Careers360 Logo
RD Sharma Class 12 Exercise 18.26 Indefinite integrals Solutions Maths - Download PDF Free Online

RD Sharma Class 12 Exercise 18.26 Indefinite integrals Solutions Maths - Download PDF Free Online

Edited By Kuldeep Maurya | Updated on Jan 24, 2022 09:43 AM IST

The RD Sharma solutions are very well known for their vast explanation of each and every concept present in the book. The RD Sharma class 12th exercise 18.26 deals with the chapter of indefinite integrals which is an essential chapter for performing well in the 12th board exams for every CBSE student. The RD Sharma solutions of Indefinite integrals exercises 18.26 helps you to solve questions efficiently and without much trouble as it lets you experiment with your skills of solving marks and prepares you to perform better for scoring high marks in the board exams and is the subject of.

RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise

Indefinite Integrals Excercise:18.26

Indefinite Integrals exercise 18.26 question 1

Answer:
The correct answer isexcos(x)+c
Hint:

ddxcosx=sinx
Given:
ex(cosxsinx)dx
Solution:
On integration by part......uvdx=uvdx[vdxdudxdx]
=excosxdxexsinxdx
We know that ddxcosx=sinx
=cosxexddxcosxexexsinxdx=excosx+exsinxdxexsinxdx=excosx+c
So the answer is excosx+c

Indefinite Integrals exercise 18.26 question 2

Answer:
The correct answer isexx2+c
Hint:
using integration by parts, u.vdx=uvdx[vdxdudxdx]
Given:
Solution:
=ex(1x22x3)dx
=ex1x2dx2exx3dx
=exx2dx2exx8dx
=x2exdx[ddx(x2)exdx]dx2exx3dx+c=x2ex2x3exdx2exx3dx+c=x2ex+c
=exx2+c
So, the correct answer is exx2+c


Indefinite Integrals exercise 18.26 question 3

Answer:
The correct answer is extanx2+c
Hint:
Using formula:
i.sin2x+cos2x=1ii.sinx=2sinx2cosx2
Given: ex(1+sinx1+cosx)dx
Solution:
=ex(1+sinx1+cosx)dx
=ex(sin2x2+cos2x2+2sinx22cosx22cos2x2)dx
=ex(sinx2+cosx2)22(cosx2)2
=12ex(sinx2+cosx2cosx2)2
=12ex[tanx2+1]2=12ex[1+tanx2]2
=12ex[1+tan2x2+2tanx2]=12ex[sec2x2+2tanx2]
=ex[12sec2x2+tanx2](1)
Suppose tanx2=f(x)
f(x)=12sec2x2
We know that, ex{f(x)+f(x)}dx=exf(x)+c
From equation (1), we get
ex(1+sinx1+cosx)dx=extanx2+c
So, the correct answer is extanx2+c

Indefinite Integrals exercise 18.26 question 4

Answer:
The correct answer isexcotx+c

Given: ex(cotxcosec2x)dx
Solution:
I=ex(cotxcosec2x)dx
On using integration by parts, u.vdx=uvdx[vdxdudxdx]
=excotxdxexcosec2xdx=cotxexdxddxcotxexdxexcosec2xdx
=cotxex+excosec2xdxexcosec2xdx=excotx+c
So, the correct answer is excotx+c

Indefinite Integrals exercise 18.26 question 5

Answer:
The correct answer isex2x+c

Given:
ex(x12x2)dx
Solution:
I=ex(12x)dxex(12x2)dx
On integrating by parts, uvdx=uvdx[vdxdudxdx]
=ex2xex(ddx(12x))dxex2xdx=ex2x+ex2x2dxex2x2dx=ex2x+c
So, the correct answer is ex2x+c


Indefinite Integrals exercise 18.26 question 6

Answer:
The correct answer isexsecx+c
Hint:

ex{f(x)+f(x)}dx=exf(x)+c
Given:
exsecx(1+tanx)dx
Solution:
I=exsecx(1+tanx)dx
=ex(secx+secxtanx)dx
Put f(x)=secx
f(x)=secxtanx
=ex(secx+secxtanx)dx=exsecx+c
So, the correct answer is exsecx+c.

