RD Sharma Class 12 Exercise 18.21 Indefinite Integrals Solutions Maths - Download PDF Free Online
RD Sharma Class 12 Exercise 18.21 Indefinite Integrals Solutions Maths - Download PDF Free Online
Updated on 24 Jan 2022, 12:25 PM IST
Rd Sharma Class 12th Exercise 18.21 is very important because the RD Sharma Book has always been the best source for preparation. Every student studies from RD Sharma books and gets success. Mathematics being a complicated subject, needs best solutions for it which explain every bit of the concept to help students grasp it fast. Rd Sharma Solutions Rd Sharma Class 12th Exercise 18.21 has solved every problem of a student regarding differentiation and integration. This exercise has 18 questions based on quadratic equations, integrating the function, and some important formulae used for evaluating the integrals.
RD Sharma Class 12 Solutions Chapter18 Indefinite Integrals - Other Exercise
Answer:$\sqrt{x^{2}+6 x+10}-3\left[\log \left|(x+3)+\sqrt{x^{2}+6 x+10}\right|\right]+c$ Given: $\int \frac{x}{\sqrt{x^{2}+6 x+10}} d x$ Hint: Simplify it and integrate it with the help of formula. Solution: Let $I=\int \frac{x}{\sqrt{x^{2}+6 x+10}} d x$ $=\int \frac{x+3-3}{\sqrt{x^{2}+6 x+10}} d x$ ......................Adding +3 and -3 in numerator $I=\frac{1}{2} \int \frac{2(x+3)}{\sqrt{x^{2}+6 x+10}} d x-3 \int \frac{d x}{\sqrt{x^{2}+6 x+10}}$ $I=I_{1}-I_{2}$ ..................(1) Where $\begin{aligned} &I_{1}=\frac{1}{2} \int \frac{2(x+3)}{\sqrt{x^{2}+6 x+10}} d x \\ &I_{2}=3 \int \frac{d x}{\sqrt{x^{2}+6 x+10}} \end{aligned}$ First solve $I_{1}$ Let $\begin{aligned} &x^{2}+6 x+10=y \\ &(2 x+6) d x=d y \end{aligned}$ .........(2) $I_{1}=\frac{1}{2} \int \frac{d y}{\sqrt{y}}=\frac{1}{2} \int(y)^{-\frac{1}{2}} d y$ $I_{1}=\frac{1}{2}\left[\frac{y^{\frac{1}{2}}}{\frac{1}{2}}\right]+c$ $I_{1}=\sqrt{y+c}$ From equation (2) $I_{1}=\sqrt{x^{2}+6 x+10}+c$ Now $I_{2}=3 \int \frac{d x}{\sqrt{x^{2}+6 x+10}}$ $x^{2}+6 x+10=x^{2}+6 x+9-9+10$ $=\left ( x+3 \right )^{2}+1$ $I_{2}=3 \int \frac{d x}{\sqrt{(x+3)^{2}+1}}$ $I_{2}=3 \log \left|x+3+\sqrt{x^{2}+6 x+10}\right|+c$$\left[\int \frac{d x}{\sqrt{x^{2}+a^{2}}}=\log \left|x+\sqrt{x^{2}+a^{2}}\right|\right]$
Now, putting value of $I_{1}$ & $I_{2}$ in equation 1
Answer: $-3 \sqrt{5-x^{2}-2 x}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c$ Given: $\int \frac{3 x+1}{\sqrt{5-x^{2}-2 x}} d x$ Hint: Simplify it and then integrate Solution: $\begin{aligned} &I=\int \frac{3 x+1}{\sqrt{5-x^{2}-2 x}} d x \\ &I=\int \frac{3 x+1}{\sqrt{6-\left(x^{2}+2 x+1\right)}} d x \\ &I=\int \frac{3 x+1}{\sqrt{6-(x+1)^{2}}} d x \\ &I=3 \int \frac{x+\frac{1}{3}}{\sqrt{6-(x+1)^{2}}} \end{aligned}$ $=-\frac{3}{2} \int \frac{-2 x-\frac{2}{3}}{\sqrt{6-(x+1)^{2}}}$$\text { (multiplying and dividing numerator by-2 }$ $\begin{aligned} &I=-\frac{3}{2} \int \frac{-2 x-2-\frac{2}{3}+2}{\sqrt{6-(x+1)^{2}}} d x \\ &I=-\frac{3}{2} \int \frac{-2 x-2}{\sqrt{5-x^{2}-2 x}}+-\frac{3}{2}\left(\frac{4}{3}\right) \int \frac{1}{\sqrt{6-(x+1)^{2}}} d x \end{aligned}$ $I=I_{1}+I_{2}$ .................