2}{3} \sqrt{3 x+2}+c \\ &=\frac{-1}{3} \log |2-3 x|+\frac{2}{3} \sqrt{3 x-2}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 4
Answer: $\frac{-1}{2(x+1)^{2}}-\frac{2}{3(x+1)^{3}}+c$Hint: $\text { To solve this equation we will spilt } x+3 \text { and then we use } \int \frac{1}{a x+b} d x \text { formula }$Given: $\int \frac{x+3}{(x+1)^{4}} d x$Solution: $\frac{x+3}{(x+1)^{4}}=\frac{x+1+2}{(x+1)^{4}}$$\begin{aligned} &=\frac{x+1}{(x+1)^{4}}+\frac{2}{(x+1)^{4}}=\frac{1}{(x+1)^{3}}+\frac{2}{(x+1)^{4}} \\ &=\int \frac{x+3}{(x+1)^{4}} d x \end{aligned}$$\begin{aligned} &=\int \frac{1}{(x+1)^{3}} d x+2 \int \frac{1}{(x+1)^{4}} d x\left[\int(a x+b)^{n}=\frac{1}{a(n+1)}(a x+b)^{n+1}+c, n \neq 1\right] \\ &=\frac{1}{1} \times \frac{1}{1-3}(x+1)^{1-3}+2 \frac{1}{1} \times \frac{1}{1-4}(x+1)^{1-4}+c \\ &=\frac{-1}{2}(x+1)^{-2}-\frac{2}{3}(x+1)^{-3}+c \\ &=\frac{-1}{2(x+1)^{2}}-\frac{2}{3(x+1)^{3}}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 5
Answer: $\frac{2}{3}\left\{(x+1)^{\frac{3}{2}}-x^{\frac{3}{2}}\right\}+c$Hint: $\text { To solve this equation we will multiply } \sqrt{x+1}-\sqrt{x} \text { to numerator and denominator }$Given: $\int \frac{1}{\sqrt{x+1}+\sqrt{x}} d x$Solution: $\int \frac{\sqrt{x+1}-\sqrt{x}}{(\sqrt{x+1}+\sqrt{x})(\sqrt{x+1}-\sqrt{x})}$$\because \text { multiply } \sqrt{x+1}-\sqrt{x} \text { to numerator and denominator }$$\begin{aligned} &=\int \frac{\sqrt{x+1}-\sqrt{x}}{x+1-x} d x \\ &=\int \sqrt{x+1} d x-\int \sqrt{x} d x \end{aligned}$$\left[\int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq c\right]$$\begin{aligned} &=\frac{(x+1)^{\frac{1}{2}}+1}{\frac{1}{2}+1}-\frac{(x)^{\frac{1}{2}+1}}{\frac{1}{2}+1}+c \\ &=\frac{2}{3}\left\{(x+1)^{\frac{3}{2}}-x^{\frac{3}{2}}\right\}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 6
Answer: $\frac{1}{18}\left\{(2 x+3)^{\frac{3}{2}}-(2 x-3)^{\frac{8}{2}}\right\}+c$Hint:$\text { To solve this equation we multiply } \sqrt{2 x+3}-\sqrt{2 x-3} \text { to numerator and denominator }$Given: $\int \frac{1}{\sqrt{2 x+3}+\sqrt{2 x-3}} d x$Solution: $\int \frac{1}{\sqrt{2 x+3}+\sqrt{2 x-3}} d x$$\int \frac{\sqrt{2 x+3}-\sqrt{2 x-3}}{(\sqrt{2 x+3}+\sqrt{2 x-3})(\sqrt{2 x+3}-\sqrt{2 x-3})} d x$$\because \text { multiply } \sqrt{2 x+3}-\sqrt{2 x-3} \text { to numerator and denominator }$$\begin{aligned} &=\int \frac{\sqrt{2 x+3}-\sqrt{2 x-3}}{2 x+3-2 x+3} d x \\ &=\frac{1}{6} \int \sqrt{2 x+3} d x-\int \sqrt{2 x-3} d x\left[\int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq 1\right] \\ &=\frac{1}{6}\left[\frac{1}{2} \frac{(2 x+3)^{\frac{1}{2}+1}}{\frac{1}{2}+1}-\frac{(2 x-3)^{\frac{1}{2}+1}}{2\left(\frac{1}{2}+1\right)}+c\right] \\ &=\frac{1}{18}\left\{(2 x+3)^{\frac{3}{2}}-(2 x-3)^{\frac{8}{2}}\right\}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 7