Indefinite Integrals exercise 18.26 question 7

Answer:
The correct answer isexlogsecx+c


Given:
ex(tanxlogcosx)dx
Solution:
I=ex(tanxlogcosx)dx
=extanxdxexlogcosxdx
Integrating by parts,
=extanxdxexlogcosx+ex(ddxlogcosx)dx=extanxdxexlogcosxextanxdx
=exlogcosx+c=exlogsecx+c
So, the correct answer is exlogsecx+c.

Indefinite Integrals exercise 18.26 question 8

Answer:
The correct answer isexlog(secx+tanx)+c
Hint:

ex{f(x)+f(x)}dx=exf(x)+c
Given:
:ex[secx+log(secx+tanx)]dx
Solution:
I=ex[secx+log(secx+tanx)]dxf(x)=log|secx+tanx|
f(x)=1secx+tanx(secxtanx+sec2x)
=secx(secx+tanx)secx+tanx=secx
ex{f(x)+f(x)}dx=exf(x)+c=exlog(secx+tanx)+c
so, the correct answer is exlog(secx+tanx)+c

Indefinite Integrals exercise 18.26 question 9

Answer:
The correct answer isexlog(sinx)+c
Hint:

ex{f(x)+f(x)}dx=exf(x)+c
Given:
Solution:
ex(cotx+logsinx)dx
f(x)=log(sinx)f(x)=1sinxcosx=cotx
ex{f(x)+f(x)}dx=exf(x)+cex[(cotx+log(sinx)]dx=exlog(sinx)+c
So, the correct answer is exlog(sinx)+c

Indefinite Integrals exercise 18.26 question 10

Answer:
The correct answer isex(x+1)2+c
Given:
exx1(x+1)3dx
Solution:
I=exx1(x+1)3dx
I={x+12(x+1)3}exdx
={1(x+1)22(x+1)8}exdx
=ex1(x+1)2dx2ex1(x+1)3dx
On using Integration by parts,
={1(x+1)2exex2(x+1)3dx}2ex1(x+1)3dx
=ex(x+1)2+c
So, the correct answer ex(x+1)2+c

Indefinite Integrals exercise 18.26 question 11

Answer:
The correct answer isexcot(2x)+c
Hint:

i.cos2a=1sin2Aii.sin2a=2sinAcosA
Given: ex(sin4x41cos4x)dx
Solution:
I=ex(sin4x41cos4x)dx
I=ex(2sin(2x)cos(2x)42sin2(2x))dx[cos2a=1sin2A,sin2a=2sinAcosA]
I=ex(2sin(2x)cos(2x)2sin2(2x)42sin2(2x))dx
ex(cot(2x)2cosec2(2x))dx
 Where f(x)=cot(2x) and f(x)=2cosec2(2x)
I=ex[f(x)+f(x)]dx=exf(x)+c=excot(2x)+c
So, the correct answer is excot(2x)+c

Indefinite Integrals exercise 18.26 question 12

Answer:
The correct answer isex1(1x)+c
Hint:

ex{f(x)+f(x)}dx=exf(x)+c
Given:
2x(1x)2exdx
Solution:
I=2x(1x)2exdx
=ex(1+1x(1x)2)dx=ex(1(1x)2+1(1x))dx
we have,
ex{f(x)dx+f(x)}dx=exf(x)+c
=ex(1(1x)2+1(1x))dx=ex1(1x)+c
So, the correct answer is ex1(1x)+c

Indefinite Integrals exercise 18.26 question 13

Answer:
The correct answer isex1x+2+c
Hint:

ex{f(x)+f(x)}dx=exf(x)+c
Given:
ex(1+x(2+x)2)dx
Solution:
I=ex(1+x(2+x)2)dx
I=ex[x+1+11(x+2)2]dxI=ex[x+2(x+2)21(x+2)2]dxI=ex[1(x+2)1(x+2)2]dx
 let f(x)=1(x+2) and f(x)=1(x+2)2
I=ex[f(x)+f(x)]dx=exf(x)+cI=ex1x+2+c


Indefinite Integrals exercise 18.26 question 14

Answer:
The correct answer isex2sec(x2)+c
Hint:

I=ex[f(x)+f(x)]dx=exf(x)+c
Given:
1sinx1+cosxex2dx
Solution:
I=1sinx1+cosxex2dxLet(x2)=tx=2tdx=2dt
I=et(1sin(2t)(1+cos(2t)(2dt)
=et(1+sin(2t)(1+cos(2t)(2dt)
=et(cost+sint)cos2t(2dt)
=(1)et{f(t)+f(t)}dt
Whose f(t)=sect and solution is given by etf(t)+c
I=2etsect(1)+cI=2etsect+c
So, the correct answer is 2ex2sec(x2)+c