(1) $I_{1}=-\frac{3}{2} \int \frac{-2 x-2}{\sqrt{5-x^{2}-2 x}} d x ; I_{2}=-2 \int \frac{1}{\sqrt{6-(x+1)^{2}}} d x$ Now, Let $5-x^{2}-2 x=y$ ..........(2) $(-2 x-2) d x=d y$ $\begin{aligned} &\Rightarrow I_{1}=-\frac{3}{2} \int \frac{d x}{\sqrt{y}} \\ &I_{1}=-\frac{3}{2}\left(\frac{\sqrt{y}}{\frac{1}{2}}\right)+c \end{aligned}$ From Equation (2) $I_{1}=-3 \sqrt{5-x^{2}-2 x}+c$ Now,$I_{2}=-2 \int \frac{1}{\sqrt{6-(x+1)^{2}}} d x$ $I_{2}=-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c$ $\left[\int \frac{1}{\sqrt{a^{2}-x^{2}}} d x=\sin ^{-1} \frac{x}{a}+c\right]$ Putting value of $I_{1}$&$I_{2}$ in equation (1) and we get $I=-3 \sqrt{5-x^{2}-2 x}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c$
Answer: $\sqrt{x^{2}+2 x-1}+\log \left|x+1+\sqrt{x^{2}+2 x-1}\right|+c$ Given: $\int \frac{x+2}{\sqrt{x^{2}+2 x-1}} d x$ Hint: Simplify the given function Solution: $\begin{aligned} &I=\int \frac{x+2}{\sqrt{x^{2}+2 x-1}} d x \\ &I=\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x-1}} d x \\ &I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x-1}} d x+\frac{2}{2} \int \frac{1}{\sqrt{x^{2}+2 x-1}} d x \\ &I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x-1}} d x+1 \int \frac{1}{\sqrt{x^{2}+2 x+1-2}} d x \\ &I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x-1}} d x+\int \frac{1}{\sqrt{(x+1)^{2}-(\sqrt{2})^{2}}} d x \end{aligned}$ $I=\frac{1}{2}\left[\frac{\sqrt{x^{2}+2 x-1}}{\frac{1}{2}}\right]+\log \left|x+1+\sqrt{x^{2}+2 x-1}\right|+c$ $\left[\begin{array}{l} U \sin g \\ (f(x))^{n} f^{1}(x) d x=\frac{[f(x)]^{n+1}}{n+1} \\ \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \end{array}\right]$ $I=\sqrt{x^{2}+2 x-1}+\log \left|x+1+\sqrt{x^{2}+2 x-1}\right|+c$
Answer: $\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+c$ Given: $\int \frac{x+2}{\sqrt{x^{2}-1}} d x$ Hint: Simplify the given function Solution: $I=\int \frac{x+2}{\sqrt{x^{2}-1}} d x$ $\begin{aligned} &I=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}-1}} d x+2 \int \frac{1}{\sqrt{x^{2}-1}} d x \\ &I=\frac{1}{2}\left[\frac{x^{2}-1}{\frac{1}{2}}\right]+2 \log \left|x+\sqrt{x^{2}-1}\right|+c \end{aligned}$ $\left[\begin{array}{l} U \sin g \\ \int(f(x))^{n} f^{1}(x) d x=\frac{f(x)^{n+1}}{n+1}+c \\ \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c \end{array}\right]$ $I=\sqrt{x^{2}-1}+2 \log \left|x+\sqrt{x^{2}-1}\right|+c$
Answer: $\sqrt{x^{2}+1}-\log \left|x+\sqrt{x^{2}+1}\right|+c$ Given: $\int \frac{x-1}{\sqrt{x^{2}+1}} d x$ Hint: Simplify the given function Solution: $\begin{aligned} &I=\int \frac{x-1}{\sqrt{x^{2}+1}} d x \\ &I=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}+1}} d x-\int \frac{1}{\sqrt{x^{2}+1}} d x \\ &I=\frac{1}{2}\left[\frac{\sqrt{x^{2}+1}}{\frac{1}{2}}\right]-\log \left|x+\sqrt{x^{2}+1}\right|+c \end{aligned}$ $\left[\begin{array}{l} U \sin g \\ \int(f(x))^{n} f^{1}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c \\ \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{array}\right]$ $I=\sqrt{x^{2}+1}-\log \left|x+\sqrt{x^{2}+1}\right|+c$