Answer: $\frac{1}{2} \log |2 x+1|+\frac{1}{2(2 x+1)}+c$Hint : $\text { To solve this equation we differentiate differently }$Given: $\int \frac{2 x}{(2 x+1)^{2}} d x$Solution: $\int \frac{2 x}{(2 x+1)^{2}} d x$$\int \frac{(2 x+1)-1}{(2 x+1)^{2}} d x$$=\int \frac{1}{(2 x+1)} d x-\int \frac{1}{(2 x+1)^{2}} d x$$\left[\begin{array}{l} \int \frac{1}{a x+b} d x=\log \frac{1}{a}|a x+b|+c \\ \int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq 1 \end{array}\right]$$\begin{aligned} &=\frac{1}{2} \log |2 x+1|+\frac{1}{2} \frac{1}{(2 x+1)}+c \\ &=\frac{1}{2} \log |2 x+1|+\frac{1}{2(2 x+1)}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 8
Answer: $\frac{2}{3(a-b)}\left\{(x+a)^{\frac{3}{2}}-(x+b)^{\frac{3}{2}}\right\}+c$Hint:$\text { To solve this equation we add } \sqrt{x+a}-\sqrt{x+b} \text { to numerator and denominator }$Given: $\int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} d x$Solution: $\int \frac{1}{\sqrt{x+a}+\sqrt{x+b}} d x$$\text { Multiply } \sqrt{x+a}-\sqrt{x+b} \text { to numerator and denominator }$$\begin{aligned} &\int \frac{\sqrt{x+a}-\sqrt{x+b}}{(\sqrt{x+a}+\sqrt{x+b})(\sqrt{x+a}-\sqrt{x+b})} d x \\ &=\int \frac{\sqrt{x+a}-\sqrt{x+b}}{(x+a)-(x+b)} d x \end{aligned}$$\begin{aligned} &=\int \frac{\sqrt{x+a}-\sqrt{x+b}}{a-b} d x \\ &=\frac{1}{a-b} \int \sqrt{x+a}-\sqrt{x+b} d x\left[\int(x)^{n}=\frac{(x)^{n+1}}{n+1}+c\right] \\ &=\frac{1}{a-b}\left[\frac{(x+a)^{\frac{3}{2}}}{\frac{3}{2}}-\frac{(x+b)^{\frac{8}{2}}}{\frac{3}{2}}\right]+c \\ &=\frac{1}{a-b} \times \frac{2}{3}\left[(x+a)^{\frac{3}{2}}-(x+b)^{\frac{8}{2}}\right]+c \\ &=\frac{2}{3(a-b)}\left[(x+a)^{\frac{3}{2}}-(x+b)^{\frac{8}{2}}\right]+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 9
Answer: $\frac{-1}{2 \sqrt{2}} \cos 2 x+c$Hint: $\text { To solve this equation we use } 1+\cos 2 x \text { and } \sin 2 x \text { formula }$Given: $\int \sin x \sqrt{1+\cos 2 x} d x$Solution: $\int \sin x \sqrt{1+\cos 2 x} d x$$\begin{aligned} &\because 1+\cos 2 x=2 \cos ^{2} x \\ &I=\int \sin x \sqrt{2 \cos ^{2} x} d x \\ &I=\sqrt{2} \int \sin x \cos x d x \\ &I=\frac{\sqrt{2}}{2} \int 2 \sin x \cos x d x \end{aligned}$$\begin{aligned} &\because \sin 2 x=2 \sin x \cos x \\ &I=\frac{\sqrt{2}}{2} \int \sin 2 x d x \\ &=\frac{1}{\sqrt{2}}\left[\frac{-\cos 2 x}{2}\right]+c \\ &=\frac{-1}{2 \sqrt{2}} \cos 2 x+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 10