Indefinite Integrals exercise 18.26 question 15

Answer:
The correct answer islogxex+c
Given:
ex(logx+1x)dx
Solution:
I=ex(logx+1x)dx
=exlogxdx+ex1xdx
On integration by parts,
logxex1xexdx+ex1xdx=logxex+c
So, the correct answer is logxex+c

Indefinite Integrals exercise 18.26 question 16

Answer:
The correct answer isex(logx)+ex(1x)+c
Hint:

ex{f(x)+f(x)}dx=exf(x)+c
Given:
ex(logx+1x2)dx
Solution:
I=ex(logx+1x2)dx
=ex(logx+1x1x+1x2)dx
ex(logx+1x)dx+ex(1x+1x2)dx
We have,
ex{f(x)+f(x)}dx=exf(x)+cex(logx+1x)dx+ex(1x+1x2)dx
=ex(logx)+ex(1x)+c
So, the correct answer is ex(logx)+ex(1x)+c

Indefinite Integrals exercise 18.26 question 17

Answer:
The correct answer is ex(logx)2+c
Hint:
ex{f(x)+f(x)}dx=exf(x)+c
Given:
exx{x(logx)2+2logx}dx
Solution:
I=exx{x(logx)2+2logx}dx
ex{(logx)2+2logx1x}dx
We have, ex{f(x)+f(x)}dx=exf(x)+c
 Let f(x)=(logx)2,f(x)=2logx1x
f(x)+f(x)=(logx)2+2logx1xI=ex{f(x)+f(x)}dx if f(x)=(logx)2
=exf(x)+c=ex(logx)2+c
So, the correct answer is ex(logx)2+c


Indefinite Integrals exercise 18.26 question 18

Answer:
The correct answer isexsin1x+c
Hint:

Using ILATE rule
ex{f(x)+f(x)}dx=exf(x)+c
Given:
ex1x2sin1x+11x2dx
Solution:
I=ex1x2sin1x+11x2dx
It is in the form of,
ex{f(x)+f(x)}dx
Where f(x)=sin1x
ex{f(x)+f(x)}dx=exf(x)+c
So,
ex(11x2+sin1x)=exsin1x+c
So the correct answer is exsin1x+c

Indefinite Integrals exercise 18.26 question 19

Answer:
The correct answer ise2xcosx+c

Given:
e2x(sinx+2cosx)dx
Solution:
I=e2x(sinx+2cosx)dx
=e2xsinxdx+2e2xcosxdx
Consider 2e2xcosxdx
Integrating by parts, we get
 Let u=cosxdu=sinxdxv=e2x
vdx=e2x2
2e2xcosxdx
=2[e2x2cosxe2x2(sinx)dx]+c=e2xcosx+e2xsinxdx+c
 Now, I=e2xsinxdx+2e2xcosxdx
=e2xsinxdx+e2xcosx+e2xsinxdx+c=e2xcosx+c
So, the correct answer is e2xcosx+c

Indefinite Integrals exercise 18.26 question 20

Answer:
The correct answer isextan1x+c
Hint:

ex(f(x)+f(x))dx=exf(x)+c
Given:
ex(tan1x+11+x2)dx
Solution:
ex(tan1x+11+x2)dx Let f(x)=tan1x Then f(x)=11+x2
 Now, I=ex(f(x)+f(x))dxI=exf(x)+cI=extan1x+c
So the correct answer is extan1x+c

Indefinite Integrals exercise 18.26 question 21

Answer:
The correct answer isexcotx+c

Given:
exsinxcosx1sin2xdx
Solution:
I=exsinxcosx1sin2xdxI=ex(cotxcosec2x)dxI=excotxdxexcosec2xdx
Consider excosec2xdx

excosec2xdx=excotx+excotxdx
I=excotxdxexcosec2xdx=excotxdx+excotxexcotxdx+c=excotx+c
So, the correct answer is excotx+c