Answer: $\sqrt{x^{2}+x+1}-\frac{1}{2} \log \left|\frac{2 x+1}{2}+\sqrt{x^{2}+x+1}\right|+c$ Given: $\int \frac{x}{\sqrt{x^{2}+x+1}} d x$ Hint: Simplify the given $(f(x))^{n}$ Solution: $\begin{aligned} &I=\int \frac{x}{\sqrt{x^{2}+x+1}} d x \\ &I=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}+x+1}} d x \\ &I=\frac{1}{2} \int \frac{2 x+1-1}{\sqrt{x^{2}+x+1}} d x \\ &I=\frac{1}{2} \int \frac{2 x+1}{\sqrt{x^{2}+x+1}} d x-\frac{1}{2} \int \frac{1}{\sqrt{x^{2}+x+1}} d x \\ &I=\frac{1}{2} \int \frac{2 x+1}{\sqrt{x^{2}+x+1}} d x-\frac{1}{2} \int \frac{1}{\sqrt{\left(x^{2}+x+\frac{1}{4}\right)+1-\frac{1}{4}}} d x \end{aligned}$ $\begin{aligned} &I=\frac{1}{2} \int \frac{2 x+1}{\sqrt{x^{2}+x+1}} d x-\frac{1}{2} \int \frac{1}{\sqrt{\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}}} d x \\ &I=\frac{1}{2}\left[\frac{\sqrt{x^{2}+x+1}}{\frac{1}{2}}\right]-\frac{1}{2} \log \left|x+\frac{1}{2}+\sqrt{x^{2}+x+1}\right|+c \end{aligned}$ $\left[\begin{array}{l} U \sin g \\ \int(f(x))^{n} f^{1}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c \\ \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \left|x+\sqrt{x^{2}+a^{2}}\right|+c \end{array}\right]$ $I=\sqrt{x^{2}+x+1}-\frac{1}{2} \log \left|\frac{2 x+1}{2}+\sqrt{x^{2}+x+1}\right|+c$
Answer: $\sqrt{x^{2}+1}+\log \left|x+\sqrt{x^{2}+1}\right|+c$ Given: $\int \frac{x+1}{\sqrt{x^{2}+1}} d x$ Hint: Simplify the given integration and solve it Solution: $\begin{aligned} &I=\int \frac{x+1}{\sqrt{x^{2}+1}} d x \\ &I=\int \frac{x}{\sqrt{x^{2}+1}} d x+\int \frac{1}{\sqrt{x^{2}+1}} d x \end{aligned}$ $\begin{aligned} &I=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}+1}} d x+\log \left|x+\sqrt{x^{2}+1}\right|+c \\ &I=I_{1}+\log \left|x+\sqrt{x^{2}+1}\right|+c \\ &I_{1}=\frac{1}{2} \int \frac{2 x}{\sqrt{x^{2}+1}} d x \end{aligned}$ $\begin{aligned} &\text { Let } \\ &x^{2}+1=y \\ &2 x d x=d y \end{aligned}$ $\begin{aligned} &I_{1}=\frac{1}{2} \int \frac{d y}{\sqrt{y}}=\frac{1}{2}\left(\frac{\sqrt{y}}{\frac{1}{2}}\right)+c \\ &I_{1}=\sqrt{y}+c \\ &I_{1}=\sqrt{x^{2}+1}+c \\ &I=\sqrt{x^{2}+1}+\log \left|x+\sqrt{x^{2}+1}\right|+c \end{aligned}$
Answer: $-3 \sqrt{5-x^{2}-2 x}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c$ Given: $\int \frac{3 x+1}{\sqrt{5-x^{2}-2 x}} d x$ Hint: Simplify the given Function Solution: $\begin{aligned} &I=\int \frac{3 x+1}{\sqrt{5-x^{2}-2 x}} d x \\ &I=3 \int \frac{x+\frac{1}{3}}{\sqrt{5-x^{2}-2 x}} d x \end{aligned}$ Multiplying and dividing the numerator by -2, $\begin{aligned} I &=\frac{-3}{2} \int \frac{-2 x-\frac{2}{3}}{\sqrt{5-x^{2}-2 x}} d x \\ I &=\frac{-3}{2} \int \frac{-2 x-2+\frac{4}{3}}{\sqrt{5-x^{2}-2 x}} d x \\ I &=\frac{-3}{2} \int \frac{-2 x-2}{\sqrt{5-x^{2}-2 x}} d x-2 \int \frac{1}{\sqrt{5-x^{2}-2 x}} d x \\ I &=I_{1}+I_{2} \\ I_{1} &=\frac{-3}{2} \int \frac{-2 x-2}{\sqrt{5-x^{2}-2 x}} d x ; I_{2}=-2 \int \frac{1}{\sqrt{5-x^{2}-2 x}} d x \end{aligned}$ Now, $I_{1}=\frac{-3}{2} \int \frac{-2 x-2}{\sqrt{5-x^{2}-2 x}} d x$ Let $\begin{aligned} &5-x^{2}-2 x=y \\ &(-2-2 x) d x=d y \end{aligned}$ $\Rightarrow I_{1}=\frac{-3}{2} \int \frac{d y}{\sqrt{y}}=\frac{-3}{2}\left(\frac{\sqrt{y}}{\frac{1}{2}}\right)+c$ $\begin{aligned} &I_{1}=-3 \sqrt{y}+c \\ &I_{1}=-3 \sqrt{5-x^{2}-2 x}+c \end{aligned}$ Now, $I_{2}=-2 \int \frac{1}{\sqrt{5-x^{2}-2 x}} d x$ $\begin{aligned} &I_{2}=-2 \int \frac{1}{\sqrt{5-\left(x^{2}+2 x+1\right)+1}} d x \\ &I_{2}=-2 \int \frac{1}{\sqrt{6-(x+1)^{2}}} d x \\ &I_{2}=-2 \sin ^{-1}\left[\frac{x+1}{\sqrt{6}}\right]+c \end{aligned}$ Putting $I_{1}$ & $I_{2}$ in equation (1) we get $I=-3 \sqrt{5-x^{2}-2 x}-2 \sin ^{-1}\left(\frac{x+1}{\sqrt{6}}\right)+c$
Answer: $\sin ^{-1} x+\sqrt{1-x^{2}}+c$ Given: $\int \sqrt{\frac{1-x}{1+x}} d x$ Hint: Simplify the given function Solution: $\begin{aligned} I &=\int \sqrt{\frac{1-x}{1+x}} d x \\ I &=\int \sqrt{\frac{1-x}{1+x} \times \frac{1-x}{1-x}} d x \text { (rationalizing ta e denominator) } \\ &=\int \sqrt{\frac{(1-x)^{2}}{1-x^{2}}} d x \quad\left[(a+b)(a-b)=\left(a^{2}-b^{2}\right)\right] \\ I &=\int \frac{1-x}{\sqrt{1-x^{2}}} d x \end{aligned}$ $\begin{aligned} &I=\int \frac{1}{\sqrt{1-x^{2}}} d x-\frac{1}{2} \int \frac{2 x}{\sqrt{1-x^{2}}} d x \\ &I=\sin ^{-1} x+\frac{1}{2}\left(\frac{\sqrt{1-x^{2}}}{\frac{1}{2}}\right)+c \end{aligned}$ $\begin{aligned} &{\left[\begin{array}{c} \int \frac{d x}{\sqrt{a^{2}-x^{2}}}=\sin ^{-1}\left(\frac{x}{a}\right)+c \\ \int(f(x))^{n} f^{1}(x) d x=\frac{[f(x)]^{n+1}}{n+1}+c \end{array}\right]} \\ &I=\sin ^{-1} x+\sqrt{1-x^{2}}+c \end{aligned}$
Answer: $2 \sqrt{x^{2}+4 x+3}-3 \log \left|x+2+\sqrt{x^{2}+4 x+3}\right|+c$ Given: $\int \frac{2 x+1}{\sqrt{x^{2}+4 x+3}} d x$ Hint: Simplify the given function Solution: $\begin{aligned} &I=\int \frac{2 x+1}{\sqrt{x^{2}+4 x+3}} d x \\ &I=\int \frac{2 x+4-3}{\sqrt{x^{2}+4 x+3}} d x \\ &I=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x-\int \frac{3}{\sqrt{x^{2}+4 x+3}} d x \\ &I=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x-\int \frac{3}{\sqrt{x^{2}+4 x+4-4+3}} d x \\ &I=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x-\int \frac{3}{\sqrt{(x+2)^{2}-1}} d x \end{aligned}$ $\begin{aligned} &I=I_{1}-3 \log \left|x+2+\sqrt{x^{2}+4 x+3}\right|+c \quad \ldots\left[\int \frac{1}{\sqrt{x^{2}-a^{2}}} d x=\log \left|x+\sqrt{x^{2}-a^{2}}\right|+c\right] \\ &I_{1}=\int \frac{2 x+4}{\sqrt{x^{2}+4 x+3}} d x \end{aligned}$ Let, $\begin{aligned} &x^{2}+4 x+3=y \\ &(2 x+4) d x=d y \\ &I_{1}=\int \frac{d y}{\sqrt{y}}=\frac{\sqrt{y}}{\frac{1}{2}}+c \\ &I_{1}=2 \sqrt{x^{2}+4 x+3}+c \\ &I=2 \sqrt{x^{2}+4 x+3}-3 \log \left|x+2+\sqrt{x^{2}+4 x+3}\right|+c \end{aligned}$
Answer: $\sqrt{x^{2}+2 x+3}+\log \left|x+1+\sqrt{x^{2}+2 x+3}\right|+c$ Given: $\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x$ Hint: Simplify the given function Solution: $\begin{aligned} &I=\int \frac{x+2}{\sqrt{x^{2}+2 x+3}} d x \\ &I=\frac{1}{2} \int \frac{2 x+4}{\sqrt{x^{2}+2 x+3}} d x \\ &I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\frac{1}{2} \int \frac{2}{\sqrt{x^{2}+2 x+3}} d x \\ &I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{x^{2}+2 x+1+2}} d x \\ &I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\int \frac{1}{\sqrt{(x+1)^{2}+2}} d x \end{aligned}$ $I=\frac{1}{2} \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x+\log \left|(x+1)+\sqrt{x^{2}+2 x+3}\right|+c\left|\int \frac{1}{\sqrt{x^{2}+a^{2}}} d x=\log \right| x+\sqrt{x^{2}+a^{2}}|+c|$ Let $\begin{aligned} &x^{2}+2 x+3=y \\ &(2 x+2) d x=d y \end{aligned}$ $\Rightarrow \int \frac{2 x+2}{\sqrt{x^{2}+2 x+3}} d x=\int \frac{d y}{\sqrt{y}}=\frac{\sqrt{y}}{\frac{1}{2}}+c$ $\begin{aligned} &=2 \sqrt{y}+c \\ &=2 \sqrt{x^{2}+2 x+3}+c \end{aligned}$ $\begin{aligned} &\Rightarrow I=\frac{1}{2}\left(2 \sqrt{x^{2}+2 x+3}\right)+\log \left|x+1+\sqrt{x^{2}+2 x+3}\right|+c \\ &\Rightarrow I=\sqrt{x^{2}+2 x+3}+\log \left|x+1+\sqrt{x^{2}+2 x+3}\right|+c \end{aligned}$
Rd Sharma Class 12th Exercise 18.21 solutions will help every student because of the plenty of benefits. Some benefits of these solutions are listed below:
Experts have created it with full focus:
These solutions are created by a team of experts who have focused on concept building and grades of students. The team discusses every question in detail, gives solutions and provides numerous ways for one question. Therefore, a student will always be able to learn the concept behind every question in mathematics after going for Rd Sharma Class 12 Chapter 18 Exercise 18.21 solutions.
Best material to prepare for board and competitive exams:
JEE Main Highest Scoring Chapters & Topics
Focus on high-weightage topics with this eBook and prepare smarter. Gain accuracy, speed, and a better chance at scoring higher.
These solutions help students to understand the concept behind every question and will be able to solve it. The students will be ready for any exam with RD Sharma Class 12 Solutions Indefinite Integrals ex 18.21 .
Questions from NCERT textbook
The solutions help a student do the homework from teachers as they usually follow NCERT for questions. The student will be able to do it effectively as these solutions are mostly based on NCERT questions. These solutions help students achieve good grades in mid term exams also.
Numerous approaches to solve a single question:
RD Sharma Class 12 Solutions Chapter 10 ex 18.21 helps students find alternative ways to solve a single problem in mathematics due to the great minds behind its creation. A student finds it easy to choose and understand the requirements of the problem.
Great performance is guaranteed
The solutions help a student perform exceptionally in exams. RD Sharma Class 12 Solutions Chapter 18 ex 18.21 covers all the important questions that come in exams and give various ways to solve them. A student will be able to write exams with confidence and a victory smile.
Free of cost
Students will find all these solutions free of cost at Career360. Career360 is the best website to visit and learn the concepts due to the reasons stated above. Thousands of students have gained a lot of knowledge and excellent marks from these solutions making Career360 number one choice for every student.