Answer: $-2 \cot \left(\frac{x}{2}\right)-x+c$Hint: $\text { To solve this equation we use half angle formula }$Given: $\int \frac{1+\cos x}{1-\cos x} d x$Solution: $\int \frac{1+\cos x}{1-\cos x} d x$$=\int \frac{1+2 \cos ^{2} \frac{x}{2}-1}{1-1+2 \sin ^{2} \frac{x}{2}} d x$\text { [By using half angle formula] }
$\begin{aligned} &=\int \frac{2 \cos ^{2} \frac{x}{2}}{2 \sin ^{2} \frac{x}{2}} d x \\ &=\int \cot ^{2} \frac{x}{2} d x \end{aligned}$$\begin{aligned} &=\int\left(\cos e c^{2} \frac{x}{2}-1\right) d x \\ &=\int \cos e c^{2} \frac{x}{2} d x-\int d x\left[\int \operatorname{cosec}^{2} x d x=-\cot x+c\right] \\ &=-2 \cot \frac{x}{2}-x+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 12
Answer:
Answer: $2\left[\tan \frac{x}{2}+\sec \frac{x}{2}\right]+c$Hint: $\text { We will add } 1+\sin \frac{x}{2} \text { to the equation }$Given: $\int \frac{1}{1-\sin \frac{x}{2}} d x$Solution: $\int \frac{1}{1-\sin \frac{x}{2}} d x$$\text { Multiplying } 1+\sin \frac{x}{2} \text { in numerator and denominator }$$=\int \frac{1+\sin \frac{x}{2}}{\left(1-\sin \frac{x}{2}\right)\left(1-\sin \frac{x}{2}\right)} d x$$\begin{aligned} &=\int \frac{1+\sin \frac{x}{2}}{1-\sin ^{2} \frac{x}{2}} d x \\ &=\int \frac{1+\sin \frac{x}{2}}{\cos ^{2} \frac{x}{2}} d x \end{aligned}$$=\int \frac{1}{\cos ^{2} \frac{x}{2}} d x+\int \frac{\sin \frac{x}{2}}{\cos ^{2} \frac{x}{2}} d x$$=\int \frac{1}{\cos ^{2} \frac{x}{2}} d x+\int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2} \cdot \cos \frac{x}{2}} d x$$\begin{aligned} &=\int \sec ^{2} \frac{x}{2} d x+\int \tan \frac{x}{2} \sec \frac{x}{2} d x \\ &=2\left[\tan \frac{x}{2}+\sec \frac{x}{2}\right]+c \end{aligned} \quad\left[\int \sec ^{2}(a x+b) d x=\frac{\tan (a x+b)}{a}+c\right]$Indefinite Integrals Exercise 18.3 Question 12
Answer: $2\left[\tan \frac{x}{2}+\sec \frac{x}{2}\right]+c$Hint: $\text { We will add } 1+\sin \frac{x}{2} \text { to the equation }$Given: $\int \frac{1}{1-\sin \frac{x}{2}} d x$Solution: $\int \frac{1}{1-\sin \frac{x}{2}} d x$$\text { Multiplying } 1+\sin \frac{x}{2} \text { in numerator and denominator }$$=\int \frac{1+\sin \frac{x}{2}}{\left(1-\sin \frac{x}{2}\right)\left(1-\sin \frac{x}{2}\right)} d x$$\begin{aligned} &=\int \frac{1+\sin \frac{x}{2}}{1-\sin ^{2} \frac{x}{2}} d x \\ &=\int \frac{1+\sin \frac{x}{2}}{\cos ^{2} \frac{x}{2}} d x \end{aligned}$$=\int \frac{1}{\cos ^{2} \frac{x}{2}} d x+\int \frac{\sin \frac{x}{2}}{\cos ^{2} \frac{x}{2}} d