Indefinite Integrals exercise 18.26 question 22

Answer:
The correct answer isxtan(logx)+c
Hint:

ex(f(x)+f(x))dx=exf(x)+c
Given:
[tan(logx)+sec2(logx)]dx
Solution:
I=[tan(logx)+sec2(logx)]dx
 Put logx=tx=etdx=etdt
I=(tant+sec2t)etdt
 Here, f(t)=tantf(t)=sec2t Let ettant=p
Differentiate both sides w.r.t ‘t’
et(tant+sec2t)=dpdtet(tant+sec2t)dt=dp
I=dp=p+c=ettant+c=xtan(logx)+c
So, the correct answer is xtan(logx)+c

Indefinite Integrals exercise 18.26 question 23

Answer:
The correct answer isex1(x2)2+c
Hint:

ex(f(x)+f(x))dx=exf(x)+c
Given:
ex(x4)(x2)3dx
Solution:
I=ex(x4)(x2)3dx=ex(x22)(x2)3dx=ex[(x2)(x2)32(x2)3]dx
=ex[1(x2)2+2(x2)3]dx
Now, consider,
f(x)=1(x2)2
Then f(x)=2(x2)3
Thus the above integral is of the form
ex(f(x)+f(x))
As,
ex(f(x)+f(x))dx=exf(x)+c
I=ex1(x2)2+c
So, the correct answer is ex1(x2)2+c

Indefinite Integrals exercise 18.26 question 24

Answer:
The correct answer is12e2xcotx+c
Hint:

ex(f(x)+f(x))dx=exf(x)+c
Given:
e2x(1sin2x)(1cos2x)dx
Solution:
I=e2x(1sin2x)(1cos2x)dx
 Let 2x=tOr2dx=dt
I=et(1sint)(1cost)dt2=12et(12sint2cost2)2sin2t2dt
=14et(cosec2t22cott2)dt=14et(2cott2+cosec2t2)dt
 Let f(x)=2cott2 Or f(x)=cosec2t2dt
[ex(f(x)+f(x))dx=exf(x)+c]
I=14et(2cott2+c)OrI=12e2xcotx+c
So, the correct answer is 12e2xcotx+c



RD Sharma class 12th exercise 18.26 contains 24 questions from the Class 12 RD Sharma chapter 18 exercise 18.26 solution provides with the best simple material to understand the important concepts of the chapter like, formula of fundamental integration, special integration formula, integration of trigno by parts, important integral theorem.

Exercises provided in the RD Sharma class 12 chapter 18 exercise 18.26 are designed by professionals who are experts in maths. The experts not only provide you with extraordinary exercises but also helpful advice and tips so that you can solve the questions in an alternate way which saves your time and your hard work. The RD Sharma class 12 chapter 18 exercise 18.26 matches up with the syllabus of NCERT that allows it to be one of the most beneficial solutions for students appearing for the public examinations.

The RD Sharma class 12th exercise 18.26 ensures that every student gets appropriate knowledge about every concept and therefore they pass on the understanding of the chapter through better results in the board exams. RD Sharma class 12 solutions chapter 18 exercise 18.26 are not only helpful in better performance for exams but also helps you to be outstanding in your class by staying ahead of the class because starting from R D Sharma solutions can help you stay ahead of the class as the teachers make use of the solutions to provide Nexus and also to assign homework.

The RD Sharma class 12th exercise 18.26 can easily be downloaded from the Careers360 website and any student can make use of the available PDF and online study materials from the website which doesn't cause them any amount to make use of these solutions

RD Sharma Chapter-wise Solutions

Frequently Asked Questions (FAQs)

1. What is the number of exercises given  in the RD Sharma solution for class 12?

There are a total of 36 exercises to give you a brief understanding of the concepts given in the chapter clearly

2. Can I solve homework by using the R D Sharma solutions?

 Yes, you can definitely use the RD Sharma solutions to solve homework more efficiently and in less time.


3. Is the indefinite  integrals  an important chapter for 12th board exams?

 Every chapter mentioned in the RD Sharma solutions are important for your preparation and to score good marks in the Board examinations.

4. Is RD Sharma better than NCERT?

Yes,  RD Sharma is better than NCERT in every way possible,  as the RD Sharma solutions give you solved questions and brief exercises to practice thoroughly in comparison to the NCERT textbooks.

5. Can I buy the RD Sharma solutions from offline stores?

You  don't need to trouble Yourself by visiting stores to buy the offline versions of the RD Sharma solution when you can easily download it from the careers360 website for free of cost.

Articles

Back to top