x$$=\int \frac{1}{\cos ^{2} \frac{x}{2}} d x+\int \frac{\sin \frac{x}{2}}{\cos \frac{x}{2} \cdot \cos \frac{x}{2}} d x$$\begin{aligned} &=\int \sec ^{2} \frac{x}{2} d x+\int \tan \frac{x}{2} \sec \frac{x}{2} d x \\ &=2\left[\tan \frac{x}{2}+\sec \frac{x}{2}\right]+c \end{aligned} \quad\left[\int \sec ^{2}(a x+b) d x=\frac{\tan (a x+b)}{a}+c\right]$Indefinite Integrals Exercise 18.3 Question 13
Answer: $\frac{1}{3}\left[\frac{1-\cos 3 x}{\sin 3 x}\right]+C$Hint: $\text { We will add } 1-\cos 3 x \text { to the equation }$Given: $\int \frac{1}{1+\cos 3 x} d x$Solution: $\int \frac{1}{1+\cos 3 x} d x$$\text { Multiplying } 1-\cos 3 x \text { in numerator and denominator }$$\begin{aligned} &\int \frac{1-\cos 3 x}{(1+\cos 3 x)(1-\cos 3 x)} d x \\ &=\int \frac{1-\cos 3 x}{1-\cos ^{2} 3 x} d x \\ &=\int \frac{1-\cos 3 x}{\sin ^{2} 3 x} d x \end{aligned}$$\begin{aligned} &=\int \frac{1}{\sin ^{2} 3 x} d x-\int \frac{\cos 3 x}{\sin 3 x \sin 3 x} d x \\ &=\int \operatorname{cosec}^{2} 3 x d x-\int \cot 3 x \operatorname{cosec} 3 x d x \\ &=\frac{-\cot 3 x}{3}+\frac{\operatorname{cosec} 3 x}{3}+c \end{aligned}$$\begin{aligned} &=\frac{1}{3}[\operatorname{cosec} 3 x-\cot 3 x]+c \\ &=\frac{1}{3}\left[\frac{1}{\sin 3 x}-\frac{\cos 3 x}{\sin 3 x}\right]+C \\ &=\frac{1}{3}\left[\frac{1-\cos 3 x}{\sin 3 x}\right]+C \end{aligned}$Indefinite Integrals Exercise 18.3 Question 14
Answer: $\frac{e^{3 x}}{3}+e^{2 x}+e^{x}+c$Hint: $\text { To solve this } \int x^{n} d x \text { formula }$Given: $\int\left(e^{x}+1\right)^{2} e^{x} d x$Solution: $\int\left(e^{x}+1\right)^{2} e^{x} d x$$\begin{aligned} &=\int\left(e^{2 x}+1+2 e^{x}\right) e^{x} d x \quad\left[(a+b)^{2}=a^{2}+b^{2}+2 a b\right] \\ &=\int\left(e^{3 x}+2 e^{2 x}+e^{x}\right) d x \end{aligned}$$\begin{aligned} &=\int\left(e^{3 x}\right) d x+2 \int\left(e^{2 x}\right) d x+\int\left(e^{x}\right) d x \\ &=\frac{e^{3 x}}{3}+e^{2 x}+e^{x}+c \\ &=\frac{e^{3 x}+e^{2 x}+e^{x}}{3}+c \\ &=\frac{1}{3}\left(e^{x}+1\right)^{2}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 15
Answer: $\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+c$Hint: $\text { To solve this equation } \int e^{a x} d x \text { formula }$Given: $\int\left(e^{x}+\frac{1}{e^{x}}\right)^{2} d x$Solution: $=\left(e^{x}+\frac{1}{e^{x}}\right)^{2} \quad\left[\begin{array}{l} (a+b)^{2}=a^{2}+b^{2}+2 a b \\ \int e^{a x} d x=\frac{1}{a} e^{a x}+c, a \neq 0 \end{array}\right]$$\begin{aligned} &=\left(e^{x}\right)^{2}+2 \cdot e^{x} \cdot \frac{1}{e^{x}}+\left(\frac{1}{e^{x}}\right)^{2} \\ &=e^{2 x}+2+e^{-2 x} \end{aligned}$$\begin{aligned} &\int\left(e^{x}+\frac{1}{e^{x}}\right)^{2} d x=\int\left(e^{2 x}+2+e^{-2 x}\right) d x \\ &=\frac{1}{2} e^{2 x}+2 x-\frac{1}{2} e^{-2 x}+c \\ &=\frac{1}{2}\left(e^{2 x}-e^{-2 x}\right)+2 x+c \end{aligned}$
Answer: $\frac{-1}{8} \cos 4 x+c$Hint: $\text { To solve this equation we use } \int \sin 2 x_{5} \int \cos 2 x d x \text { formula }$Given: $\int \frac{1+\cos 4 x}{\cot x-\tan x} d x$Solution: $\int \frac{1+\cos 4 x}{\cot x-\tan x} d x$$\begin{aligned} &=\frac{2 \cos ^{2} 2 x}{\frac{\cos x}{\sin x}-\frac{\sin x}{\cos x}} d x \\ &=\frac{2 \cos ^{2} 2 x}{\frac{\cos ^{2} x-\sin ^{2} x}{\sin x \cos x}} d x \\ &=\frac{2(\sin x \cos x)(\cos 2 x)^{2}}{\cos ^{2} x-\sin ^{2} x} d x \end{aligned}$$\begin{aligned} &=\frac{\sin 2 x(\cos 2 x)^{2}}{\cos 2 x} \\ &=\sin 2 x \cos 2 x \end{aligned} \quad\left[\begin{array}{c} \because 2 \sin x \cos x=\sin 2 x \\ \cos ^{2} x-\sin ^{2} x=\cos 2 x \end{array}\right]$$\begin{aligned} &\text { Multiply } 2 \text { in numerator and denominator }\\ &=\frac{1}{2}(2 \sin 2 x \cos 2 x)\\ &=\frac{1}{2}(\sin 4 x) \quad[\because 2 \sin 2 x \cos 2 x=\sin 4 x] \end{aligned}$$\begin{aligned} &\int \frac{1+\cos 4 x}{\cot x-\tan x} d x=\int \frac{1}{2}(\sin 4 x) d x \\ &=\frac{1}{2} \int(\sin 4 x) d x \quad\left[\because \int \sin (a x+b) d x=\frac{-1}{a} \cos (a x+b)+c, a \neq 0\right] \\ &=\frac{1}{2}\left(\frac{-1}{4} \cos 4 x\right)+c \\ &=\frac{-1}{8} \cos 4 x+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 17
Answer: $\frac{2}{3}\left\{(x+3)^{\frac{3}{2}}+(x+2)^{\frac{3}{2}}\right\}+c$Hint: $\text { To solve this equation we will add }(\mathrm{x}+3)+(\mathrm{x}+2 \text { ) in numerator and denominator }$Given: $\int \frac{1}{\sqrt{x+3}-\sqrt{x+2}} d x$Solution: $\int \frac{1}{\sqrt{x+3}-\sqrt{x+2}} d x$$\begin{aligned} &=\int \frac{\sqrt{x+3}+\sqrt{x+2}}{(\sqrt{x+3}-\sqrt{x+2})(\sqrt{x+3}+\sqrt{x+2})} d x \\ &=\int \frac{\sqrt{x+3}+\sqrt{x+2}}{x+3-x-2} d x \\ &=\int \sqrt{x+3} d x+\int \sqrt{x+2} d x \end{aligned}$$\begin{aligned} &{\left[\int(a x+b)^{n}=\frac{(a x+b)^{n+1}}{a(n+1)}+c, n \neq 1\right]} \\ &=\frac{2(x+3)^{\frac{3}{2}}}{3}+\frac{2(x+2)^{\frac{3}{2}}}{3}+c \\ &=\frac{2}{3}\left\{(x+3)^{\frac{3}{2}}+(x+2)^{\frac{3}{2}}\right\}+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 18
Answer: $\frac{1}{2} \tan (2 x-3)-x+c$HInt: $\text { To solve this we convert tan to sec form }$Given: $\int \tan ^{2}(2 x-3) d x$Solution: $\int \tan ^{2}(2 x-3) d x$$\begin{aligned} &=\int \sec ^{2}(2 x-3)-1 d x\left[\because \tan ^{2} x=\sec ^{2} x-1\right] \\ &=\int \sec ^{2}(2 x-3)-\int 1 d x \\ &=\frac{\tan (2 x-3)}{2}-x+c\left[\because \int \sec ^{2}(a x+b) d x=\frac{\tan (a x+b)}{a}+c\right] \\ &=\frac{1}{2} \tan (2 x-3)-x+c \end{aligned}$Indefinite Integrals Exercise 18.3 Question 19
Answer: $\frac{1}{1-\tan (x)}+c$Hint: $\text { To solve this we use } \tan x \text { as } t \text { and } \frac{1}{\cos x}=\sec x$Given: $\int \frac{1}{\cos ^{2} x(1-\tan x)^{2}} d x$Solution: $\int \frac{1}{\cos ^{2} x(1-\tan x)^{2}} d x$ $\left[\tan x=\frac{\sin x}{\cos x}\right]$$I=\int \frac{1}{\cos ^{2} x\left(1-\frac{\sin x}{\cos x}\right)^{2}} d x$$\begin{aligned} &=\int \frac{1}{(\cos x-\sin x)^{2}} d x \\ &=\int \frac{1}{1-\sin 2 x} d x \\ &=\int \frac{1}{1+\cos \left(\frac{\pi}{2}+2 x\right)} d x \\ &=\int \frac{1}{2 \cos ^{2}\left(\frac{\pi}{4}+x\right)} d x \\ &=\int \sec ^{2}\left(\frac{\pi}{4}+x\right) d x \\ &=\frac{1}{2} \tan \left(\frac{\pi}{4}+x\right)+c \end{aligned}$The 18th chapter of the class 12 maths book contains the topic of Indefinite Integrals, which has a huge syllabus. The concepts that students will have to learn are the Reverse power rule, Graphs of indefinite integrals, Indefinite integrals of common functions, etc. Exercise 18.3 has 19 questions in the third part of the chapter.
Students and teachers have placed their trust in class 12 RD Sharma chapter 18 exercise 18.3 solution and recommend it to all aspiring students. Here is a list of reasons why RD Sharma is a top-choice among NCERT solutions:-
Experts have created the answers in the RD Sharma class 12th exercise 18.3 solution. The questions are solved using some modern calculations which will be helpful for students.
Students who want to practice at home can use RD Sharma class 12 solutions chapter 18 ex 18.3 to compare their answers and mark their performance.
Teachers like to give students home assignments using the RD Sharma class 12 solutions Indefinite Integrals ex 18.3. Therefore, students will find these solutions helpful to solve their homework.
Students can say goodbye to expensive and redundant study materials which do not serve any purpose. These solutions can be downloaded for free from Career360.
The RD Sharma class 12th exercise 18.3 comes with an updated syllabus that corresponds to the latest version of NCERT textbooks. Therefore, students will find answers to all questions.
According to teachers and experts, students may find common questions in their board exams if they study RD Sharma Solutions diligently.